Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-18T12:28:35.019Z Has data issue: false hasContentIssue false

List of Literature

Published online by Cambridge University Press:  05 June 2016

Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

AGULHON, H. (1910). Emploi du bore comme engrais catalytique. G.R. Acad. Sci., Paris, 150, 288–91.Google Scholar
ALBEN, A. O., COLE, J. R. and LEWIS, R. D. (1932a). Chemical treatment of pecan rosette. Phytopathology, 22, 595–601.Google Scholar
ALBEN, A. O., COLE, J. R. and LEWIS, R. D. (1932b). New developments in treating pecan rosette with chemicals. Phytopathology, 22,979–80.Google Scholar
ALEXANDER, T. R. (1942). Anatomical and physiological responses of squash to various levels of boron supply. Bot. Oaz. 103, 475–91.Google Scholar
AMIN, J. V. and JOHAM, H. B. (1958). A molybdenum cycle in the soil. Soil Sci. 85, 156–60.CrossRefGoogle Scholar
ANDERSON, A. J. and OERTEL, A. C. (1946). Factors affecting the responses of plants to molybdenum. Bull. Coun. Sci. Industr. Res. Aust. no. 198, 25–44.Google Scholar
ANDERSON, A. J. and SPENSER, D. (1950). Molybdenum in nitrogen metabolism of legumes and non–legumes. Aust. J. Sci. Res. B, 3, 414–30.Google ScholarPubMed
ANDERSON, A. J. and THOMAS, M. P. (1946). Plant responses to molybdenum as a fertilizer. I. Bull. Coun. Sci. Industr. Res. Aust. no. 198, 7–24.Google Scholar
ANDERSON, I. and EVANS, H. J. (1956). Effect of manganese and certain other metal cations on iso–citric dehydrogenase and malic enzyme activities in Phaseolus vulgaris. Plant Physiol. 31, 22–8.Google Scholar
ANDERSSEN, F. G. (1932). Chlorosis of deciduous fruit trees due to a copper deficiency. J. Pomol. 10, 130–46.Google Scholar
ARGAWALA, S. C. (1952). Relation of nitrogen supply to the molybdenum requirement of cauliflower grown in sand culture. Nature, Lond., 169, 1099.Google Scholar
ARK, P. A. (1937). Little–leaf or rosette of fruit trees. VII. Soil microflora and little–leaf or rosette disease. Proc. Amer. Soc. Hort. Sci. 1936, 34, 216–21.Google Scholar
ARNON, D. I. (1937). Ammonium and nitrate nitrogen nutrition of barley at different seasons in relation to hydrogen–ion concentration, manganese, copper and oxygen supply. Soil Sci. 44, 91–121.CrossRefGoogle Scholar
ARNON, D. I. (1938). Microelements in culture–solution experiments with higher plants. Amer. J. Bot. 25, 322–5.CrossRefGoogle Scholar
ARNON, D. I. (1940). The essential nature of molybdenum for the growth of higher plants. Chron. Bot. 6, 56–7.Google Scholar
ARNON, D. I., ICHIOKA, P. S., WESSEL, G., FUJIWARA, A. and WOLLEY, J. T. (1951). Molybdenum in relation to nitrogen metabolism. I. Assimilation of nitrate nitrogen by Scenedesmus. Physiol. Plant. 8, 538–51.Google Scholar
ARNON, D. I. and STOUT, P. R. (1939a). The essentiality of certain elements in minute quantity for plants with special reference to copper. Plant Physiol. 14, 371–5.CrossRefGoogle Scholar
ABNON, D. I. and STOUT, P. B. (1939b). Molybdenum as an essential element for higher plants. Plant Physiol. 14, 599–602.Google Scholar
ABNON, D. I. and WESSEL, G. (1953). Vanadium as an essential element for green plants. Nature, Lond., 172, 1039–40.Google Scholar
ASKEW, H. O., CHITTENDEN, E. T. and MONK, R. J. (1951). ‘Die–back’ in raspberries. J. Hort. Sci. 26, 268–84.Google Scholar
ASKEW, H. O., CHITTENDEN, E. and THOMSON, R. H. K. (1936). The use of borax in the control of ‘ internal cork’ of apples. N.Z. J. Sci. Tech. 18, 365–80.Google Scholar
ASKEW, H. O. and DIXON, J. K. (1936). The importance of cobalt in the treatment of certain stock ailments in the South Island, New Zealand. N.Z. J. Sci. Tech. 18, 73–92.Google Scholar
ASKEW, H. O. and RIGG, T. (1932). Bush sickness. Investigations concerning the occurrence and cause of bush sickness in New Zealand. Bull. N.Z. Dep. Sci. Industr. Res. 32, 5–62.Google Scholar
ASKEW, H. O. and WILLIAMS, W. R. L. (1939). Brown–spotting of apricots, a boron–deficiency disease.N.Z. J. Sci. Tech. A, 21, 103–6.Google Scholar
Aso, K. (1902). On the physiological influence of manganese compounds on plants. Bull. Coll. Agric, Tokyo, no. 5, 177–85.Google Scholar
ASTON, B. C. (1929). Cure of iron starvation (bush sickness) in stock. N.Z. J. Agric. 38, 232–7.Google Scholar
ASTON, B. C. (1931). Recent work on iron starvation in other countries. N.Z. J. Agric. 43, 270–2.Google Scholar
ATACK, F. W. (1915). A new reagent for the detection and colorimetric estimation of aluminium. J. Soc. Chem. Ind., Lond., 34, 936–7.Google Scholar
BAILEY, L. F. and MCHARGUE, J. S. (1944). Effect of boron, copper, manganese and zinc on the enzyme activity of tomato and alfalfa plants grown in the greenhouse. Plant Physiol. 19, 105–16.CrossRefGoogle ScholarPubMed
BAKER, J. E., GAUCH, H. G. and DUGGAR, W. M. (1956). Effects of boron on the water relations of higher plants. Plant Physiol. 31, 89–94.CrossRefGoogle ScholarPubMed
BARNETTE, R. M. and WABNER, J. D. (1935). A response of chlorotic corn plants to the application of zinc sulfate to the soil. Soil Sci. 39, 145–56.CrossRefGoogle Scholar
BARSHAD, I. (1948). Molybdenum content of pasture plants in relation to toxicity to cattle. Soil Sci. 66, 187–95.CrossRefGoogle Scholar
BARSHAD, I. (1951 a). Factors affecting the molybdenum content of pasture plants. I. Nature of soil molybdenum, growth of plants and soil pH. Soil Sci. 71, 297–313.Google Scholar
BARSHAD, I. (1951b). Factors affecting the molybdenum content of pasture plants. II. Effect of soluble phosphates, available nitrogen and soluble sulfates. Soil Sci. 71, 387–98.CrossRefGoogle Scholar
BAUMANN, A. (1885). Das Verhalten von Zinksalzen gegen Pflanzen und im Boden. Landw. Versuchs–Stat. 31, 1–53.Google Scholar
BEATH, O. A., DRAIZE, J. H., EPPSON, H. F., GILBERT, C. S. and MCCREARY, O. C. (1934). Certain poisonous plants of Wyoming activated by selenium and their association with respect to soil types. J. Amer. Pharm. Ass. 23, 94–7.Google Scholar
BEATH, O. A., EPPSON, H. F. and GILBERT, C. S. (1935). Selenium and other toxic minerals in soils and vegetation. Bull. Wyo. Agric. Exp. Sta. no. 206, 56 pp.Google Scholar
BECKER, R. B., NEAL, W. M. and SHEALY, A. L. (1931). I. Salt sick: its cause and prevention. II. Mineral supplements for cattle. Bull. Fa Agric. Exp. Sta. no. 231, 22 pp.Google Scholar
BEESON, K. C, GRAY, L. and ADAMS, M. B. (1947). The absorption of mineral elements by forage plants. I. The phosphorus, cobalt, manganese and copper content of some common grasses. J. Amer. Soc. Agron. 39, 356–62.CrossRefGoogle Scholar
BEESON, K. C, GRAY, L. and HAMNER, K. C. (1948). The absorption of mineral elements by forage plants. II. The effect of fertilizer elements and liming materials on the content of mineral nutrients in soybean leaves. J. Amer. Soc. Agron. 40, 553–62.CrossRefGoogle Scholar
BEEVERS, H. and JAMES, W. O. (1948). The behaviour of secondary and tertiary amines in the presence of catechol and Belladonna catechol oxidase. Biochem. J. 43, 636–9.CrossRefGoogle ScholarPubMed
BERENBLUM, I. and CHAIN, E. (1938). An improved method for the colorimetric determination of phosphate. Biochem. J. 32, 295–8.Google ScholarPubMed
BERGER, K. C. and GERLOFF, G. C. (1947). Manganese toxicity of potatoes in relation to strong soil acidity. Proc. Soil Sci. Soc. Amer. 12, 310–14.Google Scholar
BERGER, K. C. and TRUOG, E. (1939). Boron determination in soils and plants using the quinalizarin reaction. Industr. Engng Ohem. (Anal. ed.), 11, 540–5.Google Scholar
BERGER, K. C. and TRUOG, E. (1944). Boron tests and determination for soils and plants. Soil Sci. 57, 25–36.CrossRefGoogle Scholar
BERTRAND, D. (1940). Sur la diffusion du molybdène dans la terre arable et dans l'eau. C.R. Acad. Sci., Paris, 211, 406–8.Google Scholar
BERTRAND, D. (1941). Importance de l'oligoèlèment vanadium pour l'Aspergillus niger. C.R. Acad. Sci., Paris, 213, 254–7.Google Scholar
BERTRAND, G. (1897). Sur l'intervention du manganèse dans les oxidations provoquées par la laccase. C.R. Acad. Sci., Paris, 124, 1032–5, 1355–8.Google Scholar
BERTRAND, G. (1905). Sur l'emploi favorable du manganese comme engrais. C.R. Acad. Sci., Paris, 141, 1255–7.Google Scholar
BERTRAND, G. (1912a). Sur l'extraordinaire sensibilité de l'Aspergillus niger vis–à–vis du manganèse. Bull. Soc. chim. Fr. iv, 11, 494—8.Google Scholar
BERTRAND, G. (1912b). Sur le rôle capital du manganèse dans la production des conidies de l'Aspergillus niger. Bull. sci. pharmacol. 19, 321–4.Google Scholar
BERTRAND, G. (1912C). Sur le rôle capital du manganèse dans la production des conidies de VAspergillus niger. C.R. Acad. Sci., Paris, 154, 381–3.Google Scholar
BERTRAND, G. (1940). Importance du molybdène comme oligoélément par les 1égumineuses. C.R. Acad. Sci., Paris, 211, 512–14.Google Scholar
BERTRAND, G. and JAVILLIER, M. (1911a). Influence combinée du zinc et du manganèse sur le développement de l'Aspergillus niger. C.R. Acad. Sci., Paris, 152, 900–3.Google Scholar
BERTRAND, G. and JAVILLIER, M. (1911b). Influence du manganèse sur le développement de l'Aspergillus niger. C.R. Acad. Sci., Paris, 152, 225–8.Google Scholar
BERTRAND, G. and JAVILLIER, M. (1911C). Influence du zinc et du manganése sur la composition minérale de l'Aspergillus niger. C.R. Acad. Sci., Paris, 152, 1337–40.Google Scholar
BERTRAND, G. and JAVILLIER, M. (1912a). Action combinee du manganèse et du zinc sur le développement et la composition minérale de l'Aspergillus niger. Ann. Inst. Pasteur, 26, 241–6.Google Scholar
BERTRAND, G. and JAVILLIER, M. (1912b). Action du manganèse sur le développement de l'Aspergillus niger. Ann. Inst. Pasteur, 26, 241–6.Google Scholar
BERTRAND, G. and JAVILLIER, M. (1912C). Action du manganèse sur le développement de l'Aspergillus niger. Bull. Soc. ohim. Fr. iv, 11, 212–21.Google Scholar
BINGHAM, F. T., MARTIN, J. P. and CHASTAIN, J. A. (1958). Effects of phosphorus fertilization of California soils on minor element nutrition ofCitrus. Soil Sci. 86, 24–31.Google Scholar
BISHOP, W. B. S. (1928). The distribution of manganese in plants, and its importance in plant metabolism. Aust. J. Exp. Biol. Med. Sci. 5, 125–41.CrossRefGoogle Scholar
BLANK, L. M. (1941). Response of Phymatrotrichum omnivorum to certain trace elements. J. Agric. Res. 62, 129–59.Google Scholar
BOBKO, E. V. and BELVOUSSOV, M. A. (1933). Importance du bore pour la betterave à sucre. Ann. Agron. N.S. 3, 493–504.Google Scholar
BOBKO, E. V. and SAVVINA, A. G. (1940). Role of molybdenum in plantdevelopment. C.R. Acad. Sci. U.R.S.S. 29, 507–9.Google Scholar
BOKEN, E. (1955). On the effect of ferrous sulphate on the available manganese in the soil. Plant and Soil, 6, 97–112.CrossRefGoogle Scholar
BOKEN, E. (1956). On the effect of ferrous sulphate on the available manganese in the soil and the uptake of manganese by the plant. II. Plant and Soil, 7, 237–52.CrossRefGoogle Scholar
