Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-20T02:41:34.876Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  22 November 2018

W. O. Criminale
Affiliation:
University of Washington
T. L. Jackson
Affiliation:
University of Florida
R. D. Joslin
Affiliation:
National Science Foundation, Alexandria, Virginia
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acheson, D.J. (1990). Elementary Fluid Dynamics. Oxford University Press.Google Scholar
Ames, W.F. (1977). Numerical Methods for Partial Differential Equations. Academic Press.Google Scholar
Anders, S. & Fischer, M. (1999). F-16XL-2 supersonic laminar flow control flight test experiment. NASA TP-1999–209683.Google Scholar
Arnal, D. (1994). Boundary layer transition: Predictions based on linear theory. AGARD-R-793.Google Scholar
Arnal, D., Habiballah, M. & Coustols, E. (1984). Laminar instability theory and transition criteria in two- and three-dimensional flow. La Recherche Aérospatiale 1984–2.Google Scholar
Arnal, D., Casalis, G. & Juillen, J.C. (1990). Experimental and theoretical analysis of natural transition on infinite swept wing. In IUTAM Symposium on Laminar– Turbulent Transition, Arnal, D. & Michel, R. (eds). Springer, 311326.Google Scholar
Arnal, D., Juillen, J.C. & Casalis, G. (1991). The effects of wall suction on laminar– turbulent transition in three-dimensional flow. ASME FED 114, 155162.Google Scholar
Artola, M. & Majda, A.J. (1987). Nonlinear development of instabilities in supersonic vortex sheets. Physica D 28, 253281.CrossRefGoogle Scholar
Ashpis, D.E. & Erlebacher, G. (1990). On the continuous spectra of the compressible boundary layer stability equations. In Instability and Transition II, Hussaini, M.Y. & Voigt, R.G. (eds). Springer, 145159.Google Scholar
Baek, P. & Fuglsang, P. (2009). Experimental detection of transition on wind turbine airfoils. European Wind Energy Conference, March, 16–19, 2009.Google Scholar
Balachandar, S., Streett, C.L. & Malik, M.R. (1990). Secondary instability in rotating disk flows. AIAA Paper 90–1527.Google Scholar
Balakumar, P. & Malik, M.R. (1992). Discrete modes and continuous spectra in supersonic boundary layers. J. Fluid Mech. 239, 631656.Google Scholar
Balsa, T.F. & Goldstein, M.E. (1990). On the instabilities of supersonic mixing layers: A high Mach number asymptotic theory. J. Fluid Mech. 216, 585611.Google Scholar
Banks, D.W., van Dam, C.P., Shiu, H.J. & Miller, G.M. (2000). Visualization of in-flight flow phenomena using infrared thermography. NASA TM-2000–209027.Google Scholar
Barston, F.M. (1980). A circle theorem for inviscid steady flows. Int. J. Eng. Sci. 18, 477489.CrossRefGoogle Scholar
Batchelor, G.K. (1964). Axial flow in trailing line vortices. J. Fluid Mech. 20, 645658.CrossRefGoogle Scholar
Batchelor, G.K. (1967). An Introduction to Fluid Dynamics. Cambridge University Press.Google Scholar
Batchelor, G.K. & Gill, A.E. (1962). Analysis of the stability of axisymmetric jets. J. Fluid Mech. 14, 529551.CrossRefGoogle Scholar
Bayly, B.J., Orszag, S.A. & Herbert, T. (1988). Instability mechanisms in shear flow transition. Ann. Rev. Fluid Mech. 20, 359391.Google Scholar
Benney, D.J. (1961). A non-linear theory for oscillations in a parallel flow. J. Fluid Mech. 10, 209236.Google Scholar
Benney, D.J. (1964). Finite amplitude effects in an unstable laminar boundary layer. Phys. Fluids 7, 319326.CrossRefGoogle Scholar
Benney, D.J. & Lin, C.C. (1960). On the secondary motion induced by oscillations in a shear flow. Phys. Fluids 3(4), 656657.CrossRefGoogle Scholar
Benney, D.J. & Gustavsson, L.H. (1981). A new mechanism for linear and nonlinear hydrodynamic instability. Studies in Applied Mathematics 64, 185209.Google Scholar
Bertolotti, F.P. (1985). Temporal and spatial growth of subharmonic disturbances in Falkner–Skan flows. M.S. Thesis, Virginia Polytechnic Institute and State University.Google Scholar
Bertolotti, F.P. (1992, ). Linear and nonlinear stability of boundary layers with streamwise varying properties. PhD Thesis, The Ohio State University.Google Scholar
Bertolotti, F.P. & Crouch, J.D. (1992). Simulation of boundary layer transition: Receptivity to spike stage. NASA CR-191413.Google Scholar
Bertolotti, F.P. & Joslin, R.D. (1995). The effect of far-field boundary conditions on boundary-layer transition. J. Comput. Phys. 118, May, 392395.Google Scholar
