Published online by Cambridge University Press: 05 May 2015
Hadwiger's conjecture states that any graph that does not have the complete graph Kk as a minor is (k − 1)-colourable. It is well known that the case k = 5 is equivalent to the four-colour theorem. In 1993 Robertson, Seymour and Thomas proved that the case k = 6 is also equivalent to the four-colour theorem. For k ≥ 7, the conjecture is still open. Our main focus in this chapter is to present recent results related to minimal counter-examples to Hadwiger's conjecture and some variations. We also consider algorithmic aspects of the conjecture and some of its variants, including the list-colouring version (which is false), the odd case of the conjecture, Hajós's conjecture and totally odd subdivisions, and Hadwiger's conjecture for some special classes of graphs.
Introduction
This chapter is motivated by Hadwiger's conjecture from 1943, which suggests a farreaching generalization of the four-colour theorem. It is among the most challenging open problems in all of graph theory.
Hadwiger's conjecture (strong version) For all k, every k-colourable graph contains the complete graph Kk as a minor.
For k ≤ 3, Hadwiger's conjecture is easy to prove, and for k = 4, it was proved independently by Hadwiger himself [31] and Dirac [21]. For k = 5, however, it becomes extremely difficult. In 1937 Wagner [74] proved that this case is equivalent to the four-colour theorem, so, given that result in [2], [3], [56], it follows that the case k = 5 also holds. In the deepest theorem in this area so far, Robertson, Seymour and Thomas [62] proved in 1993 that a minimal counter-example to the case k = 6 must have a vertex whose removal leaves a planar graph, so this case too follows from the four-colour theorem. For k ≥ 7, the conjecture is still open. For k = 7, Kawarabayashi and Toft [46] proved that every 7-chromatic graph has K7 or K4,4 as a minor, and recently Kawarabayashi [38] proved that every 7-chromatic graph has K7 or K3,5 as a minor.
To send this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Dropbox.
To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Google Drive.