BOKEN, E. (1957). The effect of ferrous sulphate on the yield and manganese uptake of oats on sandy soil fertilized with pyrolucite. Plant and Soil, 8, 160–9.Google Scholar
BOLLE–JONES, E. W. (1955). The effect of varied nutrient levels on the concentration and distribution of manganese within the potato plant. Plant and Soil, 6, 45–60.CrossRefGoogle Scholar
BOLLE–JONES, E. W. (1956). Molybdenum status of laminae as determined by bioassay and chemical methods. Plant and Soil, 7, 130–4.CrossRefGoogle Scholar
BORTELS, H. (1927). Über die Bedeutung von Eisen, Zink, und Kupfer für Mikroorganismen. Biochem. Z. 182, 301–58.Google Scholar
BORTELS, H. (1930). Molybdän als Katalysator bei den biologischen Stickstoffbindung. Arch. Mikrobiol. 1, 333–42.CrossRefGoogle Scholar
BORTELS, H. (1937). Über die Wirkung von Molybdän– und Vanadium–Düngungen auf Leguminosen. Arch. Mikrobiol. 8, 13–26.Google Scholar
BORTELS, H. (1939). Über die Wirkung von Agar sowie Eisen, Molybdän, Mangan und anderen Spurenelementen in stickstofffreier Nahrlösung auf Azotobakter. Z. Bakt. II, 100, 373–93.Google Scholar
BOBTELS, H. (1940). über die Bedeutung des Molybdäns fur stiekstoffbindende Nostocaceen. Arch. Mikrobiol. 11, 155–86.Google Scholar
BOULD, C., NICHOLAS, D. J. D., POTTER, J. M. S., TOLHUBST, J. A. H. and WALLACE, T. (1949). Zinc and copper deficiencies of fruit trees. Ann. Rep. Agric. Hort. Res. Sta., Long Ashton, pp. 45–9.Google Scholar
BRANDENBTTRG, E. (1931). Die Herz– und Trockenfäule der Röben als Bormangelerscheinung. Phytopath. Z. 3, 499–517.Google Scholar
BRANDENBURG, E. (1932). Die Herz– und Trockenfäule der Röben—Ursache und Bekampfung. Angew. Bot. 14, 194–228.Google Scholar
BRANDENBURG, E. (1933). Onderzoekingen over ontginningsziekte. II. Tijdschr. Plziekt. 39, 189–92.Google Scholar
BRANDENBURG, E. (1934). Über die Bedeutung des Kupfers für die Entwicklung einiger Pflanzen im Vergleich zu Bor und Mangan und über Kupfermangelerscheinungen. Angew. Bot. 16, 505–9.Google Scholar
BRENCHLEY, W. E. (1914). Inorganic Plant Poisons and Stimulants. Cambridge.Google Scholar
BRENCHLEY, W. E. and THORNTON, H. G. (1925). The relation between the development, structure and functioning of the nodules on Vicia faba, as influenced by the presence or absence of boron in the nutrient medium. Proa. Roy. Soc. B, 98, 373–98.Google Scholar
BRENCHLEY, W. E. and WARINGTON, K. (1927). The role of boron in the growth of plants. Ann. Bot., Lond., 41, 167–87.Google Scholar
BROWN, J. C. and HOLMES, R. S. (1955). Iron, the limiting element in a chlorosis. Part I. Availability and utilization of iron dependent upon nutrition and plant species. Plant Physiol. 30, 451–7.Google Scholar
BROWN, J. C, HOLMES, R. S. and SPECHT, A. W. (1955). Iron, the limiting element in a chlorosis. Part II. Copper–phosphorus induced chlorosis dependent upon plant species and varieties. Plant Physiol. 30, 457–62.Google Scholar
BROYER, T. C, CARLTON, A. B., JOHNSON, C. M. and STOUT, P. R. (1954). Chlorine—a micronutrient element for higher plants. Plant Physiol. 29, 526–32.CrossRefGoogle ScholarPubMed
BRYAN, O. C. and BECKER, R. B. (1935). The mineral content of soil types as related to ‘salt sick’ of cattle. J. Amer. Soc. Agron. 27, 120–7.CrossRefGoogle Scholar
BURRELL, A. B. (1937). Boron treatment for a physiogenic apple disease. Proc. Amer. Soc. Hort. Soc. for 1936, 34, 199–205.Google Scholar
BURRELL, A. B. (1938). Control of internal cork of apple with boron. Proc. Amer. Soc. Hort. Soc. for 1937, 35, 161–75.Google Scholar
BURSTRöM, H. (1939). Über die Schwermetallkatalyse der Nitrat–Assimilation. Planta, 29, 292–305.Google Scholar
BYERS, H. G. (1934). Selenium, vanadium, chromium and arsenic in one soil. Industr. Engng Chem. (News ed.), 12, 122.Google Scholar
BYERS, H. G. (1935). Selenium occurrence in certain soils in the United States, with a discussion of related topics. Tech. Bull. U.S. Dep. Agric. no. 482, 47 pp.Google Scholar
BYEBS, H. G. and KNIGHT, H. G. (1935). Selenium in soils in relation to its presence in vegetation. Industr. Engng Chem. 27, 902–4.Google Scholar
CAHILL, V. (1929). Experiments for the control of exanthema in Japanese plum trees. J. Dep. Agric. W. Aust. 6, 388–94.Google Scholar
CALFEE, R. K. and MCHARGUE, J. S. (1937). Optical spectroscopic determination of boron. Polarizing attachments. Industr. Engng Chem. (Anal, ed.), 9, 288–90.CrossRefGoogle Scholar
CALLAN, R. and HENDERSON, J. A. R. (1929). A new reagent for the colorimetric determination of minute amounts of copper. Analyst, 54, 650–3.CrossRefGoogle Scholar
CAMP, A. F. (1945). Zinc as a nutrient in plant growth. Soil Sci. 60, 156–64.CrossRefGoogle Scholar
CARNE, W. M. and MABTIN, D. (1937). Preliminary experiments in Tasmania on the relation of internal cork of apples and cork of pears to boron deficiency. Aust. J. Goun. Sci. Industr. Res. 10, 47–56.Google Scholar
CHANDLER, F. B. (1941). Mineral nutrition of the genus Brassica with particular reference to boron. Bull. Maine Agric. Exp. Sta. no. 404.Google Scholar
CHANDLER, W. H. (1937). Zinc as a nutrient for plants. Bot. Gaz. 98, 625–46.CrossRefGoogle Scholar
CHANDLER, W. H., HOAGLAND, D. R. and HIBBARD, P. L. (1932). Littleleaf or rosette in fruit trees. Proa. Amer. Soc. Hort. Sci. 1931, 28, 556–60.Google Scholar
CHANDLER, W. H., HOAGLAND, D. R. and HIBBARD, P. L. (1933). Littleleaf or rosette of fruit trees. II. Proc. Amer. Soc. Hort. Sci. 1932, 29, 255–63.Google Scholar
CHANDLER, W. H., HOAGLAND, D. R. and HIBBARD, P. L. (1934). Littleleaf or rosette of fruit trees. III. Proc. Amer. Soc. Hort. Sci. 1933, 30, 70–86.Google Scholar
CHANDLER, W. H., HOAGLAND, D. R. and HIBBARD, P. L. (1935). Littleleaf or rosette of fruit trees. Proc. Amer. Soc. Hort. Sci. 1934, 32, 11–19.Google Scholar
CHAPMAN, H. D. and VANSELOW, A. P. (1956). In Citrus Leaves, 86, 10–12, 26, 28. Cited by W. Reuter, T. W. Embleton and W. W. Jones (1958). Mineral nutrition of tree crops. Ann. Rev. PI. Physiol. 9, 175–200.
CHESTERS, C. G. C. and ROLINSON, G. N. (1950). Role of zinc in metabolism. Nature, Lond., 165, 851–2.CrossRefGoogle ScholarPubMed
COLEMAN, D. R. K. and GILBERT, F. C. (1939). Manganese and caffeine content of some teas and coffees. Analyst, 64, 726–30.CrossRefGoogle Scholar
COLLANDER, R. (1941). Selective absorption of cations by higher plants. Plant Physiol. 16, 691–720.CrossRefGoogle ScholarPubMed
COLWELL, W. E. and LINCOLN, C. (1942). A comparison of boron deficiency symptoms and potato leafhopper injury on alfalfa. J. Amer. Soc. Agron. 34, 495–8.CrossRefGoogle Scholar
CONNOR, J., SCHIMP, N. F. and TEDROW, J. C. F. (1957). A spectrographic study of the distribution of trace elements in some podzolic soils. Soil Sci. 83, 65–73.CrossRefGoogle Scholar
COOK, J. W. (1941). Rapid method for determination of manganese in feeds. Industr. Engng Chem. (Anal, ed.), 13, 48–50.Google Scholar
COOK, R. L. and MILLER, C. E. (1939). Some soil factors affecting boron availability. Proc. Soil Sci. Soc. Amer. 4, 297–301.Google Scholar
CORNER, H. H. and SMITH, A. M. (1938). The influence of cobalt on pine disease in sheep. Biochem. J. 32, 1800–5.CrossRefGoogle Scholar
COWLING, H. and MILLER, E. J. (1941). Determination of small amounts of zinc in plant materials. Industr. Engng Chem. (Anal, ed.), 13, 145–9.Google Scholar
CRIPPS, E. G. (1956). Boron nutrition of the hop. J. Hort. Sci. 31, 25–34.Google Scholar
DAVIDSON, ANNIE M. M. and MITCHELL, R. L. (1940). The determination of cobalt and chromium in soils. J. Soc Chem. Ind., Lond., 59, 232–5.Google Scholar
DAVIS, A. R., MARLOTH, R. H. and BISHOP, C. J. (1928). The inorganic nutrition of the fungi. I. The relation of calcium and boron to growth and spore formation. Phytopathology, 18, 949.Google Scholar
DAVIS, G. K. (1958). Mechanisms of trace element function. Soil Sci. 85, 59–62.CrossRefGoogle Scholar
DEAN, L. A. and TRUOG, E. (1935). Determination of manganese and magnesium in soils and silicate rocks. Industr. Engng Chem. (Anal, ed.), 7, 383–5.Google Scholar
DEARBORN, C. H. (1942). Boron nutrition of cauliflower in relation to browning. Bull. Cornell Univ. Agric. Exp. Sta. no. 778.Google Scholar
DEARBORN, C. H. and RALEIGH, G. J. (1936). A preliminary note on the control of internal browning of cauliflower by the use of boron. Proa. Amer. Soc. Hort. Sci. 1935, 33, 622–3.Google Scholar
DEARBORN, C. H., THOMPSON, H. C. and RALEIGH, G. J. (1937). Cauliflower browning resulting from a deficiency of boron. Proa. Amer. Soc. Hort. Sci. 1936, 34, 483–7.Google Scholar
DEMAREE, J. B., FOWLER, E. D. and CRANE, H. L. (1933). Report of progress on experiments to control pecan rosette. Nation. Pecan Assoo. Bull. Proc. Ann. Conv. 32, 90–9. (Summary in Biol. Abstr. 9, 1225, 1935.)Google Scholar
DENNIS, A. C. and DENNIS, R. W. G. (1939). Boron and plant life. III. Developments in agriculture and horticulture. Fertil. Feed. St. J., 19 pp. Feb., Mar. and Apr.Google Scholar
DENNIS, A. C. and DENNIS, R. W. G. (1941). Boron and plant life. IV. Developments in agriculture and horticulture, 1939–40. Fertil. Feed. St. J. 24 pp. Nov. 1940–Feb. 1941.Google Scholar
DENNIS, A. C. and DENNIS, R. W. G. (1943). Boron and plant life. V. Developments in agriculture and horticulture, 1940–42. Fertil. Feed. St. J. 38 pp. in reprint Mar.; Apr.; May.Google Scholar
DENNIS, R. W. G. (1937). The relation of boron to plant growth. Sci. Prog. 32, 58–69.Google Scholar
DENNIS, R. W. G. (1937). Boron and plant life. II. Recent developments in agriculture and horticulture. Fertil. Feed. St. J. 15 pp., Sept.– Oct.Google Scholar
DENNIS, R. W. G. and O'BRIEN, D. G. (1937). Boron in agriculture. Res. Bull. W. Scot. Agric. Coll. no. 5.Google Scholar
DE ROSE, H. R., EISENMENGER, W. S. and RITCHIE, W. S. (1938). The comparative nutritive effects of copper, zinc, chromium and molybdenum. Bull. Mass. Agric. Exp. Sta. 1937, no. 347, pp. 18–19.Google Scholar
DIBLE, W. T., TBUOG, E. and BEBGEB, K. C. (1954). Boron determination in soils and plants. Anal. Chem. 26, 418–21.CrossRefGoogle Scholar
DICK, A. T. (1956). Molybdenum in animal nutrition. Soil Sci. 81, 229–36.CrossRefGoogle Scholar
DRAIZE, J. H. and BEATH, O. A. (1935). Observations on the pathology of blind staggers and alkali disease. Amer. Vet. Med. Ass. J. 86, (N.S. 39), 753–63.Google Scholar
DRAKE, M., SIELINQ, D. H. and SCABSBTH, G. D. (1941). Calcium–boron ratio as an important factor in controlling boron starvation. J. Amer. Soc. Agron. 33, 454–62.CrossRefGoogle Scholar
DREGNE, H. E. and POWEBS, W. L. (1942). Boron fertilization of alfalfa and other legumes in Oregon. J. Amer. Soc. Agron. 34, 902–12.CrossRefGoogle Scholar
DUFRÉNOY, J. and REED, H. S. (1934). Pathological effects of the deficiency or excess of certain ions on the leaves of Citrus plants. Ann. Agron. N.S. 4, 637–53.Google Scholar
DUFRÉNOY, J. and REED, H. S. (1942). Coacervates in physical and biological systems. Phytopathology, 32, 568–79.Google Scholar
DUNLOP, G. (1939). Mineral Deficiencies in Live Stock on British Pastures. Glasgow: The Scottish Agric. Publ. Co.