Bestek, H., Thumm, A. & Fasel, H.F. (1992). Numerical investigation of later stages of transition in transonic boundary layers. First European Forum on Laminar Flow Technology, Hamburg, Germany, March 16–18, 1992.Google Scholar
Betchov, R. & Szewczyk, A. (1963). Stability of a shear layer between parallel streams. Phys. Fluids 6(10), 13911396.Google Scholar
Betchov, R. & Criminale, W.O. (1966). Spatial instability of the inviscid jet and wake. Phys. Fluids 9, 359362.Google Scholar
Betchov, R. & Criminale, W.O. (1967). Stability of Parallel Flows. Academic Press.Google Scholar
Bewley, T, Moin, P. & Temam, R. (1996). A method for optimizing feedback control rules for wall bounded turbulent flows based on control theory. Forum on Control of Transition and Turbulent Flows, ASME Fluids Engineering Conference, San Diego.Google Scholar
Biringen, S. (1984). Active control of transition by periodic suction-blowing. Phys. Fluids 27(6), 13451347.Google Scholar
Blackaby, N., Cowley, S.J. & Hall, P. (1993). On the instability of hypersonic flow past a flat plate. J. Fluid Mech. 247, 369416.Google Scholar
Blasius, H. (1908). Grenzschichten in Flüssigkeiten mit kleiner Reibung. Zeitschrift für Angewandte Mathematik und Physik 56, 1. (Translation: Boundary layers in fluids of small viscosity, NACA TM-1256, Feb. 1950).Google Scholar
Blumen, W. (1970). Shear layer instability of an inviscid compressible fluid. J. Fluid Mech. 40, 769781.Google Scholar
Blumen, W., Drazin, P.G. & Billings, D.F. (1975). Shear layer instability of an inviscid compressible fluid. Part 2. J. Fluid Mech. 71, 305316.Google Scholar
Bogdanoff, D.W. (1983). Compressibility effects in turbulent shear layers. AIAA J. 21(6), 926927.Google Scholar
Borggaard, J., Burkardt, J., Gunzburger, M. & Peterson, J. (1995). Optimal Design and Control. Birkhauser.Google Scholar
Bower, W.W., Kegelman, J.T., Pal, A. & Meyer, G.H. (1987). A numerical study of two-dimensional instability-wave control based on the Orr–Sommerfeld equation. Phys. Fluids 30(4), 9981004.Google Scholar
Boyce, W.E. & DiPrima, R.C. (1986). Elementary Differential Equations and Boundary Value Problems, 4th edition, John Wiley & Sons.Google Scholar
Breuer, K.S. & Haritonidis, J.H. (1990). The evolution of a localized disturbance in a laminar boundary layer. Part I. Weak disturbances. J. Fluid Mech. 220, 569594.Google Scholar
Breuer, K.S. & Kuraishi, T. (1994). Transient growth in two- and three-dimensional boundary layers. Phys. Fluids 6, 19831993.Google Scholar
Briggs, R.J. (1964). Electron-Stream Interaction with Plasmas. MIT Press.Google Scholar
Brown, W.B. (1959). Numerical calculation of the stability of cross flow profiles in laminar boundary layers on a rotating disc and on a swept back wing and an exact calculation of the stability of the Blasius velocity profile. Northrop Aircraft, Inc., Rep. NAI 59–5.Google Scholar
Brown, W.B. (1961a). A stability criterion for three-dimensional laminar boundary layers. In Boundary Layer and Flow Control, Lachmann, G.V. (ed). Pergamon, Vol. 2, 913923.Google Scholar
Brown, W.B. (1961b). Exact solution of the stability equations for laminar boundary layers in compressible flow. In Boundary Layer and Flow Control, Lachmann, G.V. (ed). Pergamon, Vol. 2, 10331048.Google Scholar
Brown, W.B. (1962). Exact numerical solutions of the complete linearized equations for the stability of compressible boundary layers. Northrop Aircraft Inc., NORAIR Division Rep. NOR–62–15.Google Scholar
Brown, W.B. (1965). Stability of compressible boundary layers including the effects of two-dimensional linear flows and three-dimensional disturbances. Northrop Aircraft Inc., NORAIR Division Rep.Google Scholar
Brown, W.B. & Roshko, A. (1974). On density effects and large structure in turbulent mixing layers. J. Fluid Mech. 64, 775816.Google Scholar
Bun, Y. & Criminale, W.O. (1994). Early period dynamics of an incompressible mixing layer. J. Fluid Mech. 273, 3182.Google Scholar
Burden, R.L. & Faires, J.D. (1985). Numerical Analysis, 3rd edition. Prindle, Weber & Schmidt.Google Scholar
Bushnell, D.M. (1984). NASA research on viscous drag reduction II. Laminar-Turbulent Boundary Layers 11, 9398.Google Scholar
Bushnell, D.M., Hefner, J.N. & Ash, R.L. (1977). Effect of compliant wall motion on turbulent boundary layers. Phys. Fluids 20, S31S48.Google Scholar
Butler, K.M. & Farrell, B.F. (1992). Three dimensional optimal perturbations in viscous shear flow. Phys. Fluids A 4, 16371650.Google Scholar