DUNLOP, G., INNES, J. R. M., SHEABEB, G. D. and WELLS, H. (1939).‘Swayback’ studies in North Derbyshire. I. The feeding of copper to pregnant ewes in the control of ‘Swayback’. J. Comp. Path. 52, 259–65.Google Scholar
DUNN, F. J. and DAWSON, C. R. (1951). On the nature of ascorbic acid oxidase. J. Biol. Chem. 189, 485–97.Google ScholarPubMed
DUNNE, T. C. (1938). ‘Wither–tip’ or ‘Summer Dieback’. J. Agric. W. Aust. 15(2nd Ser.), 120–6.Google Scholar
EABLEY, E. B. (1943). Minor element studies with soybeans. I. Varietal reaction to concentrations of zinc in excess of the nutritional requirement. J. Amer. Soc. Agron. 35, 1012–23.Google Scholar
EATON, F. M. (1935). Boron in soils and irrigation waters and its effect on plants. Tech. Bull. U.S. Dep. Agric. no. 448.Google Scholar
EATON, F. M. (1942). Toxicity and accumulation of chloride and sulfate in plants. J. Agric. Res. 64, 357–99.Google Scholar
EATON, S. V. (1940). Effects of boron deficiency and excess on plants. Plant Physiol. 15, 95–107.CrossRefGoogle ScholarPubMed
EDEN, A. and GBEEN, H. H. (1940). Micro–determination of copper in biological material. Biochem. J. 34, 1202–8.CrossRefGoogle ScholarPubMed
EISLEB, B., ROSDAHL, K. G. and THEOEELL, H. (1936). Über die Mikrobestimmung des Kupfers mit Hilfe der lichtelektrischen Photo – metrie. Biochem. Z. 285, 76–7.Google Scholar
ELLIOTT, W. H. (1951). Studies on the enzymic synthesis of glutamine. Biochem. J. 49, 106–12.CrossRefGoogle ScholarPubMed
ELLIOTT, W. H. (1953). Isolation of glutamine synthetase and glutamotransferase from green peas. J. Biol. Chem. 201, 661–72.Google ScholarPubMed
ELTINGE, E. T. (1936). Effect of boron deficiency upon the structure of Zea mays. Plant Physiol. 11, 765–78.CrossRefGoogle ScholarPubMed
ELTINGE, E. T. and REED, H. S. (1940). The effect of zinc deficiency upon the root of Lycopersicum esculentum. Amer. J. Bot. 27, 331–5.CrossRefGoogle Scholar
EMEBSON, R. and LEWIS, C. M. (1939). Factors influencing the efficiency of photosynthesis. Amer. J. Bot. 26, 808–22.Google Scholar
ERKAMA, J. (1947). Über die Rolle von Kupfer und Mangan im Leben der hoheren Pflanzen. Ann. Acad. Sci. Fenn. A, II, 25, 1–105.Google Scholar
EBKAMA, J. (1950). On the effect of copper and manganese on the iron status of higher plants. In ‘Trace Elements in Plant Physiology’. Lotsya, 3, 53–62.Google Scholar
EVANS, C. E., LATHWELL, D. J. and MEDEBSKI, H. J. (1950). Effect of deficient or toxic levels of nutrients in solution on foliar symptoms and mineral content of soybean leaves as measured by spectroscopic methods. Agron. J. 42, 25–32.CrossRefGoogle Scholar
EVANS, H. J. and PUBVIS, E. R. (1951). Molybdenum status of some New Jersey soils with respect to alfalfa production. Agron. J. 43, 70–1.CrossRefGoogle Scholar
EVANS, H. J., PUBVIS, E. R. and BEAB, F. E. (1950). Molybdenum nutrition of alfalfa. Plant Physiol. 25, 555–66.CrossRefGoogle ScholarPubMed
FEBGUSON, W. S. (1943). The teart pastures of Somerset. IV. The effect of continuous administration of copper sulphate to dairy cows. J. Agric. Sci. 33, 116–18.Google Scholar
FEBGUSON, W. S., LEWIS, A. H. and WATSON, S. J. (1943). The teart pastures of Somerset. I. The cause and cure of teartness. J. Agric. Sci. 33, 44–51.Google Scholar
FILMEB, J. F. and UNDERWOOD, E. J. (1937). Enzootic marasmus. Further data concerning the potency of cobalt as a curative and prophylactic agent. Ausl. Vet. J. 13, 57–64.Google Scholar
FINCH, A. H. (1933). Pecan rosette, a physiological disease apparently susceptible to treatment with zinc. Proc. Amer. Hort. Sci. 1932, 29, 264–6.Google Scholar
FINCH, A. H. and KINNISON, A. F. (1933). Pecan rosette: soil, chemical and physiological studies. Tech. Bull. Arizona Agric. Exp. Sta. no. 47, pp. 407–42.Google Scholar
FISHEB, P. L. (1935). Responses of the tomato in solution cultures with deficiencies and excesses of certain essential elements. Bull. Md Agric. Exp. Sta. no. 375, pp. 282–98.Google Scholar
FLOYD, B. F. (1908). Leaf spotting of Citrus. Ann. Rep. Florida Agric. Exp. Sta. no. 91.Google Scholar
FLOYD, B. F. (1917). Dieback, or exanthema of Citrus trees. Bull. Fa Agric. Exp. Sta. no. 140, 31 pp.Google Scholar
FOSTEB, J. S. and HOBTON, C. A. (1937). Quantitative spectrographic analysis of biological material. II. Proc. Roy. Soc. B, 123, 422–30.Google Scholar
FOSTEB, J. W. (1939). The heavy metal nutrition of fungi. Bot. Rev. 5, 207–39.Google Scholar
FOSTEB, J. W. and DENISON, F. W. (1950). Role of zinc in metabolism. Nature, Lond., 166, 833–4.Google Scholar
FOSTEB, J. W. and WAKSMAN, S. A. (1939). The specific effect of zinc and other heavy metals on growth and fumaric–acid production by Rhizopus. J. Bad. 37, 599–617.Google Scholar
FBANKE, K. W. and MOXON, A. L. (1936). A comparison of the minimum fatal dose of selenium, tellurium, arsenic and vanadium. J. Pharmacol. 58, 454–9.Google Scholar
FBEY–WYSSLING, A. (1935). Die unentbehrlichen Elemente der Pflanzennahrung. Naturwissensahqften, 23, 767–9.Google Scholar
FUJIMOTO, C. K. and SHERMAN, G. D. (1948). Manganese availability as influenced by steam sterilization of soils. J. Amer. Soc. Agron. 40, 527–34.CrossRefGoogle Scholar
FUJIMOTO, C. K. and SHERMAN, G. D. (1950). Cobalt content of typical soils and plants of the Hawaiian islands. Agron. J. 42, 577–81.CrossRefGoogle Scholar
FUJIMOTO, C. K. and SHERMAN, G. D. (1951). Molybdenum content of typical soils and plants of the Hawaiian islands. Agron. J. 43, 424–9.CrossRefGoogle Scholar
GALLAGHER, P. H. and WALSH, T. (1943). The susceptibility of cereal varieties to manganese deficiency. J. Agric. Sci. 33, 197–203.CrossRefGoogle Scholar
GAUCH, H. G. and DUGGAR, W. M. (1953). The role of boron in the translocation of sucrose. Plant Physiol. 28, 457–67.CrossRefGoogle ScholarPubMed
GAUCH, H. G. and DUGGAR, W. M. (1954). The physiological action of boron in higher plants: a review and interpretation. Bull. Univ. Maryland Agric. Exp. Sta. no. A–80 (Technical), 43 pp.Google Scholar
GEIGEL, A. R. (1935). Effect of boron on the growth of certain green plants. J. Agric Univ. Puerto Rico, 19, 5–28.Google Scholar
GERRETSEN, F. C. (1937). Manganese deficiency of oats and its relation to soil bacteria. Ann. Bot., Lond., N.S. 1, 207–30.CrossRefGoogle Scholar
GILBERT, B. E. and MCLEAN, F. T. (1928). A ‘deficiency disease’: The lack of available manganese in a lime–induced chlorosis. Soil Sci. 26, 27–31.CrossRefGoogle Scholar
GILE, P. L. (1916). Chlorosis of pineapples induced by manganese and carbonate of lime. Science, 44, 855–7.CrossRefGoogle ScholarPubMed
GISIGER, L. (1950). Deficiencies of minor elements caused by excesses. In ‘Trace elements in plant physiology’. Lotsya, 3, 19–30.Google Scholar
GLASSCOCK, H. H. and WAIN, R. L. (1940). Distribution of manganese in the pea seed in relation to marsh spot. J. Agric. Sci. 30, 132–40.CrossRefGoogle Scholar
GOLLMICK, F. (1936). Der Einfluss von Zink, Eisen und Kupfer und deren Kombination auf das Wachstum von Aspergillua niger. Z. Bakt. II, 93, 421–42.Google Scholar
GRAM, E. (1936). Bormangel og nogle andre mangelsygdomme. Tidsskr. Planteavl. 41, 401–49.Google Scholar
GREENWOOD, M. and HAYFRON, R. J. (1951). Iron and zinc deficiencies in cacao in the Gold Coast. Emp. J. Exp. Agric. 19, 73–86.Google Scholar
GREIG, J. R., DBYERRE, H., GODDEN, W., CRICHTON, A. and OGG, W. G. (1933). Pine: a disease affecting sheep and young cattle. Vet. J. 89, 99–110.Google Scholar
GRIGGS, MARY A., JOHNSTIN, RUTH and ELLEDGE, BONNIE E. (1941). Mineral analysis of biological materials. Industr. Engng Chem. (Anal, ed.), 13, 99–101.Google Scholar
GRIMM, P. W. and ALLEN, P. J. (1954). Promotion by zinc of the formation of cytochromes in Ustilago sphaerogena. Plant Physiol. 29, 369–77.Google ScholarPubMed
GBIZZABD, A. L. and MATHEWS, E. M. (1942). The effect of boron on seed production of alfalfa. J. Atner. Soc. Agron. 34, 365–8.Google Scholar
Güssow, H. T. (1934). Brown–heart of swede turnips. Rep. Third Imp. Mycol. Conference, p. 26.Google Scholar
HAAS, A. R. C. (1932). Some nutritional aspects in mottle–leaf and other physiological diseases of Citrus. Hilgardia, 6, 484–559.CrossRefGoogle Scholar
HAAS, A. R. C. (1933). Injurious effects of manganese and iron deficiencies on the growth of Citrus. Hilgardia, 7, 181–206.Google Scholar
HAAS, A. R. C. (1937). Zinc relation in mottle–leaf of Citrus. Bot. Gaz. 98, 65–86.Google Scholar
HAAS, A. R. C. and KLOTZ, L. J. (1931). Some anatomical and physiological changes in Citrus produced by boron deficiency. Hilgardia, 5, 175–97.CrossRefGoogle Scholar
HAAS, A. R. C. and QUAYLB, H. J. (1935). Copper content of Citrus leaves and fruit in relation to exanthema and fumigation injury. Hilgardia, 9, 143–77.CrossRefGoogle Scholar
HAMMETT, L. P. and SOTTEBY, C. T. (1925). A new reagent for aluminium. J. Amer. Chem. Soc. 47, 142–3.Google Scholar
HAMMOND, W. H. (1928). A rapid method for the detection of zinc in the presence of iron. Chem. Anal. 17, 14.Google Scholar
HARVEY, H. W. (1939). Substances controlling the growth of a diatom. J. Mar. Biol. Ass. U.K. 23, 499–520.CrossRefGoogle Scholar
HASELHOFF, E. (1913). Uber die Einwirkung von Borverbindungen auf das Pfianzenwachstum. Landw. Versuchs–Stat. 79/80, 399–429.Google Scholar
HATCHES, J. T. and WILCOX, L. V. (1950). Colorimetric determination of boron using carmine. Anal. Chem. 22, 567–9.Google Scholar
HAYWOOD, F. W. and WOOD, A. A. R. (1944). Metallurgical Analysis by means of the Spekker Photo–electric Absorptiometer. London.Google Scholar
HEGGENESS, H. G. (1942). Effect of boron applications on the incidence of rust on flax. Plant Physiol. 17, 143–4.CrossRefGoogle Scholar
HEINICKE, A. J., RETJTHER, W. and CAIN, J. C. (1942). Influence of boron application on preharvest drop of Mclntosh apples. Proc. Amer. Soc. Hort. Sci. 40, 31–4.Google Scholar
HEINTZE, S. G. (1938). Readily soluble manganese of soils and marsh spot of peas. J. Agric. Sci. 28, 175–86.CrossRefGoogle Scholar
HEINTZE, S. G. (1946). Manganese deficiency in peas and other crops in relation to the availability of soil manganese. J. Agric. Sci. 36,227–38.CrossRefGoogle Scholar
HEINTZE, S. G. (1956). The effect of various soil treatments on the occurrence of marsh spot in peas and on manganese uptake and yield of oats and barley. Plant and Soil, 7, 218–36.CrossRefGoogle Scholar
HEWITT, E. J. (1945). ‘Marsh spot’ in beans. Nature, Lond., 155, 22–3.CrossRefGoogle Scholar
HEWITT, E. J. (1948a). Relation of manganese and some other metals to the iron status of plants. Nature, Lond., 161, 489.CrossRefGoogle Scholar
HEWITT, E.J. (1948b). Experiments on iron metabolism in plants. Ann. Rep. Agric. Hort. Res. Sta., Long Ashton, pp. 68–76.Google Scholar
HEWITT, E. J. (1952). Sand and water culture methods used in the study of plant nutrition. Publications Commonwealth Bur. Hort. and Plantation Crops, no. 22. Farnham Royal.Google Scholar
HEWITT, E. J. (1953). Metal interrelationships in plant nutrition. I. Effects of some metal toxicities on sugar beet, tomato, oat, potato and marrowstem kale grown in sand culture. J. Exp. Bot. 4, 59–64.Google Scholar
HEWITT, E. J. (1956). Symptoms of molybdenum deficiencies in plants. Soil Sci. 81, 159–71.CrossRefGoogle Scholar
HEWITT, E. J., ARGAWALA, S. C. and JONES, E. W. (1950). Effect of molybdenum status on the ascorbic acid content of plants in sand culture. Nature, Lond., 166, 1119–20.CrossRefGoogle ScholarPubMed
HEWITT, E. J. and BOLLE–JONES, E. W. (1952a). Molybdenum as a plant nutrient. I. The influence of molybdenum on the growth of some Brassica crops in sand culture. J. Hort. Sci. 27, 245–56.Google Scholar
HEWITT, E. J. and BOLLE–JONES, E. W. (1952b). Molybdenum as a plant nutrient. II. Effect of molybdenum deficiency on some Brassica crops. J. Hort. Sci. 27, 257–65.Google Scholar
HEWITT, E. J. and HALLAS, D. G. (1951). The use of Aspergillus niger (van Tiegh) M strain as a test organism in the study of molybdenum as a plant nutrient. Plant and Soil, 3, 366–408.CrossRefGoogle Scholar
HEWITT, E. J. and JONES, E. W. (1947). The production of molybdenum deficiency in plants in sand culture with special reference to tomato and Brassica crops. J. Potnol. 23, 254–62.Google Scholar
HEWITT, E. J., JONES, E. W. and WILLIAMS, A. H. (1949). Relation of molybdenum and manganese to the free amino acid content of the cauliflower. Nature, Lond., 163, 681–2.CrossRefGoogle Scholar
HEWITT, E. J. and MCCBEADY, G. C. (1954). Relation of nitrogen supply to the molybdenum requirement of tomato plants grown in sand culture. Nature, Lond., 174, 186–7.CrossRefGoogle Scholar