Canuto, C., Hussaini, M.Y., Quarteroni, A. & Zang, T.A. (1988). Spectral Methods in Fluid Dynamics. Springer.Google Scholar
Carpenter, M.H., Gottlieb, D. & Abarbanel, S. (1993). The stability of numerical boundary treatments for compact high-order finite difference schemes. J. Comp. Phys. 108(2), 272295.Google Scholar
Carpenter, P.W. (1990). Status of transition delay using compliant walls. In Viscous Drag Reduction in Boundary Layers, Bushnell, D.M. & Hefner, J.N. (eds). AIAA, 123, 79113,Google Scholar
Carpenter, P.W. & Garrad, A.D. (1985). The hydrodynamic stability of flow over Kramer-type compliant surfaces. Part 1. Tollmien–Schlichting instabilities. J. Fluid Mech.155, 465510.Google Scholar
Carpenter, P.W. & Garrad, A.D. (1986). The hydrodynamic stability of flow over Kramer-type compliant surfaces. Part 2. Flow-induced surface instabilities. J. Fluid Mech.170, 199232.Google Scholar
Carpenter, P.W. & Morris, P.J. (1989). Growth of 3-D instabilities in flow over compliant walls. 4th Asian Congress of Fluid Mechanics, Hong Kong.Google Scholar
Carpenter, P.W. & Morris, P.J. (1990). The effects of anisotropic wall compliance on boundary-layer stability and transition. J. Fluid Mech. 218, 171223.Google Scholar
Case, K.M. (1960a). Stability of inviscid plane Couette flow. Phys. Fluids 3(2), 143148.Google Scholar
Case, K.M. (1960b). Stability of an idealized atmosphere. I. Discussion of results. Phys. Fluids 3, 149154.Google Scholar
Case, K.M. (1961). Hydrodynamic stability and the inviscid limit. J. Fluid Mech. 10(3), 420429.Google Scholar
Cebeci, T. & Stewartson, K. (1980). On stability and transition in three-dimensional flows. AIAA J. 18(4), 398405.Google Scholar
Chandrasekhar, S. (1981). Hydrodynamic and Hydromagnetic Stability. Dover Publications.Google Scholar
Chang, C.L. & Malik, M.R. (1992 ). Oblique mode breakdown in a supersonic boundary layer using nonlinear PSE. In Instability, Transition, and Turbulence, Hussaini, M.Y., Kumar, A. & Streett, C.L. (eds). Springer, 231241.Google Scholar
Charney, J.G. (1947). The dynamics of long waves in a baroclinic westerly current. J. Meteor. 4, 135162.Google Scholar
Chen, J.H., Cantwell, B.J. & Mansour, N.N. (1989). Direct numerical simulation of a plane compressible wake: Stability, vorticity dynamics, and topology. PhD Thesis, Stanford University, Thermosciences Division Report No. TF-46.Google Scholar
Chen, J.H., Cantwell, B.J. & Mansour, N.N. (1990). The effect of Mach number on the stability of a plane supersonic wake. Phys. Fluids A 2, 9841004.Google Scholar
Chimonas, G. (1970). The extension of the Miles–Howard theorem to compressible fluids. J. Fluid Mech. 43, 833836.Google Scholar
Chinzei, N., Masuya, G., Komuro, T., Murakami, A. & Kudou, D. (1986). Spreading of two-stream supersonic turbulent mixing layers. Phys. Fluids 29, 13451347.Google Scholar
Choi, H., Temam, R., Moin, P. & Kim, J. (1993). Feedback control of unsteady flow and its application to the stochastic Burgers equation. J. Fluid Mech. 253, 509543.Google Scholar
Choudhari, M. (1994). Roughness induced generation of crossflow vortices in three-dimensional boundary layers. Theor. & Comput. Fluid Dyn. 5, 131.Google Scholar
Choudhari, M. & Streett, C.L. (1994). Theoretical prediction of boundary-layer receptivity. 25th AIAA Fluid Dynamics Conf., June 20–23, 1994, AIAA Paper 94–2223.Google Scholar
Clauser, F.H. & Clauser, M.U. (1937). The effect of curvature on the transition from laminar to turbulent boundary layer. NACA TN-613.Google Scholar
Coles, D. (1965). Transition in circular Couette flow. J. Fluid Mech. 21(3), 385425.Google Scholar
Cooper, A.J. & Carpenter, P.W. (1997). The stability of the rotating-disc boundary layer flow over a compliant wall. Type I and Type II instabilities. J. Fluid Mech. 350, 231259.CrossRefGoogle Scholar
Cousteix, J. (1992). Basic concepts on boundary layers. Special Course on Skin Friction Drag Reduction, AGARD-R-786.Google Scholar
Cowley, S.J. & Hall, P. (1990). On the instability of hypersonic flow past a wedge. J. Fluid Mech. 214, 1742.Google Scholar
Craik, A.D.D. (1971). Nonlinear resonant instability in boundary layers. J. Fluid Mech. 50(2), 393413.Google Scholar
Craik, A.D.D. & Criminale, W.O. (1986). Evolution of wavelike disturbances in shear flows: A class of exact solutions of the Navier–Stokes equations. Proc. R. Soc. London Ser. A 406(1830), 1326.Google Scholar
Crawford, B.K., Duncan, G.T., West, D.E. & Saric, W.S. (2013) Laminar-turbulent boundary layer transition imaging using IR thermography. Optics and Photonics J. 3, 233239.CrossRefGoogle Scholar
Criminale, W.O. (1960). Three-dimensional laminar instability, AGARD-R-266.Google Scholar
Criminale, W.O. (1991). Initial-value problems and stability in shear flows. Int. Symp. on Nonlinear Problems in Eng. and Sci., Beijing, China, 4363.Google Scholar
Criminale, W.O. & Kovasznay, L.S.G. (1962). The growth of localized disturbances in a laminar boundary layer. J. Fluid Mech. 14, 5980.Google Scholar
Criminale, W.O. & Drazin, P.G. (1990). The evolution of linearized perturbations of parallel flows. Studies Appl. Math. 83, 123157.Google Scholar
Criminale, W.O. & Drazin, P.G. (2000). The initial-value problem for a modeled boundary layer. Phys. Fluids A 12, 366374.Google Scholar
Criminale, W.O. & Lasseigne, D.G. (2002). Use of multiple scales, multiple time in shear flow stability analysis. Personal notes.Google Scholar
Criminale, W.O., Long, B. & Zhu, M. (1991). General three-dimensional disturbances to inviscid Couette flow. Studies in Appl. Math. 86, 249267.Google Scholar
Criminale, W.O., Jackson, T.L. & Lasseigne, D.G. (1995). Towards enhancing and delaying disturbances in free shear flows. J. Fluid Mech. 294, 283300.Google Scholar
Criminale, W.O., Jackson, T.L., Lasseigne, D.G. & Joslin, R.D. (1997). Perturbation dynamics in viscous channel flows. J. Fluid Mech. 339, 5575.CrossRefGoogle Scholar
Crouch, J.D. (1994). Receptivity of boundary layers. AIAA Paper 94–2224.Google Scholar
Dagenhart, J.R. & Saric, W.S. (1999). Crossflow stability and transition experiments in a swept wing flow. NASA TP-1999–209344.Google Scholar
Dagenhart, J.R., Saric, W.S., Mousseux, M.C. & Stack, J.P. (1989). Crossflow vortex instability and transition on a 45-degree swept wing. AIAA Paper 89–1892.Google Scholar
Danabasoglu, G., Biringen, S. & Streett, C.L. (1990). Numerical simulation of spatially-evolving instability control in plane channel flow. AIAA Paper 90–1530.Google Scholar
Danabasoglu, G., Biringen, S. & Streett, C.L. (1991). Spatial simulation of instability control by periodic suction blowing. Phys. Fluids A 3(9), 21382147.Google Scholar
Davey, A. (1980). On the numerical solution of difficult boundary-value problems. J. Comput. Phys. 35, 3647.Google Scholar
Davey, A. (1982). A difficult numerical calculation concerning the stability of the Blasius boundary layer. In Stability in the Mechanics of Continua, 2nd Symposium, Nümbrecht, Germany, Aug. 31–Sept. 4, 1981, Schroeder, F.H. (ed). Springer, 365– 372.Google Scholar
Davey, A. & Drazin, P.G. (1969). The stability of Poiseuille flow in a pipe. J. Fluid Mech. 36, 209218.Google Scholar
Day, M.J., Reynolds, W.C. & Mansour, N.N. (1998a). The structure of the compressible reacting mixing layer: Insights from linear stability analysis. Phys. Fluids 10(4), 9931007.CrossRefGoogle Scholar
Day, M.J., Reynolds, W.C. & Mansour, N.N. (1998b). Parameterizing the growth rate influence of the velocity ratio in compressible reacting mixing layers. Phys. Fluids 10(10), 26862688.Google Scholar
Dean, W.R. (1928). Fluid motion in a curved channel. Proc. R. Soc. London Ser. A 15, 623631.Google Scholar
Deardorff, J.W. (1963). On the stability of viscous plane Couette flow. J. Fluid Mech. 15, 623631.Google Scholar
Demetriades, A. (1958). An experimental investigation of the stability of the hypersonic laminar boundary layer. California Institute of Technology, Guggenheim Aeronautical Laboratory, Hypersonic Research Project, Memo. No. 43.Google Scholar
Dhawan, S. & Narasimha, R. (1958). Some properties of boundary layer flow during transition from laminar to turbulent motion. J. Fluid Mech. 3(4), 418436.Google Scholar
Dikii, L.A. (1960). On the stability of plane parallel flows of an inhomogeneous fluid. (in Russian) Prikl. i Mekh. 24, 249257 (Translation: J. Appl. Math. Mech. 24, 357–369).Google Scholar
DiPrima, R.C. (1959). The stability of viscous flow between rotating concentric cylinders with a pressure gradient acting around the cylinders. J. Fluid Mech. 6, 462– 468.Google Scholar
DiPrima, R.C. (1961). Stability of nonrotationally symmetric disturbances for viscous flow between rotating cylinders. Phys. Fluids 4, 751755.Google Scholar
DiPrima, R.C. & Habetler, G.J. (1969). A completeness theorem for non-selfadjoint eigenvalue problems in hydrodynamic stability. Arch. Rat. Mech. Anal. 34(3), 218227.Google Scholar