HILL, H. and GRANT, E. P. (1935). The growth of turnips in artificial culture. Sci. Agric. 15, 652–9.Google Scholar
HOAGLAND, D. R. (1941). Water culture experiments on molybdenum and copper deficiencies of fruit trees. Proc. Amer. Soc. Hort. Sci. 38, 8–12.Google Scholar
HOAGLAND, D. R. and AENON, D. I. (1938). The water–culture method for growing plants without soil. Circ. Univ. Calif. Coll. Agric. no. 347.Google Scholar
HOAGLAND, D. R., CHANDLER, W. H. and HIBBARD, P. L. (1936). Littleleaf or rosette of fruit trees. V. Effect of zinc on the growth of plants of various types in controlled soil and water culture experiments. Proc. Amer. Soc. Hort. Sci. 1935,33, 131–41.Google Scholar
HOAGLAND, D. R., CHANDLER, W. H. and STOUT, P. R. (1937). Littleleaf or rosette of fruit trees. VI. Further experiments bearing on the cause of the disease. Proc. Amer. Soc. Hort. Sci. 1936, 34, 210–12.Google Scholar
HOGG, J. (The Ettrick Shepherd) (1831). Remarks on certain diseases of sheep. Quart. J. Agric. 2, 697–706 (and note by the Editor, 706–12).Google Scholar
HOLLAND, E. B. and RITCHIE, W. S. (1939). Report on zinc. J. Ass. Off. Agric. Chem. 22, 333–8.Google Scholar
HOLLEY, K. T. and DTJLIN, T. G. (1937). A study of ammonia and nitrate nitrogen for cotton. IV. Influence of boron concentration. Bull. Oa Agric. Exp. Sta. no. 197.Google Scholar
HOLM–HANSEN, O., GERLOFF, G. C. and SKOOG, F. (1954). Cobalt as an essential element for blue–green algae. Physiol. Plant. 7, 665–75.CrossRefGoogle Scholar
HOPKINS, E. F. (1930a). The necessity and function of manganese in the growth of Chlorella sp. Science, 72, 609–10.CrossRefGoogle ScholarPubMed
HOPKINS, E. F. (1930b). Manganese an essential element for a green alga. Amer. J. Bot. 17, 1047.Google Scholar
HOPKINS, E. F. (1934). Manganese an essential element for green plants. Mem. Cornell Agric. Exp. Sta. no. 151.Google Scholar
HOPKINS, E. F. and WANN, F. B. (1927). Iron requirement for Chlorella. Bot. Gaz. 84, 407–27.CrossRefGoogle Scholar
HORNER, C. K., BURK, D., ALLISON, F. E. and SHERMAN, M. S. (1942). Nitrogen fixation by Azotobacter as influenced by molybdenum and vanadium. J. Agric. Res. 65, 173–93.Google Scholar
HOTTER, E. (1890). Über das Vorkommen des Bors im Pflanzenreich und dessen physiologische Bedeutung. Landw. Versuchs–Stat. 37, 437–55.Google Scholar
HUMPHREYS, T. E. (1955). An enzyme system from wheat germ catalysing the aerobic oxidation of reduced triphosphopyridine nucleotide (TPN). Plant Physiol. 30, 46–54.CrossRefGoogle Scholar
HUNTER, J. G. (1953). The composition of bracken: some major– and trace–element constituents. J. Sci. Fd Agric. 4, 10–20.CrossRefGoogle Scholar
HURD–KARRER, ANNIE M. (1934). Selenium injury to wheat plants and its inhibition by sulphur. J. Agric. Res. 49, 343–57.Google Scholar
HURD–KARRER, ANNIE M. (1935). Factors affecting the absorption of selenium from soils by plants. J. Agric. Res. 50, 413–27.Google Scholar
HURD–KARRER, ANNIE M. (1937). Selenium absorption by crops as related to their sulphur requirement. J. Agric. Res. 54, 601–8.Google Scholar
HURD–KARRER, ANNIE M. and KENNEDY, MARY H. (1936). Inhibiting effect of sulphur in selenized soil on toxicity of wheat to rats. J. Agric. Res. 52, 933–42.Google Scholar
HURST, R. R. and MACLEOD, D. J. (1936). Turnip brown heart. Sci. Agric. 17, 209–14.Google Scholar
ICHIOKA, P. S. and ARNON, D. I. (1955). Molybdenum in relation to nitrogen metabolism. II. Assimilation of ammonia and urea without molybdenum by Scenedesmus. Physiol. Plant. 8, 555–60.CrossRefGoogle Scholar
ISAAC, W. E. (1934). Researches on the chlorosis of deciduous fruit trees. II. Experiments on chlorosis of peach trees. Trans. Roy. Soc. S. Afr. 22, 187–204.Google Scholar
JACKS, G. V. and SCHERBATOFF, H. (1934). Soil deficiencies and plant diseases. Tech. Comrn. Imp. Bur. Soil Sci. 31. Harpenden.Google Scholar
JACKSON, M. L. (1958). Soil Chemical Analysis. Englewood Cliffs, N.J.Google Scholar
JAMALAINEN, E. A. (1935a). Tutkimuksia lantun ruskotandista. Valtion Maatalouskoetoiminnan julkaisuja, no. 72, pp. 107–16 (with German summary). Cited from Dennis and O'Brien (1937).Google Scholar
JAMALAINEN, E. A. (1935b). Der Einfluss steigender Borsauremengen auf die Kohlrubenernte. J. Agric. Soc. Finland, 7, 182–6. Cited from Dennis and O'Brien (1937).Google Scholar
JAMES, W. O. (1953). The terminal oxidase in the respiration of the embryo and young roots in barley. Proc. Roy. Soc. B, 141, 280–99.CrossRefGoogle Scholar
JAMES, W. O., ROBERTS, E. A. H., BEEVEBS, H. and DE KOCK, P. C. (1948). The secondary oxidation of amino acids by the catechol oxidase of Belladonna. Biochem. J. 43, 626–36.CrossRefGoogle ScholarPubMed
JOHNSON, C. M., STOUT, P. R., BROYER, T. C. and CARLTON, A. B. (1957). Comparative chlorine requirements of different plant species. Plant and Soil, 8, 337–53.CrossRefGoogle Scholar
JOHNSTON, E. S. and DORE, W. H. (1929). The influence of boron on the chemical composition and growth of the tomato plant. Plant Physiol. 4, 31–62.CrossRefGoogle ScholarPubMed
JOHNSTON, J. C. (1933). Zinc sulfate promising new treatment for mottle leaf. Calif. Citrograph, 18, 107, 116–18.Google Scholar
JOLIVETTE, J. P. and WALKER, J. C. (1943). Effect of boron deficiency on the histology of garden beet and cabbage. J. Agric. Res. 66, 167–82.Google Scholar
JONES, H. E. and SCARSETH, G. D. (1944). The calcium–boron balance in plants as related to boron needs. Soil Sci. 56, 15–24.Google Scholar
JONES, L. H., SHEPARDSON, W. B. and PETERS, C. A. (1949). The function of manganese in the assimilation of nitrates. Plant Physiol. 24, 300–6.CrossRefGoogle ScholarPubMed
JONES, L. H. and THTJRMAN, D. A. (1957). The determination of aluminium in soil, ash and plant materials using erichrome cyanine RA. Plant and Soil, 9, 131–42.CrossRefGoogle Scholar
KAHLENBERG, L. and TRUE, R. H. (1896). On the toxic action of dissolved salts and their electrolytic dissociation. Bot. Gaz. 22, 81–124.Google Scholar
KEILIN, D. and MANN, T. (1938). Polyphenol oxidase. Purification, nature and properties. Proc. Boy. Soc. B, 125, 187–204.Google Scholar
KEILIN, D. and MANN, T. (1939). Laccase, a blue copper protein oxidase from the latex of Rhus succedanea. Nature, Lond., 143, 23–4.CrossRefGoogle Scholar
KEILIN, D. and MANN, T. (1940a). Carbonic anhydrase. Purification and nature of the enzyme. Biochem. J. 34, 1163–76.CrossRefGoogle ScholarPubMed
KEILIN, D. and MANN, T. (1940b). Some properties of laccase from the latex of lacquer trees. Nature, Lond., 145, 304.CrossRefGoogle Scholar
KELLEY, W. P. (1909). The influence of manganese on the growth of pineapples. Bull. Hawaii Agric Exp. Sta. no. 23.Google Scholar
KELLEY, W. P. (1912). The function and distribution of manganese in plants and soils. Bull. Hawaii Agric. Exp. Sta. no. 26.Google Scholar
KESSELL, S. L. and STOATE, T. N. (1936). Plant nutrients and pine growth. Aust. For. 1, 4–13.CrossRefGoogle Scholar
KESSELL, S.L. and STOATE, T.N. (1938). Pine nutrition. Bull. W. Aust. For. Dep. no. 50.Google Scholar
KIDSON, E. B. (1954). Molybdenum content of Nelson soils. N.Z. J. Sci. Tech. 36, 38–45.Google Scholar
KIDSON, E. B. and ASKEW, H. O. (1940). A critical examination of the nitroso–R–salt method for the determination of cobalt in pastures. N.Z. J. Sci. Tech. 21B, 178B–189B.Google Scholar
KIDSON, E. B., ASKEW, H. O. and DIXON, J. K. (1936). Colorimetric determination of cobalt in soils and animal organs. N.Z. J. Sci. Tech. 18, 601–7Google Scholar
KIDSON, E. B. and MATTNSELL, P. W. (1939). The effect of cobalt compounds on the cobalt content of supplementary fodder crops. N.Z. J. Sci. Tech. 21 A, 125A–128A.Google Scholar
KLEIN, R. M. (1951). The relation of gas exchange and tyrosinase activity of tomato tissues to the level of boron nutrition of the plants. Arch. Biochem. 30, 207–14.Google ScholarPubMed
KNIGHT, H. G. (1935). The selenium problem. J. Asa. Off. Agric. Chem. 18, 103–8.Google Scholar
KNOP, W. (1860). Ueber die Ernahrung der Pflanzen durch wasserige Losungen bei Ausschluss des Bodens. Landw. Versuchs–Stat. 2, 65–99, 270–93.Google Scholar
KNOP, W. (1884). Ueber die Aufnahme verschiedener Substanzen durch die Pflanze, welche nicht zu den Nahrstoffen gehoren. Jahresber. Agrik. Chem. 7, 138–40.Google Scholar
KOLTHOFF, I. M. and LINGANE, J. J. (1952). Polarography. Second ed. New York.Google Scholar
KEATZ, W. A. and MYERS, J. (1955). Nutrition and growth of several blue–green algae. Amer. J. Bot. 42, 282–7.Google Scholar
KRAUSCH, C. (1882). Ueber Pflanzenvergiftungen. J. Landw. 30, 271–91.Google Scholar
KUBOWITZ, F. (1937). Uber die chemisehe Zusammensetzung der Kartoffeloxydase. Biochem. Z. 292, 221–9.Google Scholar
KUYPER, J. (1930). Boorzuur tegen de topziekte van de tabak. Deli Proefstat. te Medan, Sumatra, Vlugschr, 50, 7 pp.Google Scholar
LARSEN, C. and BAILEY, D. E. (1913). Effect of alkali water on dairy cows. Bull. S. Dakota Agric. Exp. Sta. no. 147, pp. 300–25.Google Scholar
LARSEN, C., WHITE, W. and BAILEY, D.E. (1912). Effectof alkali water on dairy products. Bull. S. Dakota Agric. Exp. Sta. no. 132, pp. 220–54.Google Scholar
LEDEBOEB, M. S. J. (1934). Physiologische onderzoekingen over Ceratostomella ulmi (Schwarz) Buisman. Diss. Utrecht.
LEE, H. A. and MCHARGUE, J. S. (1928). The effect of a manganese deficiency of the sugar cane plant and its relationship to Pahala blight of sugar cane. Phytopathology, 18, 775–86.Google Scholar
LEWIN, J. C. (1954). Silicon metabolism in diatoms. I. Evidence for the role of reduced sulfur compounds in silicon utilization. J. Qen. Physiol. 37, 589–99.Google ScholarPubMed
LEWIN, J. C. (1955). Silicon metabolism in diatoms. II. Sources of silicon for growth of Navicula peUiculosa. Plant Physiol. 30, 129–34.CrossRefGoogle Scholar
LEWIS, A. H. (1939). Manganese deficiencies in crops. I. Spraying pea crops with solutions of manganese salts to eliminate marsh spot. Emp. J. Exp. Agric. 7, 150–4.Google Scholar
LEWIS, A. H. (1943a). The teart pastures of Somerset. II. Relation between soil and teartness. J. Agric. Sci. 33, 52–7.CrossRefGoogle Scholar
LEWIS, A. H. (1943b). The teart pastures of Somerset. III. Reducing the teartness of pasture herbage. J. Agric. Sci. 33, 58–63.CrossRefGoogle Scholar
LEWIS, J. C. (1942). The influence of copper and iodine on the growth of Azotobacter agile. Amer. J. Bot. 29, 207–10.CrossRefGoogle Scholar
LEWIS, J. C. and POWERS, W. L. (1941). Iodine in relation to plant nutrition. J. Agric. Res. 63, 623–37.Google Scholar
LIEBIG, G. F., VANSELOW, A. P. and CHAPMAN, H. D. (1943). Effects of gallium and indium on the growth of Citrus plants in solution cultures. Soil Sci. 56, 173–85.CrossRefGoogle Scholar
LINGANE, J. J. and KEBLINGEB, H. (1941). Polarographic determination of nickel and cobalt. Simultaneous determination in presence of iron, copper, chromium, and manganese, and determination of small amounts of nickel in cobalt compounds. Jndustr. Engng Chem. (Anal, ed.), 13, 77–80.Google Scholar
LIPMAN, C. B. (1938). Importance of silicon, aluminium and chlorine for higher plants. Soil Sci. 45, 189–98.CrossRefGoogle Scholar
LIPMAN, C. B. and MACKINNEY, G. (1931). Proof of the essential nature of copper for higher plants. Plant Physiol. 6, 593–9, 1931.CrossRefGoogle Scholar
LOCKWOOD, L. B. (1933). A study of the physiology of Penicillium Javanicum Van Beikma with special reference to the production of fat. Catholic Univ. Amer. Biol. Ser. 13.Google Scholar
LOHNIS, M. (1936). Wat Veroorzaakt Kwade Harten in Erwten?Tijdschr. PIZiekt. 42, 159–67 (with English summary).Google Scholar
LOHNIS, M. P. (1950). Injury through excess of manganese. In ‘Trace Elements in Plant Physiology’. Lotsya, 3, 63–76.Google Scholar
LOHNIS, M. P. (1951). Manganese toxicity in field and market crops. Plant and Soil, 3, 193–222.CrossRefGoogle Scholar
LOUNAMAA, J. (1956). Trace elements in plants growing wild on different rocks in Finland. A semi–quantitative spectrographic survey. Ann. Bot. Soc. Zool. Bot. Fenn. ‘Vanamo’, 29, no. 4, 196 pp.Google Scholar
LOVETT–JANISON, P. L. and NELSON, J. M. (1940). Ascorbic acid oxidase from summer crook–neck squash (C. pepo condensa). J. Amer. Chem. Soc. 62, 1409–12.CrossRefGoogle Scholar
LOWENHAUPT, B. (1942). Nutritional effects of boron on growth and development of the sunflower. Bot. Gaz. 104, 316–22.CrossRefGoogle Scholar
LUNDEGABDH, H. (1929). Die Quantitative Spektralanalyse der Elemente. Jena.