Djordjevic, V.D. & Redekopp, L.G. (1988). Linear stability analysis of nonhomen-tropic, inviscid compressible flows. Phys. Fluids 31(11), 32393245.Google Scholar
Drazin, P.G. (1978). Variations on a theme of Eady. In Rotating Fluids in Geophysics, P. H. Roberts & A. M. Soward (eds). 139–169.Google Scholar
Drazin, P.G. & Howard, L.N. (1962). Shear layer instability of an inviscid compressible fluid. Part 2. J. Fluid Mech. 71, 305316.Google Scholar
Drazin, P.G. & Howard, L.N. (1966). Hydrodynamic stability of parallel flow of inviscid flow. Adv. Appl. Mech. 9, 189.Google Scholar
Drazin, P.G. & Davey, A. (1977). Shear layer instability of an inviscid compressible fluid. Part 3. J. Fluid Mech. 82, 255260.Google Scholar
Drazin, P.G. & Reid, W.H. (1984). Hydrodynamic stability. Cambridge University Press.Google Scholar
Drazin, P.G. & Reid, W.H. (2004). Hydrodynamic stability, 2nd edition. Cambridge University Press.Google Scholar
Duck, P.W. & Foster, M.R. (1980). The inviscid stability of a trailing line vortex. J. App. Math. and Phys. (ZAMP) 31, 524532.Google Scholar
Duck, P.W. & Khorrami, M.R. (1992). A note on the effects of viscosity on the stability of a trailing-line vortex. J. Fluid Mech. 245, 175189.Google Scholar
Duck, P.W., Erlebacher, G. & Hussaini, M.Y. (1994). On the linear stability of compressible plane Couette flow. J. Fluid Mech. 258, 131165.Google Scholar
Dunn, D.W. (1960). Stability of laminar flows. DME/NAE Quarterly Bulletin No. 1960 (3), National Research Council of Canada, Ottawa, Oct., 15–58.Google Scholar
Dunn, D.W. & Lin, C.C. (1955). On the stability of the laminar boundary layer in a compressible fluid. J. Aero. Sci. 22, 455477.Google Scholar
Eady, E.A. (1949). Long waves and cyclone waves. Tellus 1, 3352.Google Scholar
Eckhaus, W. (1962a). Problémes non linéaires dan la théorie de la Stabilité. J. de Mecanique 1, 4977.Google Scholar
Eckhaus, W. (1962b). Problémes non linéaires de stabilité dans un espace a deux dimensions. I. Solutions péridoques. J. de Mecanique 1, 413438.Google Scholar
Eckhaus, W. (1963). Problémes non linéaires de stabilité dans un espace a deux dimenions. II. Stabilité des solutions périodques. J. de Mecanique 2, 153172.Google Scholar
Eckhaus, W. (1965). Studies in Non-Linear Stability Theory. Springer.Google Scholar
Ekman, V.W. (1905). On the influence of the Earth’s rotation on ocean currents. Arkiv fŏr Matematik, Astronomi, och Fysik 2(11), 153.Google Scholar
Eliassen, A., Høiland, E. & Riis, E. (1953). Two-dimensional perturbations of a flow with constant shear of a stratified fluid. Inst. Weather Climate Res., Oslo, Publ. No. 1., Institute of Theoretical Astrophysics, 58 pgs.Google Scholar
Esch, R.E. (1957). The instability of a shear layer between two parallel streams. J. Fluid Mech. 3, 289303.Google Scholar
Falco, R.E. (1977). Coherent motions in the outer region of turbulent boundary layers. Phys. Fluids 20(10), 5124.Google Scholar
Faller, A.J. & Kaylor, R.E. (1967). Instability of the Ekman spiral with applications to the planetary boundary layer. Phys. Fluids 10, S212S219.Google Scholar
Fasel, H. (1976). Investigation of the stability of boundary layers by a finite-difference model of the Navier–Stokes equations. J. Fluid Mech. 78, 355383.CrossRefGoogle Scholar
Fasel, H. (1990). Numerical simulation of instability and transition in boundary layer flows. In IUTAM Symposium on Laminar–Turbulent Transition, Arnal, D. & Michel, R. (eds). Springer, 587597.Google Scholar
Fasel, H. & Thumm, A. (1991). Numerical simulation of three-dimensional boundary layer transition. Bull. Am. Phys. Soc. 36, 2701.Google Scholar
Fedorov, A.V. & Khokhlov, A.P. (1993). Excitation and evolution of unstable disturbances in supersonic boundary layer. In Transitional and Turbulent Compressible Flows. ASME FED, Vol. 151.Google Scholar
Fjørtoft, R. (1950). Application of integral theorems in deriving criteria of stability of laminar flow and for the baroclinic circular vortex. Geofysiske Publikasjoner 17, 152.Google Scholar
Floquét, G. (1883). Sur les équations differéntielles linéaires á coefficients périodiques. Annales Scientifiques Ecole Normale Superieure 2(12), 4789.Google Scholar
Fromm, J.E. & Harlow, F.H., (1963). Numerical solution of the problem of vortex street development. Phys. Fluids 6, 975982.Google Scholar
Fursikov, A.V., Gunzburger, M. & Hou, L. (1996). Boundary value problems and optimal boundary control of the Navier–Stokes system: The two-dimensional case. SIAM Journal on Control and Optimization 36(3), 852894.Google Scholar