LUNDEGABDH, H. (1932). Die Nahrstoffaufnahme der Pflanze. Jena.
LUNDEGXEDH, H. (1934). Die Quantitative Spektralanalyse der Elemente. Zweiter Teil. Jena.
LUNDEGABDH, H. (1936). On spectral analysis of inorganic elements. Landboukhogskolano Ann. (Ann. Agric. Coll. Sweden), 3, 49–97.Google Scholar
LUNDEGABDH, H. (1939). Mangan als Katalysator der Pflanzenatmung. Planta, 29, 419–26.Google Scholar
LUNDEGABDH, H. (1945). Die Blattanalyse. Die wissenschaftlichen und praktischen Qrundlagen einer pflanzenphysiologischen Methode der Bestimmung des Dungerbedurfnisses des Bodens. Jena.
LUNDEGABDH, H. and PHILIPSON, T. (1938). The spark–in–flame method for spectral analysis. Landboukhogskolano Ann. (Ann. Agric. Coll. Sweden), 5, 249–60.Google Scholar
MACABTHUB, M. (1940). Histology of some physiological disorders of the apple fruit. Canad. J. Res. Sect. C, 18, 26–34.Google Scholar
MCGEOBGE, W. T. (1924). Iron, aluminum and manganese in the soil solution of Hawaiian soils. Soil Sci. 18, 1–11.Google Scholar
MCHABGUE, J. S. (1922). The role of manganese in plants. J. Amer. Chem. Soc. 44, 1592–8.Google Scholar
MCHABGUE, J. S. (1923). Effect of different concentrations of manganese sulphate on the growth of plants in acid and neutral soils and the necessity of manganese as a plant nutrient. J. Agric. Res. 24, 781–94.Google Scholar
MCHABGUE, J. S. (1926a). Manganese and plant growth. J. Industr. Engng Chem. 18, 172.CrossRefGoogle Scholar
MOHABGUE, J. S. and CALFEE, R. K. (1931a). Effect of Mn, Cu and Zn on yeast. Plant Physiol. 6, 559–66.Google Scholar
MCHABGUE, J. S. and CALFEE, R. K. (1931b). Effect of Mn, Cu and Zn on growth and metabolism of Aspergillus flavus and Rhizopus nigricans. Bot. Oaz. 91, 183–93.Google Scholar
MCHABGUE, J. S. and CALFEE, R. K. (1932). Determination of boron spectroscopically. Industr. Engng Chem. (Anal, ed.), 4, 385–8.Google Scholar
MCILBATH, W. J. and DE BBUYN, J. A. (1956). Calcium–boron relationships in Siberian millet. Soil Sci. 81, 301–10.Google Scholar
MCILBATH, W. J. and PALSEB, B. F. (1956). Responses of tomato, turnip and cotton to variations in boron nutrition. I. Physiological responses. Bot. Oaz. 118, 43–52.Google Scholar
MCLABTY, H. R., WILCOX, J. C. and WOODBBIDGE, C. G. (1937). A yellowing of alfalfa due to boron deficiency. Sci. Agric. 17, 515–17.Google Scholar
MCLEAN, R. C. and HUGHES, W. L. (1936). The quantitative distribution of boron in Vicia faba and Gossypium herbaceum. Ann. Appl. Biol. 23, 231–44.CrossRefGoogle Scholar
MCMUBTBEY, J. E. (1929). The effect of boron deficiency on the growth of tobacco plants in aerated and unaerated solutions. J. Agric. Res. 38, 371–80.Google Scholar
MCMUBTBEY, J. E. (1933). Distinctive effects of the deficiency of certain essential elements on the growth of tobacco plants in solution cultures. Tech. Bull. U.S. Dep. Agric. no. 340, pp. 1–42.Google Scholar
MCMUBTBEY, J. E. (1935). Boron deficiency in tobacco under field conditions. J. Amer. Soc. Agron. 27, 271–3.Google Scholar
MCMUBTBEY, J. E. and ROBINSON, W. O. (1938). Neglected soil constituents that affect plant and animal development. Yearb. U.S. Dep. Agric. pp. 807–29.Google Scholar
MCNAUGHT, K. J. (1938). The cobalt content of North Island pastures. N.Z. J. Sci. Tech. 20A, 14A–30A.Google Scholar
MAC VICAR, R. and BUBBIS, R. H. (1948). Relation of boron to certain plant oxidases. Arch. Biochem. 17, 31–9.Google Scholar
MACVICAB, R. and STEUCKMEYEB, B. E. (1946). The relation of photoperiod to the boron requirement of plants. Bot. Oaz. 107, 454–61.Google Scholar
MAGNESS, J. R., DEGMAN, E. S., BATJEB, L. P. and REGEIMBAL, L. O. (1937). Effect of nutritional treatments on internal cork of apples. Proc. Amer. Soc. Hort. Sci. 1936, 34, 206–9.Google Scholar
MAJDEL, J. (1930). Universale gravimetrische Methode der Trennung und Bestimmung des Mangans. Z. anal. Chem. 81, 14–26.CrossRefGoogle Scholar
MANN, M. (1932). Calcium and magnesium requirements of Aspergillus niger. Bull. Torrey Bot. Cl. 59, 443–88.CrossRefGoogle Scholar
MAEMOY, F. B. (1939). The determination of molybdenum in plant materials. J. Soc. Chem. Ind., Lond. (Trans.), 58, 275–6.Google Scholar
MARSH, R. P. (1942). Comparative study of the calcium–boron metabolism of representative dicots and monocots. Soil Sci. 53, 75–8.CrossRefGoogle Scholar
MARSH, R. P. and SHIVE, J. W. (1941). Boron as a factor in the calcium metabolism of the corn plant. Soil Sci. 51, 141–51.CrossRefGoogle Scholar
MARSTON, H. R. and DBWIY, D. W. (1940). The estimation of cobalt in plant and animal tissues. Aust. J. Exp. Biol. Med. Sci. 18, 343–52.CrossRefGoogle Scholar
MARTIN, J. P. (1934). Boron deficiency symptoms in sugar cane. Hawaii. Plant. Res. 38, 95–107.Google Scholar
MASCHHAITPT, J. G. (1934). Das Ratsel der Dorrfleckenkrankheit. Z. PflErnähr. Dung. 13, 313–20.Google Scholar
MAZÉ, P. (1914). Influences respectives des éléments de la solution minérale sur le développement du maïs. Ann. Inst. Pasteur, 28, 1–48.Google Scholar
MAZE, P.(1915). Determination des elements mineraux rares necessaires au developpement du mai's. C.R. Acad. Sci., Paris, 160, 211–14.Google Scholar
MAZE, P. (1919). Recherche d'un solution purement minérale capable d'assurer revolution compléte du maïs cultive a l'abri des microbes. Ann. Inst. Pasteur, 33, 139–73.Google Scholar
MEDINA, A. and NICHOLAS, D. J. D. (1957). Some properties of a zincdependent hexokinase from Neurospora crassa. Biochem. J. 66, 573–8.CrossRefGoogle Scholar
MEIKLEJOHN, G. T. and STEWART, C. P. (1941). Ascorbic acid oxidase from cucumber. Biochem. J. 35, 755–60.CrossRefGoogle ScholarPubMed
MELD RUM, N. U. (1934). Cellular Respiration. London.Google Scholar
MELVIN, E. H. and O'CONNOR, R. T. (1941 >). Spectrochemical analysis of trace elements in fertilizers. Boron, manganese and copper. Industr. Engng Chem. (Anal, ed.), 13, 520–4.Google Scholar
MENZEL, R. G. and JACKSON, M. L. (1951). Determination of copper and zinc in soils and plants. Anal. Chem. 23, 1861–3.CrossRefGoogle Scholar
METZ, O. (1930). Über Wachstum und Farbstoffbildung einiger Pilze unter dem Einfluss von Eisen, Zink, und Kupfer. Arch. Mikrobiol. 1, 197–251.CrossRefGoogle Scholar
MILLER, J. T. and BYERS, H. G. (1937). Selenium in plants in relation to its occurrence in soils. J. Agric. Res. 55, 59–68.Google Scholar
MILLER, W. T. and SCHOENING, H. W. (1938). Toxicity of selenium fed to swine in the form of sodium selenite. J. Agric. Res. 56, 831–42.Google Scholar
MILLER, W. T. and WILLIAMS, K. T. (1940a). Minimum lethal dose of selenium, as sodium selenite, for horses, mules, cattle and swine. J. Agric. Res. 60, 163–73.Google Scholar
MILLER, W. T. and WILLIAMS, K. T. (1940b). Effect of feeding repeated small doses of selenium as sodium selenite to equines. J. Agric. Res. 61, 353–68.Google Scholar
MILLIKAN, C. R. (1947). Effect of molybdenum on the severity of toxicity symptoms in flax induced by an excess of either manganese, zinc, copper, nickel or cobalt in the nutrient solution. J. Aust. Inst. Agric. Sci. 13, 180–6.Google Scholar
MILLIKAN, C. R. (1948). Antagonism between molybdenum and certain heavy metals in plant nutrition. Nature, Lond., 161, 528.CrossRefGoogle Scholar
MILLIKAN, C. R. (1950). Relation between nitrogen sources and the effects on flax of an excess of manganese or molybdenum in the nutrient solution. Aust. J. Sci. Res. B, 3, 450–73.Google ScholarPubMed
MILNER, G. W. C. (1957). The Principles of and Applications of Polarography and Other Electroanalytical Processes. New York.Google Scholar
MINARIK, C. E. and SHIVE, J. W. (1939). The effect of boron in the substrate on calcium accumulation by soybean plants. Amer. J. Bot. 26, 827–31.CrossRefGoogle Scholar
MITCHELL, R. L. (1936). Spectrographic analysis of soils by the Lundegardh method. J. Soc. Chem. Ind., Lond. (Trans.), 55, 267–9.Google Scholar
MITCHELL, R. L. (1940). The spectrographic determination of trace elements in soils. I. The cathode layer arc. J. Soc. Chem. Ind., Lond. (Trans.), 59, 210–13.Google Scholar
MITCHELL, R. L. (1941). The spectrographic analysis of solutions by a modified Ramage flame emission method. J. Soc. Chem. Ind., Lond. (Trans.), 60, 95–8.Google Scholar
MITCHELL, R. L. (1944). The distribution of trace elements in soils and grasses. Proc. Nutr. Soc. 1, 183–9.Google Scholar
MITCHELL, R. L. (1948). The spectrographic analysis of soils, plants and related materials. Tech. Commun. Commonwealth Bur. Soil Sci. no. 44, 183 pp. Harpenden.Google Scholar
MITCHELL, R. L. (1955). Trace elements. In Chemistry of Soil, pp. 253– 85. Ed. E. F. Bear. New York.Google Scholar
MITCHELL, R. L. and ROBERTSON, I. M. (1936). The effect of aluminium on the flame spectra of the alkaline earths: a method for the determination of aluminium. J. Soc. Chem. Ind., Lond. (Trans.), 55, 269–72.Google Scholar
MITCHELL, R. L., SCOTT, R. O., STEWART, A. B. and STEWART, J. (1941). Cobalt manuring and pining in stock. Nature, Lond., 148, 725.CrossRefGoogle Scholar
MONK, R. J. (1955). Boron deficiency symptoms in raspberries. N.Z. J. Sci. Tech. 36, 610–13.Google Scholar
MORRIS, A. A. (1938). Effects of boron treatment in the control of ‘hard fruit’ Citrus. J. Pom. Hort. Sci. 16, 167–81.Google Scholar
MORRIS, H. D. and PIERRE, W. H. (1947). The effect of calcium, phosphorus and iron on the tolerance of Lespedeza to manganese toxicity in culture solutions. Proc. Soil Sci. Soc. Amer. 12, 382–6.Google Scholar
MORRIS, H. D. and PIERRE, W. H. (1949). Minimum concentrations of manganese necessary for injury to various legumes in culture solutions. Agron. J. 41, 107–12.CrossRefGoogle Scholar
MOSHER, W. A., SATJNDERS, D. H., KINGERY, L. K. and WILLIAMS, R. J. (1936). Nutritional requirements of the pathogenic mould Trichophyton interdigitale. Plant Physiol. 11, 795–806.CrossRefGoogle Scholar
MOWRY, H. and CAMP, A. F. (1934). A preliminary report on zinc sulfate as a corrective for bronzing of tung trees. Bull. Fa Agric. Exp. Sta. no. 273, pp. 1–34.Google Scholar
MOXON, A. L. (1937). Alkali disease or selenium poisoning. Bull. S. Dakota Agric. Exp. Sta. no. 311, 91 pp.Google Scholar
MUHR, G. R. (1940). Available boron as affected by soil treatments. Proc. Soil Sci. Soc. Amer. 5, 220–6.Google Scholar
MUHE, G. R. (1942). Plant symptoms of boron deficiency and the effect of borax on the yield and chemical composition of several crops. Soil Sci. 54, 55–65.Google Scholar
MUIB, W. R. (1936). The teart pastures of Somerset. Agric. Progr. 13, 53–61.Google Scholar
MULDEB, E. G. (1948). Importance of molybdenum in the nitrogen metabolism of microorganisms and higher plants. Plant and Soil, 1, 94–119.Google Scholar
MULDEB, E. G. (1950). Importance of copper and molybdenum in the nutrition of higher plants and microorganisms. In ‘Trace elements in plant physiology’. Lotsya, 3, 41–52.Google Scholar
MULDEB, E. G., BAKEMA, K. and VEEN, W. L. VAN (1959). Molybdenum in symbiotic nitrogen fixation and in nitrate assimilation. Plant and Soil, 10, 319–34.Google Scholar
MULDEB, E. G., BOXMA, R. and VEEN, W. L. VAN (1959). The effect of molybdenum and nitrogen deficiencies on nitrate reduction in plant tissues. Plant and Soil, 10, 335–55.Google Scholar
MYEBS, V. C, MULL, J. W. and MOBBISON, D. B. (1928). The estimation of aluminium in animal tissues. J. Biol. Chem. 78, 595–604.Google Scholar
NAFTEL, J. A. (1939). Colorimetric determination of boron. Industr. Engng Chem. (Anal, ed.), 11, 407–9.Google Scholar
NAIB|G. G. K. and MEHTA|B. V. (1959). Status of zinc in soils of Western India. Soil Sci. 87, 155–9.