Gad-el-Hak, M. (2000). Flow Control: Passive, Active, and Reactive Flow Management. Cambridge University Press.Google Scholar
Gad-el-Hak, M., Pollard, A. & Bonnet, J.P. (eds) (1998). Flow Control: Fundamentals and Practices. Springer.Google Scholar
Gaster, M. (1962). A note on the relation between temporally-growing and spatially-growing disturbances in hydrodynamic stability. J. Fluid Mech. 14, 222224.Google Scholar
Gaster, M. (1965a). The role of spatially growing waves in the theory of hydrodynamic stability. Prog. Aeron. Sci. 6, 251270.Google Scholar
Gaster, M. (1965b). On the generation of spatially growing waves in a boundary layer. J. Fluid Mech. 22, 433441.Google Scholar
Gaster, M. (1965c). A simple device for preventing turbulent contamination on swept leading edges. J. R. Aero. Soc. 69, 788789.Google Scholar
Gaster, M. (1968). Growth of disturbances in both space and time. Phys. Fluids 11(4), 723727.Google Scholar
Gaster, M. (1974). On the effects of boundary-layer growth on flow stability. J. Fluid Mech. 66, 465480.Google Scholar
Gaster, M. (1983). The development of a two-dimensional wavepacket in a growing boundary layer. Proc. R. Soc. London Ser. A. 384, 317332.Google Scholar
Gaster, M. (1988). Is the dolphin a red herring? In Turbulence Management and Relam-inarisation, Liepmann, H.W. and Narasimha, R. (eds). Bangalore: IUTAM, 285– 304.Google Scholar
Gaster, M. & Davey, A. (1968). The development of three dimensional wave packets in unbounded parallel flows. J. Fluid Mech. 32, 801808.Google Scholar
Gaster, M. & Grant, I. (1975). An experimental investigation of the formation and development of a wave packet in a laminar boundary layer. Proc. R. Soc. London Ser. A 347, 253269.Google Scholar
Gear, C.W. (1978). Applications and Algorithms in Science and Engineering. Science Research Associates, Inc.Google Scholar
Germano, M., Piomelli, U., Moin, P. & Cabot, W.H. (1991). A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3, 17601765.Google Scholar
Girard, J.J. (1988). Study of the stability of compressible Couette flow. PhD Thesis, Washington State University.Google Scholar
Glatzel, W. (1988). Sonic instability in supersonic shear flows. Mon. Not. R. Astron. Soc. 231, 795821.Google Scholar
Glatzel, W. (1989). The linear stability of viscous compressible plane Couette flow. J. Fluid Mech. 202, 515541.Google Scholar
Gold, H. (1963). Stability of laminar wakes. PhD Thesis, California Institute of Technology.Google Scholar
Goldstein, S. (1930). Concerning some solutions of the boundary layer equations in hydrodynamics. Proc. Camb. Phil. Soc. 26, 130.Google Scholar
Goldstein, M.E. (1983). The evolution of Tollmien–Schlichting waves near a leading edge. J. Fluid Mech. 127, 5981.Google Scholar
Goldstein, M.E. (1985). Scattering of acoustic waves into Tollmien–Schlichting waves by small streamwise variations in surface geometry. J. Fluid Mech. 154, 509529.Google Scholar
Goldstein, M.E. (1987). Generation of Tollmien–Schlichting waves on interactive marginally separated flows. J. Fluid Mech. 181, 485518.Google Scholar
Goldstein, M.E. & Wundrow, D.W. (1990). Spatial evolution of nonlinear acoustic mode instabilities on hypersonic boundary layers. J. Fluid Mech. 219, 585– 607.Google Scholar
Görtler, H. (1940a). Über eine dreidimensionale Instabilität laminarer Grenzschichten an konkaven Wänden, Nachr. Akad. Wiss, Göttingen Math-Physik Kl. IIa, Math-Physik-Chem. Abt. 2, 126 (Translation: NACA Tech. Memo. 1375, June 1954).Google Scholar
Görtler, H. (1940b). Über den Einfluss der Wandkrümmung auf die Enstehung der Turbulenz. Z. Angew. Math. Mech. 20, 138147.Google Scholar
Görtler, H. & Witting, H. (1958). Theorie der sekundaren Instabilität der laminaren Grenzschichten. Int. Union Theor. Appl. Mech., Grenzschichtforschung, Freiburg, 110126.Google Scholar
Gottlieb, D. & Orszag, S.A. (1986). Numerical Analysis of Spectral Methods: Theory and Applications. SIAM.Google Scholar
Granville, P.S. (1953). The calculation of the viscous drag of bodies of revolution. David Taylor Model Basin Rep. 849.Google Scholar
Greenough, J., Riley, J., Soestrisno, M. & Eberhardt, D. (1989). The effect of walls on a compressible mixing layer. AIAA Paper 89–0372.Google Scholar
Greenspan, H.D. (1969). The Theory of Rotating Fluids. Cambridge University Press.Google Scholar
Gregory, N., Stuart, J.T. & Walker, W.S. (1955). On the stability of three-dimensional boundary layers with application to the flow due to a rotating disk. Phil. Trans. R. Soc. London Ser. A 248, 155199.Google Scholar