NASON, A. (1950). Effect of zinc deficiency on the synthesis of tryptophane by Neurospora extracts. Science, 112, 111–12.CrossRefGoogle Scholar
NASON, A. (1952). Metabolism of micronutrient elements in higher plants. II. Effect of copper deficiency on the isocitric enzyme in tomato leaves. J. Biol. Chem. 198, 643–53.Google ScholarPubMed
NASON, A., ABBAHAM, R. G. and AVEBBACH, B. C. (1954). The enzymic reduction of nitrite to ammonia by reduced pyridine nucleotides.Biochim. Biophys. Acta, 15, 160–1.CrossRefGoogle ScholarPubMed
NASON, A., KAPLAN, N. O. and COLOWICK, S. P. (1951). Changes in enzymatic constitution in zinc–deficient Neurospora. J. Biol. Chem. 188, 397–406.Google ScholarPubMed
NASON, A., KAPLAN, N. O. and OLDEWTJBTEL, H. A. (1953). Further studies of nutrient conditions affecting enzymatic constitution in zinc–deficient Neurospora. J. Biol. Chem. 201, 435–44.Google Scholar
NEISH, A. C. (1939). Studies on chloroplasts. II. Their chemical composition and the distribution of certain metabolites between the chloroplasts and the remainder of the leaf. Biochem. J. 33, 300–8.CrossRefGoogle Scholar
NELSON, E. M., HUBD–KABBEB, A. M. and ROBINSON, W. O. (1933). Selenium as an insecticide. Science, 78, 124.CrossRefGoogle ScholarPubMed
NELSON, J. M. and DAWSON, C. R. (1944). Tyrosinase. Adv. Enzymol. 4, 99–152.Google Scholar
NEWELL, W., MOWBY, H. and BABNETTE, R. M. (1930). The tung–oil tree. Bull. Fa Agric. Exp. Sta. no. 221.Google Scholar
NICHOLAS, D. J. D. (1949). The manganese and iron content of crop plants as determined by chemical methods. J. Hort. Sci. 25, 60–77.Google Scholar
NICHOLAS, D. J. D. (1958). Some biochemical aspects of nitrogen fixation. In Nutrition of the Legumes, ed. E. G., Hallsworth. London.Google Scholar
NICHOLAS, D. J. D. and FIELDING, A. H. (1947). The use of Aspergillus niger (M strain) in the bioassay of magnesium, copper, zinc and molybdenum in soils. I. Ann. Rep. Agric. Hort. Res. Sta., Long Ashton, pp. 126–37.Google Scholar
NICHOLAS, D. J. D. and FIELDING, A. H. (1950). Use of Aspergillus niger as a test organism for determining molybdenum available in soils to crop plants. Nature, Lond., 166, 342–3.CrossRefGoogle ScholarPubMed
NICHOLAS, D. J. D. and NASON, A. (1955). Role of molybdenum as a constituent of nitrate reductase from soybean leaves. Plant Physiol. 30, 135–8.CrossRefGoogle ScholarPubMed
NICHOLAS, D. J. D., NASON, A. and MCELBOY, W. D. (1953). Effect of molybdenum deficiency on nitrate reductase in cell–free extracts of Neurospora and Aspergillus. Nature, Lond., 172, 34.CrossRefGoogle ScholarPubMed
NOBBB, F. and SIEGEBT, T. (1862, 1863). Ueber das Chlor als spezifischer Nahrstoff der Buchweizenpflanze. Landw. Versuchs–Stat. 4, 318–40; 5, 116–36.Google Scholar
O'CONNOB, R. T. (1941). Spectrochemical analysis of trace elements in fertilizers. Zinc. Indust. Engng Chem. (Anal, ed.), 23, 597–600.Google Scholar
OGILVIE, N. and HICKMAN, C. J. (1936). Progress report on vegetable diseases. Ann. Rep. Agric. Hort. Res. Sta., Long Ashton, pp. 139–46.Google Scholar
OLSEN, C. (1934). The absorption of manganese by plants. C.R. trav. lab. Carlsberg, 20, no. 2, 34pp.Google Scholar
OLSEN, C. (1936). Absorption of manganese by plants. II. The toxicity of manganese to various plant tissues. C.R. trav. lab. Carlsberg, 21, 124–43.Google Scholar
OLSEN, L. C. and DE TUBE, E. E. (1940). Rapid microdetermination of boron by means of quinalizarin and a photoelectric colorimeter. Soil Sci. 50, 257–64.Google Scholar
OBTON, W. A. and RAND, F. V. (1914). Pecan rosette. J. Agric Res. 3, 149–74.Google Scholar
OSEBKOWSKY, J. and THOMAS, H. E. (1933). Exanthema in pears and its relation to copper deficiency. Science, 78, 315–16.Google Scholar
OSTEBHOTTT, W. J. V. (1908). Die Schutzwirkung des Natriums fur Pflanzen. Jahrb. wiss. Bot. 46, 121–36.Google Scholar
OSTEBHOTJT, W. J. V. (1912). Plants which require sodium. Bot. Oaz. 54, 532–6.Google Scholar
OTTO, R. (1893). TJntersuchungen iiber das Verhalten der Pflanzenwurzeln gegen Kupfersalzlosungen. Z. PflKrankh, 3, 322–34.Google Scholar
OVINGE, A. (1935). Het optreden van kwade harten in Schokkers in Zeeland in 1934. Landbouw. Tijdschr. 47, 375–83.Google Scholar
OVINGE, A. (1938). Kwade Harten–Proeven in Zeeland in 1937. Tijdschr. PIZiekt. 44, 208–13.Google Scholar
OWEN, O. and MASSEY, D. M. (1953). Lime induced manganese deficiency in glasshouse roses. Plant and Soil, 5, 81–6.CrossRefGoogle Scholar
PALSEB, B. F. and MCILBATH, W. J. (1956). Responses of tomato, turnip and cotton to variations in boron nutrition. II. Anatomical responses. Bot. Oaz. 118, 53–71.Google Scholar
PARKER, E. R. (1934). Experiments on the treatment of mottle–leaf of Citrus trees. Proc. Amer. Soc. Hort. Sd. 1933, 31, 98–107.Google Scholar
PARKER, E. R. (1936). Experiments on the treatment of mottle–)oaf of Citrus trees. II. Proc. Amer. Soc. Hort. Sd. 1935, 33, 82–6.Google Scholar
PARKER, E. R. (1937). Experiments on the treatment of mottle–leaf of Citrus trees. Proc. Amer. Soc. Hort. Sd. 1936, 34, 213–15.Google Scholar
PATTANAIK, S. (1950a). The effect of boron on the catalase activity of the rice plant. Current Sd. 19, 153–4.Google Scholar
PATTANAIK, S. (1950b). The effect of manganese on the catalase activity of the rice plant. Plant and Soil. 2, 418–19.CrossRefGoogle Scholar
PEBRY, V. G., WEDDELL, W. H. and WRIGHT, E. R. (1950). Multipurpose method of spectrographic analysis. Anal. Chem. 22, 1516–18.Google Scholar
PETHYBRIDGE, G. H. (1936). Marsh spot in pea seeds: is it a deficiency disease?J. Minist. Agric. 43, 55–8.Google Scholar
PETTINQER, N. A., HENDERSON, R. G. and WINGARD, A. (1932). Some nutritional disorders in corn grown in sand cultures. Phytopathology, 22, 33–51.Google Scholar
PFEFFER, W. (1900). The Physiology of Plants, vol. 1. English ed. Trans, and ed. by A. J., Ewart. Oxford.Google Scholar
PHILIPSON, T. (1953). Boron in plant and soil, with special regard to Swedish agriculture. Acta Agric. Scand. 3, 121–242.Google Scholar
PIPER, C. S. (1938). The occurrence of ‘reclamation disease’ in cereals in South Australia. Austr. Coun. Sd. Ind. Res., Pamphlet 78, 24–8.Google Scholar
PIPEB, C. S. (1940). Molybdenum as an essential element for plant growth. J. Aust. Inst. Agric. Sd. 6, 162–4.Google Scholar
PIPEB, C. S. (1941). Marsh spot of peas: a manganese deficiency disease. J. Agric. Sd. 31, 448–53.Google Scholar
PIPER, C. S. (1942a). Investigations on copper deficiency in plants. J. Agric. Sci. 32, 143–78.CrossRefGoogle Scholar
PIPEB, C. S. (1942b). Soil and Plant Analysis. Adelaide.Google Scholar
PITTMAN, H. A. (1936). Exanthema of Citrus, Japanese plums and apple trees in Western Australia. J. Dep. Agric. W. Aust. Second Ser. 13, 187–93.Google Scholar
PITTMAN, H. A. and OWEN, R. C. (1936). Anthracnose and mottle leaf of Citrus in Western Australia. J. Dep. Agric. W. Aust. Second Ser. 13, 137–42.Google Scholar
POPP, M., CONTZEN, J. and GEBICKE, S. (1934). Das Ratsel der Dörrfleckenkrankheit. Z. PflErnähr. Düng. 13, 66–73.CrossRefGoogle Scholar
PUGLIESE, A. (1913). Sulla biochimica del manganese; contributo alia conoscenza dei rapporti tra manganese en ferro in relazione alia vegetazione. Atti 1st. Sci. nat. Napoli, ser. 6, 10, 285–326.Google Scholar
PURVIS, E. R. and HANNA, W. J. (1940). Vegetable crops affected by boron deficiency in eastern Virginia. Bull. Va Agric. Exp. Sta. no. 105.Google Scholar
PURVIS, E. R. and PETERSON, N. K. (1956). Methods of soil and plant analysis for molybdenum. Soil Sci. 81, 223–8.CrossRefGoogle Scholar
PURVIS, E. R. and RUPRECHT, R. W. (1935). Borax as a fertilizer for celery. Amer. Fertilizer, 21 Sept. Cited from Dennis and O'Brien (1937).Google Scholar
PURVIS, B. R. and RUPRECHT, R. W. (1937). Cracked stem of celery caused by a boron deficiency in the soil. Bull. Fa Agric. Exp. Sta. no. 307.Google Scholar
RALEIGH, G. J. (1939). Evidence for the essentiality of silicon for growth of the beet plant. Plant Physiol. 14, 823–8.CrossRefGoogle ScholarPubMed
RALEIGH, G. J. (1948). Effects of the sodium and the chloride ion in the nutrition of the table beet in culture solutions. Proc. Amer. Soc. Hort.Sci. 51, 433–6.Google Scholar
RAMAMOORTHY, B. and VISWANATH, B. (1946). Comparative studies on Indian soils. Spectroscopic estimation of boron contents. Indian J. Agric. Sci. 16, 420–6.Google Scholar
RAULIN, J. (1869). Éludes chimiques sur la vegetation. Ann. Sci. nat. Bot, 5 Sér. 11, 93–299.Google Scholar
REED, H. S. (1938). Cytology of leaves affected with little–leaf. Amer. J. Bot. 25, 174–86.CrossRefGoogle Scholar
REED, H. S. (1939). The relation of copper and zinc salts to leaf structure. Amer. J. Bot. 26, 29–33.CrossRefGoogle Scholar
REED, H. S. (1941). Effects of zinc deficiency on cells of vegetative buds. Amer. J. Bot. 28, 10–17.CrossRefGoogle Scholar
REED, H. S. (1942). The relation of zinc to seed production. J. Agric. Res. 64, 635–44.Google Scholar
REED, H. S. and DUFRENOY, J. (1933). Effete de l'affectation dite ‘mottle–leaf sur la structure cellulaire des Citrus. Rev. gen. bot. 46, 33–44.Google Scholar
REED, H. S. and DUFRENOY, J. (1935). The effects of zinc and ironsalton the cell structure of mottled orange leaves. Hilgardia, 9, 113–37.CrossRefGoogle Scholar
REED, H. S. and DUFRENOY, J. (1942). Catechol aggregates in the vacuoles of cells of zinc–deficient plants. Amer. J. Bot. 29, 544–51.CrossRefGoogle Scholar
REED, J. F. and CUMMINGS, R. W. (1940). Determination of zinc in plant materials using the dropping mercury electrode. Industr. Engng Ghem. (Anal, ed.), 12, 489–92.Google Scholar
REED, J. F. and CUMMINGS, R. W. (1941). Determination of copper in plant materials using the dropping mercury electrode. Industr. Engng Chem. (Anal, ed.), 13, 124–7.Google Scholar
REEVE, E. and SHIVE, J. W. (1944). Potassium–boron and calciumboron relationships in plant nutrition. Soil Sci. 57, 1–14.CrossRefGoogle Scholar
REHM, S. (1937). Der Einfluss der Borsaure auf Wachstum und Salzaufnahme von Impatiens balsamina. Jb. wiss. Bot. 85, 788–814.Google Scholar
REISENAUER, H. M. (1956). Molybdenum content of alfalfa in relation to deficiency symptoms and responses to molybdenum fertilization. Soil Sci. 81, 237–42.CrossRefGoogle Scholar
REUTHER, W. and BURROWS, F. W. (1942). The effect of manganese sulfate on the photosynthetic activity of frenched tung foliage. Proc. Amer. Soc. Hort. Sci. 40, 73–6.Google Scholar
REUTHEK, W. and DICKEY, R. D. (1937). A preliminary report on trenching of tung trees. Bull. Fa Agric. Exp. Sta. no. 318, pp. 1–21.Google Scholar
RICHES, J. P. R. (1947). Preliminary experiments on the use of synthetic resins in the estimation of trace elements. Chem. & Ind. (Rev.), pp. 656–8.Google Scholar
RIPPEL, A. (1923). Über die durch Mangan verursachte Eisenchlorose bei griinen Pflanzen. Biochem. Z. 140, 315–23.Google Scholar
ROACH, W. A. (1938). Plant injection for diagnostic and curative purposes. Tech. Comm. Imp. Bur. Hort. Plant. Crops, no. 10. E. Mailing.Google Scholar
ROACH, W. A. (1939). Plant injection as a physiological method. Ann. Bot., Lond., N.S. 3, 155–226.CrossRefGoogle Scholar
ROBEBQ, M. (1928). Über die Wirkung von Eisen–, Zink–, und Kupfersalzen auf Aspergillen. Zbl. Bakt. n, 74, 333–71.Google Scholar
ROBEBG, M. (1931). Weitere Untersuchungen iiber die Bedeutung des Zinks fur Aspergillus niger. Zbl. Bakt. n, 84, 196–230.Google Scholar
ROBEBG, M. (1932). Ein Beitrag zur Stoffwechselphysiologie der Griinalgen. II. Uber die Wirkung von Eisen–, Zink– und Kupfersalzen. Jb. wiss. Bot. 76, 311–32.Google Scholar
ROBINSON, W. O. (1933). Determination of selenium in wheat and soils. J. Ass. Off. Agric. Chem. 16, 423–4.Google Scholar
ROGEBS, C. H. (1938). Growth of Phymatotrichum omnivorum in solutions with varying amounts of certain mineral elements. Amer. J. Bot. 25, 621–4.Google Scholar
ROGEBS, L. H. (1935). Spectrographic microdetermination of zinc. Preliminary note. Industr. Engng Chem. (Anal, ed.), 7, 421–3.Google Scholar
ROGEBS, L. H. and GALL, O. E. (1937). Microdetermination of zinc. Comparison of spectrographic and chemical methods. Industr. Engng Chem. (Anal, ed.), 9, 42–4.Google Scholar
ROGEBS, L. H. and Wu, C. (1948). Zinc uptake by oats as influenced by application of lime and phosphate. J. Amer. Soc. Agron. 40, 563–6.Google Scholar
ROWE, E. A. (1936). A study of heart–rot of young sugar beet plants grown in culture solutions. Ann. Bot. Lond., 50, 735–46.Google Scholar
RUBINS, E. J. (1956). Molybdenum deficiencies in the United States. Soil Sci. 8, 191–7.Google Scholar
RUSH, E. M. and YOE, J. H. (1954). Colorimetric determination of zinc and copper with 2–carboxy–2–hydroxy–5–sulfoformazylbenzene. Anal. Chem. 26, 1345–7.CrossRefGoogle Scholar
RUSOIT, L. L., ROGEBS, L. H. and GADDUM, L. W. (1937). Quantitative determination of copper and estimation of other trace elements by spectrographic methods in wire grasses from ‘salt sick’ and healthy areas. J. Agric. Res. 55, 731–8.Google Scholar
RUSSELL, F. C. (1944). Minerals in pasture deficiencies and excesses in relation to animal health. Tech. Comm. Imp. Bur. Anim. Nutrition, no. 15, 91 pp.Google Scholar
SACHS, J. (1860). Ueber die Erziehung von Landpflanzen in Wasser. Bot. Z. 18, 113–17.Google Scholar
SACHS, J. (1860, 1861). Vegetationsversuche mit Ausschluss dea Bodens iiber die Nahrstoffe und sonatigen Ernahrungsbedingungen von Mais, Bohnen und anderen Pflanzen. Landw. Versuchs–Stat. 2, 219– 68; 3, 30–44.Google Scholar
SAKAMUBA, T. (1934). Ammonio– und Nitratophilie bei Aspergillus oryzae im besonderen Zusammenhang mit Schwermetallen. J. Fac. Sci. Hokkaido Imp. Univ. Ser. v, 3, 121–38.Google Scholar
SAKAMURA, T. (1936). Über einige fur die Kultur von AspergiUen notwendigen Schwermetalle und das Befreiungsverfahren der Nährlösung von ihren Spuren. J. Fac. Sci. Hokkaido Imp. Univ. Ser. v, 4, 99–116.Google Scholar
SAKAMUBA, T. and YOSHIMURA, F. (1933). Über die Bedeutung der H–Ionenkonzentration und die wiohtige Rolle einiger Schwermetallsalze bei der Kugelzellbildung der Aspergillen. J. Fac. Sci. Hokkaido Imp. Univ. Ser. v, 2, 317–31.Google Scholar
SAMUEL, G. and PIPER, C. S. (1928). Grey speck (manganese deficiency) disease of oats. J. Agric. S. Aust. 31, 696–705, 789–99.Google Scholar
SAMUEL, G. and PIPER, C. S. (1929). Manganese as an essential element for plant growth. Ann. Appl. Biol. 16, 493–524.Google Scholar
SANDELL|E. B. (1950). Colorimetric Determination of Traces of Metals. Second ed. New York.
SOHABBEB, K. and SCHBOPP, W. (1934). Wasser– und Sandkulturversuche mit Mangan. Z. Pflanzenernahr., Dung. u. Bodenk. A, 36, 1–15.Google Scholar
SCHIMP, N. F., CONNOR, J., PBINCE, A. L. and BEAB, F. E. (1957). Spectrochemical analysis of soils and biological materials. Soil Sci. 83, 51–64.Google Scholar
SCHMUCKER, T. (1933). Zur Bliitenbiologie tropischer Nymphaea–Arten (Bor als entscheidender Faktor). Planta, 18, 642–50.CrossRefGoogle Scholar
SCHMUCKEB, T. (1935). Ober den Einfluss von Borsaure auf Pflanzen, insbesondere keimende Pollenkorner. Planta, 23, 264–83.Google Scholar
SCHOENING, H. W. (1936). Production of so–called ‘alkali disease’ in hogs by feeding corn grown in affected area. North Amer. Vet. 17, 22–8.Google Scholar
SCHOLZ, W. (1934). Über die Chlorose der blauen Lupine und Serradella in ihrer Beziehung zum Eisen und Mangan. Z. Pflanzenernahr. Dung. u. Bodenk. A, 35, 88–101.Google Scholar
SCOTT, R. O. (1945). The effect of extraneous elements on spectral line intensity in the cathode–layer arc. J. Soc. Chem. Ind. 64, 189–94.CrossRefGoogle Scholar
SCOTT, R. O. (1946). The spectrographic determination of trace elements in the cathode–layer arc by the variable internal standard method. J. Soc. Chem. Ind. 65, 291–7.CrossRefGoogle Scholar
SHIVE, J. W. (1941). Significant roles of trace elements in the nutrition of plants. Plant Physiol. 16, 435–45.CrossRefGoogle Scholar
SIDEBIS, C. P. (1937). Colorimetric determination of manganese. Industr. Engng Chem. (Anal, ed.), 9, 445–6.Google Scholar
SIDEBIS, C. P. (1940). Improvement of formaldoxime colorimetric method for manganese. Industr. Engng Chem. (Anal, ed.), 12, 307.Google Scholar
SIDERIS, C. P. and YOUNG, H. Y. (1949). Growth and chemical composition of Ananas comosus (L.) Merr. in solution cultures with different iron–manganese ratios. Plant Physiol. 24, 416–40.CrossRefGoogle ScholarPubMed
SISLBR, E. C, DUGGAR, W. M. and GAUCH, H. G. (1956). The role of boron in the translocation of organic compounds in plants. Plant Physiol. 31, 11–17.Google Scholar
SJOLLBMA, B. (1933). Kupfermangel als Ursache von Krankheiten bei Pflanzen und Tieren. Biochem. Z. 267, 151–6.Google Scholar
SJOLLEMA, B. (1938). Kupfermangel als Ursache von Tierkrankheiten. Biochem. Z. 295, 272–376.Google Scholar
SKOK, J. (1941). Effect of boron on growth and development of the radish. Bot. Gaz. 103, 280–94.CrossRefGoogle Scholar
SKOOG, F. (1940). Relationships between zinc and auxin in the growth of higher plants. Atner. J. Bot. 27, 939–51.Google Scholar
SMITH, G. S. (1935). The determination of small amounts of boron by means of quinalizarin. Analyst, 60, 735–9.CrossRefGoogle Scholar
SMITH, M. E. and BAYLISS, N. S. (1942). The necessity of zinc for Pinus radiata. Plant Physiol. 17, 303–10.CrossRefGoogle ScholarPubMed
SMITH, M. I., STOHLMAN, E. F. and LILLIE, R. D. (1937). The toxicity and pathology of selenium. J. Pharmacol. 60, 449–70.Google Scholar
SMITH, R. E. and THOMAS, H. E. (1928). Copper sulphate as a remedy for exanthema in prunes, apples, pears and olives. Phytopathology, 18, 449–54.Google Scholar
SNYDEB, E. and HARMON, F. N. (1942). Some effects of zinc sulphate on the Alexandria grape. Proc. Amer. Soc. Hort. Sci. 40, 325–7.Google Scholar
SNYDEB, G. B. and DONALDSON, R. W. (1937). The use of borax in controlling dark center of turnips. Proc. Amer. Soc. Hort. Sci. 1936, 34, 480–2.Google Scholar
SOMERS, I. I., GILBERT, S. G. and SHIVE, J. W. (1942). The ironmanganese ratio in relation to the respiratory CO2 and deficiency – toxicity symptoms in soybeans. Plant Physiol. 117, 317–20.Google Scholar
SOMERS, I. I. and SHIVE, J. W. (1942). The iron–manganese relation in plant metabolism. Plant Physiol. 17, 582–602.CrossRefGoogle ScholarPubMed
SOMMER, A. L. (1926). Studies concerning the essential nature of aluminium and silicon for plant growth. Univ. Calif. Publ. Agric. Sci. 5, 57–81.Google Scholar
SOMMER, A. L. (1928). Further evidences of the essential nature of zinc for the growth of higher green plants. Plant Physiol. 3, 217–21.CrossRefGoogle Scholar
SOMMER, A. L. (1931). Copper as an essential for plant growth. Plant Physiol. 6, 339–45.CrossRefGoogle ScholarPubMed
SOMMER, A. L. and BAXTER, A. (1942). Differences in growth limitation of certain plants by magnesium and minor element deficiencies. Plant Physiol. 17, 109–15.CrossRefGoogle ScholarPubMed
SOMMER, A. L. and LIPMAN, C. B. (1926). Evidence of the indispensable nature of zinc and boron for higher green plants. Plant Physiol. 1, 231–49.CrossRefGoogle ScholarPubMed
STEENJBERG, F. (1950). Investigations on micro–elements from a practical point of view. In ‘Trace Elements in Plant Physiology’. Lotsya, 3, 87–97.Google Scholar
STEINBECK, O. (1951). Untersuchungen uber Bormangelerscheinungen bei Kartoffeln. Bodenkultur, 5, 57–60.Google Scholar
STEINBERG, R. A. (1919). A study of some factors in the chemical stimulation of the growth of Aspergillus niger. Amer. J. Bot. 6, 330–72.CrossRefGoogle Scholar
STEINBERG, R. A. (1935a). The nutritional requirements of the fungus Aspergillus niger. Bull. Torrey Bot. Cl. 62, 81–90.CrossRefGoogle Scholar
STEINBERG, R. A. (1935b). Nutrient–solution purification for removal of heavy metals in deficiency investigations with Aspergillus niger. J. Agrio. Res. 51, 413–24.Google Scholar
STEINBERG, R. A. (1936). Relation of accessory growth substances to heavy metals including molybdenum, in the nutrition of Aspergillus niger. J. Agrio. Res. 52, 439–48.Google Scholar
STEINBERG, R. A. (1937). Role of molybdenum in utilization of ammonium– and nitrate–nitrogen by Aspergillus niger. J. Agric. Res. 55, 891–902.Google Scholar
STEINBERG, R. A. (1938a). Applicability of nutrient–solution purification to the study of trace–element requirements of Rhizobium and Azotobaoter. J. Agric. Res. 57, 461–76.Google Scholar
STEINBERG, R. A. (1938b). The essentiality of gallium to growth and reproduction of Aspergillus niger. J. Agric. Res. 57, 569–74.Google Scholar
STEINBERG, R. A. (1938C). Correlations between biological essentiality and atomic structure of the chemical elements. J. Agrio. Res. 57, 851–8.Google Scholar
STEINBERG, R. A. (1939). Growth of fungi in synthetic nutrient solutions. Bot. Rev. 5, 327–50.CrossRefGoogle Scholar
STEINBERG, R. A. (1941). Use of Lemna for nutrition studies on green plants. J. Agrio. Res. 62, 423–30.Google Scholar
STEINBERG, R. A. (1942). Influence of carbon dioxide on response of Aspergillus niger to trace elements. Plant Physiol. 17, 129–32.CrossRefGoogle ScholarPubMed
STEINBERG, R. A. (1948). Essentiality of calcium in the nutrition of fungi. Science, 107, 423.CrossRefGoogle ScholarPubMed
STEINBERG, R. A. (1955). Effect of boron deficiency on nicotine formation in tobacco. Plant Physiol. 30, 84–6.CrossRefGoogle ScholarPubMed
STEINBERG, R. A. and JEFFREY, R. N. (1956). Effect of micronutrient deficiencies on nicotine formation by tobacco in water culture. Plant Physiol. 31, 377–82.CrossRefGoogle ScholarPubMed
STEINBERG, R. A., SPECHT, A. W. and ROLLER, E. M. (1955). Effect of micronutrient deficiencies on mineral composition, nitrogen fractions, ascorbic acid and burn of tobacco grown to flowering in water culture. Plant Physiol. 30, 123–9.CrossRefGoogle Scholar
STEWART, I. and LEONARD, C. D. (1952). Molybdenum deficiency in Florida Citrus. Nature, Lond., 170, 714–15.CrossRefGoogle ScholarPubMed
STEWART, I. and LEONARD, C. D. (1953). Correction of molybdenum deficiency in Florida Citrus. Proc. Amer. Soc. Hort. Sci. 62, 111–15.Google Scholar
STEWART, J., MITCHELL, R. L. and STEWART, A. B. (1941). Pining in sheep: its control by administration of cobalt and by use of cobaltrich fertilizers. Empire J. Exp. Agric. 9, 145–52.Google Scholar
STOKLASA, J. (1911). De l'importance physiologique du manganese et de 1aluminium dans la cellule végétale. C.R. Acad. Sci., Paris, 152, 1340.Google Scholar
STOKLASA, J. (1922). Vber die Verbreitung des Aluminums in der Natur. Jena.Google Scholar
STOREY, H. H. and LEACH, R. (1933). A sulphur deficiency disease of the tea bush. Ann. Appl. Biol. 20, 23–56.CrossRefGoogle Scholar
STORP, F. (1883). Ueber den Einfluss von Kochsalz– und Zinesulfathaltigen Wasser auf Boden und Pflanzen. Landw. J. 12, 795–844.Google Scholar
STOUT, P. R. and ARNON, D. I. (1939). Experimental methods for the study of the role of copper, manganese, and zinc in the nutrition of higher plants. Amer. J. Bot. 26, 144–9.CrossRefGoogle Scholar
STOUT, P. R. and JOHNSON, CM. (1956). Molybdenum deficiency in horticultural and field crops. Soil Sci. 81, 183–90.CrossRefGoogle Scholar
STOUT, P. R., LEVY, J. and WILLIAMS, L. C. (1938). Polarographic studies with the dropping mercury kathode. Part LXXIII. The estimation of zinc in the presence of nickel, cobalt, cadmium, lead, copper and bismuth. Coll. Czechoslovak Chem. Comm. 10, 129–35.Google Scholar
STOUT, P. R. and MEAGHER, W. R. (1948). Studies of the molybdenum nutrition of plants with radioactive molybdenum. Science, 108, 471–3.CrossRefGoogle ScholarPubMed
STROUTS, C. R. N., GILFILLAN, J. H. and WILSON, H. N. (editors) (1955). Analytical Chemistry. The Working Tools. Oxford.Google Scholar
STUMPF, P. K. and LOOMIS, W. D. (1950). Observations on a plant amide enzyme system requiring manganese and phosphate. Arch. Biochem. 25, 451–3.Google ScholarPubMed
STUMPF, P. K., LOOMIS, W. D. and MITCHELSON, C. (1951). Amide metabolism in higher plants. I. Preparation and properties of a glutamyl transphorase from pumpkin seedlings. Arch. Biochem. 30, 126–37.Google Scholar
SWANBACK, T. R. (1927). The effect of boric acid on the growth of tobacco plants in nutrient solutions. Plant Physiol. 2, 475–86.CrossRefGoogle ScholarPubMed
SWANBACK, T. R. (1939). Studies on antagonistic phenomena and cation absorption in tobacco in the presence and absence of manganese and boron. Plant Physiol. 14, 423–46.CrossRefGoogle ScholarPubMed
TALIBLI, G. A. (1935). Bedeutung von Mikroelementen und des Verhaltnisses von Ca/Mg fur das Pflanzenwachstum bei Kalkungen saurer Boden. Z. Pflanzenerna.hr., Dung. u. Bodenk. A, 39, 257–64.Google Scholar
TATE, F. G. H. and WHALLEY, H. K. (1940). The spectrographic analysis of tobacco ash. Analyst, 65, 587–93.CrossRefGoogle Scholar
THACKER, E. J. and BEESON, K. C. (1958). Occurrence of mineral deficiencies and toxicities in animals in the United States and problems of their detection. Soil Sci. 85, 87–94.CrossRefGoogle Scholar
THATCHER, R. W. (1934). A proposed classification of the chemical elements with respect to their function in plant nutrition. Science., 79, 463–6.CrossRefGoogle Scholar