Gropengiesser, H. (1969). On the stability of free shear layers in compressible flows. Deutsche Luft. und Raumfahrt, FB 69–25 (Translation: NASA TT F-12,786, 1970).Google Scholar
Grosch, C.E. & Salwen, H. (1978). The continuous spectrum of the Orr–Sommerfeld equation. Part 1. The spectrum and the eigenfunctions. J. Fluid Mech. 87, 3354.Google Scholar
Grosch, C.E. & Jackson, T.L. (1991). Inviscid spatial stability of a three dimensional mixing layer. J. Fluid Mech. 231, 3550.Google Scholar
Grosch, C.E., Jackson, T.L., Klein, R., Majda, A. & Papageorgiou, D.T. (1991). Supersonic modes of a compressible mixing layer. Unpublished manuscript.Google Scholar
Grosskreutz, R. (1975). An attempt to control boundary-layer turbulence with non-isotropic compliant walls. Univ. Sci. J. Dar es Salaam 1, 6573.Google Scholar
Guirguis, R.H. (1988). Mixing enhancement in supersonic shear sayers. Part III. Effect of convective Mach number. AIAA Paper 88–0701.Google Scholar
Gunzburger, M. (1995). Flow Control. Springer.Google Scholar
Gustavsson, L.H. (1979). Initial-value problem for boundary layer flows. Phys. Fluids 22(9), 16021605Google Scholar
Gustavsson, L.H. (1991). Energy growth of three dimensional disturbances in plane Poiseuille flow. J. Fluid Mech. 224, 241260.Google Scholar
Gustavsson, L.H. & Hultgren, L.S. (1980). A resonance mechanism in plane Couette flow. J. Fluid Mech. 98, 149159.Google Scholar
Haberman, R. (1987). Elementary Applied Partial Differential Equations, 2nd edition. Prentice-Hall, Inc.Google Scholar
Hagan, G. (1855). Über den einfluss der temperatur auf die bewegung des wassers in rohren. Math. Abh. Akad. Wiss. (aus dem Jahr 1854), 17–98.Google Scholar
Hains, F.D. (1967). Stability of plane Couette–Poiseuille flow. Phys. Fluids 10, 2079– 2080.Google Scholar
Hall, P. & Malik, M.R. (1986). On the instability of a three-dimensional attachment-line boundary layer: Weakly nonlinear theory and a numerical simulation. J. Fluid Mech.163, 257282.Google Scholar
Hall, P. & Smith, F.T. (1991). On strongly nonlinear vortex/wave interactions in boundary layer transition. J. Fluid Mech. 227, 641666.Google Scholar
Hall, P., Malik, M.R. & Poll, D.I.A. (1984). On the stability of an infinite swept attachment line boundary layer. Proc. Roy. Soc. London Ser. A 395, 229245.Google Scholar
Hama, F.R., Williams, D.R. & Fasel, H. (1979). Flow field and energy balance according to the spatial linear stability theory of the Blasius boundary layer. In Laminar-Turbulent Transition, Eppler, E. and Fasel, H. (eds). Stuttgart, Germany: IUTAM, September 1622, 1979, 73–85.Google Scholar
Hämmerlin, G. (1955). Über das Eigenwertproblem der dreidimensionalen Instabilität laminarer Grenzschichten an konkaven Wänden. J. Rat. Mech. Anal. 4, 279321.Google Scholar
Harris, J.E., Iyer, V. & Radwan, S. (1987). Numerical solutions of the compressible 3-D boundary layer equations for aerospace configurations with emphasis on LFC. In Research in Natural Laminar Flow and Laminar Flow Control, Hefner, J.N. & Sabo, F.E. (eds.) March 16–19, 1987. NASA Langley Research Center. NASA CP-2487, 517545.Google Scholar
Haynes, T.S. & Reed, H.L. (1996). Computations in nonlinear saturation of stationary crossflow vortices in a swept-wing boundary layer. AIAA Paper 96–0182.Google Scholar
Hazel, P. (1972). Numerical studies of the stability of inviscid stratified shear flows. J. Fluid Mech. 51, 3961.Google Scholar
Healey, J.J. (1995). On the neutral curve of the flat plate boundary layer: Comparison between experiment, Orr–Sommerfeld theory and asymptotic theory. J. Fluid Mech. 288, 5973.Google Scholar
Hefner, J.N. & Bushnell, D.M. (1980). Status of linear boundary-layer stability theory and the e N method, with emphasis on swept-wing applications. NASA TP 1645.Google Scholar
Heisenberg, W. (1924). Uber Stabilität und Turbulenz von Flussigkeitsstromen. Ann. Physik 74, 577627. (Translation: On stability and turbulence of fluid flows. NACA TM-1291, 1951.)CrossRefGoogle Scholar
Helmholtz, H. (1868). Über discontinuirliche flüssigkeits-bewegungen. Akad. Wiss., Berlin, Monatsber. 23, 215228. (Translated by F. Guthrie: On discontinuous movements of fluids. Phil. Mag. 36(4), 337–346, 1868.)Google Scholar
Herbert, Th. (1983). Secondary instability of plane channel flow to subharmonic three-dimensional disturbances. Phys. Fluids 26(4), 871874.Google Scholar