THEORELL, H. and SWEDIN, B. (1939). Mangan als Aktivator der Dioxymaleinsaureoxydase. Naturwiss. 27, 95.CrossRefGoogle Scholar
THOMAS, B. and TRINBER, N. (1947). The ash components of some moorland plants. Emp. J. Exp. Agric. 15, 237–48.Google Scholar
THOMAS, H. E. (1931). The curing of exanthema by injection of copper sulphate into the tree. Phytopathology, 21, 995–6.Google Scholar
TOTTINGHAM, W. E. and BECK, A. J. (1916). Antagonism between manganese and iron in the growth of wheat. Plant World, 19, 359–70.Google Scholar
TREBOTTX, O. (1903). Einige stoffliche Einflusse auf die Kohlensaureassimilation bei submersen Pflanzen. Flora, 92, 56–8.Google Scholar
TBELEASE, S. F. and MARTIN, A. L. (1936). Plants made poisonous byselenium absorbed from the soil. Bot. Rev. 2, 373–96.Google Scholar
TBELEASE, S. F. and TBELEASE, HELEN M. (1938). Selenium as a stimulating and possibly essential element for indicator plants. Amer. J. Bot. 25, 372–80.Google Scholar
TBUE, R. H. and GIBS, W. J. (1903). On the physiological action of some of the heavy metals in mixed solutions. Bull. Torrey Bot. Cl. 30, 300–402.Google Scholar
Tsui, C. (1948). The role of zinc in auxin synthesis in the tomato plant. Amer. J. Bot. 35, 172–9.CrossRefGoogle ScholarPubMed
TWYMAN, E. S. (1943). Manganese deficiency in oats. Nature, Land., 152, 216.CrossRefGoogle Scholar
TWYMAN, E. S. (1951). The iron and manganese requirements of plants. New Phytol. 50, 210–26.CrossRefGoogle Scholar
TWYMAN, F. (1935). The Practice of Spectrum Analysis with Hilger Instruments. Sixth edition. London.Google Scholar
TWYMAN, F. (1938a). Spectrochemical Abstracts, 1933–7. London.Google Scholar
TWYMAN, F. (1938b). Spectrochemical Analysis in 1938. London.Google Scholar
TWYMAN, F. (1941). The Spectrochemical Analysis of Metals and Alloys. London.Google Scholar
ULBICH, A. and OHKI, K. (1956). Chlorine, bromine and sodium as nutrients for sugar beet. Plant Physiol. 31, 171–81.Google Scholar
UNDENAS, S. (1937). Ett forsok med kopparsulfat mot gulspetsskuja. Landbouhshogsholano An. (Ann. Agric. Coll. Sweden), 4, 99–111.Google Scholar
UNDEBHILL, F. P. and PETERMAN, F. I. (1929). Studies in the metabolism of aluminium. I. Method for determination of small amounts of aluminium in biological material. Amer. J. Physiol. 90, 1–14.Google Scholar
UNDEBWOOD, E. J. and FILMEB, J. F. (1935). Enzootic marasmus. The determination of the biologically potent element (cobalt) in limonite. Aust. Vet. J . 11, 84–91.Google Scholar
UNDEBWOOD, E. J. and HARVEY, R. J. (1938). Enzootic marasmus: the cobalt content of soils, pastures and animal organs. Aust. Vet. J. 14, 183–9.Google Scholar
VALLEE, B. L. and HOCH, F. L. (1955). Yeast alcohol dehydrogenase, a zinc metalloenzyme. J. Amer. Chem. Soc. 77, 821.CrossRefGoogle Scholar
VALLEE, B. L., HOCH, F. L., ADELSTEIN, S. J. and WACKER, W. E. L. (1956). Pyridine–nucleotide–dependent metallo–dehydrogenases. J. Amer. Chem. Soc. 78, 5879–83.CrossRefGoogle Scholar
VAN SOHBEVEN, D. A. (1934). Uitwendige en inwendige symptomen van boriumgebrek bij tabak. Tijdschr. PIZiekt. 40, 98–129 (with English summary).Google Scholar
VAN SCHBEVEN, D. A. (1935). Uitwendige en inwendige symptomen van boriumgebrek bij tomaat. Tijdschr. PIZiekt. 41, 1–26 (with English summary).Google Scholar
VAN SCHBEVEN, D. A. (1939). De gezondheidstoestand van de aardappelplant onder den invloed van twaalfelementen. Meded. Inst. Phytopaih. Wageningen, 43, 166 pp. (with English summary).Google Scholar
VANSBLOW, A. P. and BRADFORD, G. R. (1957). Techniques and applications of spectroscopy in plant nutrition studies. Soil Sci. 83, 75–83.Google Scholar
VANSELOW, A. P. and DATTA, N. P. (1949). Molybdenum deficiency of the Citrus plant. Soil Sci. 67, 363–75.CrossRefGoogle Scholar
VANSELOW, A. P. and LAURANCE, B. M. (1936). Spectrographic microdetermination of zinc. Industr. Engng Chem. (Anal, ed.), 8, 240–2.Google Scholar
VIETS, F. G., BOAWN, L. C. and CRAWFORD, C. L. (1954). Zinc content of bean plants in relation to deficiency symptoms. Plant Physiol. 29, 76–9.CrossRefGoogle ScholarPubMed
VINOGRADOV, A. P. (1934). Distribution of vanadium in organisms. C.R. Acad. Sci. U.R.S.S. pp. 454–9 (with English summary).Google Scholar
WADLEIGH, C. H. and SHIVE, J. W. (1939). A microchemical study of the effect of boron deficiency in cotton seedlings. Soil Sci. 47, 33–6.CrossRefGoogle Scholar
WAHHAB, A. and BHATTI, H. M. (1958). Trace element status of some West Pakistan soils. Soil Sci. 86, 319–23.CrossRefGoogle Scholar
WALKER, J. B. (1953). Inorganic micronutrient requirements of Chlorella. I. Requirements for calcium (or strontium) copper and molybdenum. Arch. Biochem. Biophys. 46, 1–11.CrossRefGoogle ScholarPubMed
WALKER, J. B. (1954). Inorganic micronutrient requirements of Chlorella. II. Quantitative requirements for iron, manganese and zinc. Arch. Biochem. Biophys. 53, 1–8.CrossRefGoogle ScholarPubMed
WALKER, J. C. (1939). Internal black spot of garden beet. Phytopathology, 29, 120–8.Google Scholar
WALKER, J. C, JOLIVETTE, J. P. and MCLEAN, J. C. (1943). Boron deficiency in garden and sugar beet. J. Agric. Res. 66, 97–123.Google Scholar
WALKER, J. C., MCLEAN, J. G. and JOLIVETTE, J. P. (1941). The boron deficiency disease in cabbage. J. Agric. Res. 62, 573–87.Google Scholar
WALKER, T. W., ADAMS, A. F. R. and ORCHISTON, H. D. (1955). The effects and interactions of molybdenum, lime and phosphate treatments on the yield and composition of white clover, grown on acid, molybdenum–responsive soils. Plant and Soil, 6, 201–20.CrossRefGoogle Scholar
WALKLEY, A. (1942). The determination of zinc in plant materials. Aust. J. Exp. Biol. Med. Sci. 20, 139–47.CrossRefGoogle Scholar
WALLACE, A. and BEAR, F. E. (1949). Influence of potassium and boron on nutrient element balance in the growth of ranger alfalfa. Plant Physiol. 24, 664–80.CrossRefGoogle ScholarPubMed
WALLACE, T. (1943). The Diagnosis of Mineral Deficiencies in Plants. London. (Supplement, 1944.)Google Scholar
WALLACE, T. and HEWITT, E. J. (1946). Studies in iron deficiency of crops. I. Problems of iron deficiency and the interrelationships of mineral elements in iron nutrition. J. Pomol. 22, 153–61.Google Scholar
WALLACE, T., HEWITT, E. J. and NICHOLAS, D. J. D. (1945). The resolution of factors injurious to plants on acid soils. Nature, Lond., 156, 778.CrossRefGoogle Scholar
WARINGTON, K. (1923). The effect of boric acid and borax on the broad bean and certain other plants. Ann. Bot., Lond., 37, 629–72.Google Scholar
WARINGTON, K. (1926). The changes induced in the anatomical structure of Vicia faba by the absence of boron from the nutrient solution. Ann. Bot., Lond., 40, 27–42.Google Scholar
WABINGTON, K. (1934). Studies in the absorption of calcium from nutrient solutions with special reference to the presence or absence of boron. Ann. Bot., Lond., 48, 743–76.Google Scholar
WABINGTON, K. (1937). Observations on the effect of molybdenum in plants with special reference to the Solanaceae. Ann. Appl. Biol. 24, 475–93.Google Scholar
WABINGTON, K. (1940). The growth and anatomical structure of the carrot (Daucus carota) as affected by boron deficiency. Ann. Appl. Biol. 27, 176–83.Google Scholar
WAYGOOD, E. R. and CLENDENNTNG, K. A. (1950). Carbonic anhydrase in green plants. Canad. J. Res. C, 28, 673–89.Google Scholar
WAYGOOD, E. R., OAKS, A. and MACLACHLAN, C. A. (1956a). On the mechanism of indoleacetic acid oxidation by wheat leaves. Canad. J. Bot. 34, 54–9.Google Scholar
WAYGOOD, E. R., OAKS, A. and MACLACHLAN, C. A. (1956b). The enzymatically catalysed oxidation of indoleacetic acid. Canad. J. Bot. 34, 905–26.Google Scholar
WEAR, J. I. (1956). Effect of soil pH and calcium on uptake of zinc by plants. Soil Sci. 81, 311–15.CrossRefGoogle Scholar
WEINBERGER, J. H. and CULLINAN, F. P. (1937). Symptoms of some mineral deficiencies in one–year Elberta peach trees. Proc. Amer. Soc. Hort. Sci. 1936, 34, 249–54.Google Scholar
WEINSTEIN, L. H. and ROBBINS, W. R. (1955). The effect of different iron and manganese nutrient levels on the catalase and cytochrome oxidase activities of green and albino sunflower leaf tissues. Plant Physiol. 30, 27–32.CrossRefGoogle ScholarPubMed
WHITEHEAD, T. (1935). A note on ‘brown–heart’, a new disease of swedes, and its control. Welsh J. Agric. 11, 235–6.Google Scholar
WICKENS, G. W. (1925). Exanthema of Citrus trees. Rep. Proc Imp. Bot. Conference, London, 1924, pp. 353–7. Cambridge.Google Scholar
WIESB, A. C. and JOHNSON, B. C. (1939). Mierodetermination of manganese. J. Biol. Chem. 127, 203–9.Google Scholar
WIKLANDEB, L. (1958). The soil. In Encyclopedia of Plant Physiology. Vol. IV, pp. 118–69. Berlin, Gottingen, Heidelberg.Google Scholar
WILCOX, L. V. (1940). Determination of boron in plant material. An ignition–electrometric titration method. Industr. Engng Chem. (Anal, ed.), 12, 341–3.Google Scholar
WILLIAMS, D. E. and VLAMIS, J. (1957). Manganese toxicity in standard culture solutions. Plant and Soil, 8, 183–93.CrossRefGoogle Scholar
WILSON, R. D. (1949). Molybdenum in relation to the scald disease of beans. Aust. J. Sci. 11, 209–11.Google Scholar
WINFIELD, M. E. (1945). The role of boron in plant metabolism. III. The influence of boron on certain enzyme systems. Attst. J. Exp. Biol. Med. Sci. 23, 267–72.Google Scholar
WOLFF, L. K. and EMMEKIE, A. (1930). Über das Wachstum des Aspergillus niger und den Kupfergehalt des Nahrbodens. Biochem. Z. 228, 441–50.Google Scholar
WOODWAED, J. (1699). Some thoughts and experiments concerning vegetation. Philos. Trans. 21, 193–227.Google Scholar
WOOLEY, D. W. (1941). Manganese and the growth of lactic acid bacteria. J. Biol. Chetn. 140, 311–12.Google Scholar
WTTNSH, D. S. (1937). Tracking down a deficiency disease. Chem. and Ind. 15, 855–9.Google Scholar
YAKOVLEVA, V. V. (1947). The influence of boron on the biochemical changes in the roots and leaves of the sugar beet. Dokl. Akad. Nauk U.B.8.S. 58, 625–7. Cited from Chem. Abstr. 45, 8091.Google Scholar
YABWOOD, C. E. (1942). Stimulatory and toxic effects of copper sprays on powdery mildews. Amer. J. Bot. 29, 132–5.Google Scholar
YOB, J. H. and WILL, F. (1952). A new colorimetric reagent for molybdenum. Anal. chim. acta, 6, 450–1.Google Scholar
YOUNG, R. S. (1935). Certain rarer elements in soils and fertilizers and their role in plant growth. Mem. Cornell Agric. Exp. Sta. no. 174, 70 pp.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×