Herbert, Th. (1984). Secondary instability of shear flows. AGARD-R-709.Google Scholar
Herbert, Th. (1988). Secondary instability of boundary layers. Ann. Rev. Fluid Mech. 20, 487526.Google Scholar
Herbert, Th. (1991). Boundary-layer transition analysis and prediction revisited. AIAA Paper 91–0737.Google Scholar
Herbert, Th. (1997). Parabolized stability equations. Ann. Rev. Fluid Mech. 29, 245– 283.Google Scholar
Herbert, Th., Bertolotti, F.P. & Santos, G.R. (1987). Flóquet analysis of secondary instability in shear flows. In Stability of Time Dependent and Spatially Varying Flows, Dwoyer, D.L. & Hussaini, M.Y. (eds). Springer, 4357.Google Scholar
Herron, I.H. (1987). The Orr–Sommerfeld equation on infinite intervals. SIAM Review 29(4), 597620.Google Scholar
Hiemenz, K. (1911). Die grenzschicht an einem in den gleichförmigen flüssigkeitsstrom eingetauchten geraden kreiszylinder. Thesis, Göttingen, Dingl. Polytechn. J. 326, 321.Google Scholar
Hill, D.C. (1995). Adjoint systems and their role in the receptivity problem for boundary layers. J. Fluid Mech. 292, 183204.Google Scholar
Hocking, L.M. (1975). Non-linear instability of the asymptotic suction velocity profile. Quart. J. Mech. Appl. Math. 28, 341353.Google Scholar
Høiland, E. (1953). On two-dimensional perturbations of linear flow. Geofysiske Publikasjoner, 18, 112Google Scholar
Holmes, B.J., Obara, C.J., Gregorek, G.M., Hoffman, M.J. & Freuhler, R.J. (1983). Flight investigation of natural laminar flow on the Bellanca Skyrocket II. SAE Paper 830717.Google Scholar
Hosder, S. & Simpson, R.L. (2001). Unsteady turbulent skin friction and separation location measurements on a maneuvering undersea vehicle. 39th AIAA Aerospace Sciences Meeting & Exhibit, January 8–11, 2001, Reno, NV. AIAA Paper 2001– 1000.Google Scholar
Howard, L.N. (1961). Note on a paper of John W. Miles. J. Fluid Mech. 10, 509512.Google Scholar
Howard, L.N. & Gupta, A.A. (1962). On the hydrodynamic and hydromagnetic stability of swirling flows. J. Fluid Mech. 14, 463476.Google Scholar
Hu, F. Q., Jackson, T.L., Lasseigne, D.G. & Grosch, C.E. (1993). Absolute-convective instabilities and their associated wave packets in a compressible reacting mixing layer. Phys. Fluids A 5(4), 901915.Google Scholar
Huai, X., Joslin, R.D. & Piomelli, U. (1997). Large-eddy simulation of spatial development of transition to turbulence in a two-dimensional boundary layer. Theor. Comput. Fluid Dyn. 9, 149163.Google Scholar
Huai, X., Joslin, R.D. & Piomelli, U. (1999). Large-eddy simulation of boundary-layer transition on a swept wedge. J. Fluid Mech. 381, 357380.Google Scholar
Huerre, P. & Monkewitz, P.A. (1985). Absolute and convective instabilities in free shear layers. J. Fluid Mech. 159, 151168.Google Scholar
Hughes, T.H. & Reid, W.H. (1965a). On the stability of the asymptotic suction boundary layer profile. J. Fluid Mech. 23, 715735.Google Scholar
Hughes, T.H. & Reid, W.H. (1965b). The stability of laminar boundary layers at separation. J. Fluid Mech. 23, 737747.Google Scholar
Hultgren, L.S. & Gustavsson, L.H. (1980). Algebraic growth of disturbances in a laminar boundary layer. Phys. Fluids 24, 10001004.Google Scholar
Hultgren, L.S. & Aggarwal, A.K. (1987). Absolute instability of the Gaussian wake profile. Phys. Fluids 30(11), 33833387.Google Scholar
Itoh, N. (1996). Simple cases of the streamline-curvature instability in three-dimensional boundary layers. J. Fluid Mech. 317, 129154.Google Scholar
Iyer, V. (1990). Computation of three-dimensional compressible boundary layers to fourth-order accuracy on wings and fuselages. NASA CR-4269.Google Scholar
Iyer, V. (1993). Three-dimensional boundary layer program (BL3D) for swept subsonic or supersonic wings with application to laminar flow control. NASA CR-4531.Google Scholar
Iyer, V. (1995). Computer program BL2D for solving two-dimensional and axisymmetric boundary layers. NASA CR-4668.Google Scholar
Jackson, T.L. & Grosch, C.E. (1989). Inviscid spatial stability of a compressible mixing layer. J. Fluid Mech. 208, 609637.Google Scholar
Jackson, T.L. & Grosch, C.E. (1990a). Inviscid spatial stability of a compressible mixing layer. Part 2. The flame sheet model. J. Fluid Mech. 217, 391420.Google Scholar
Jackson, T.L. & Grosch, C.E. (1990b). Absolute/convective instabilities and the convective Mach number in a compressible mixing layer. Phys. Fluids A 2(6), 949954.Google Scholar
Jackson, T.L. & Grosch, C.E. (1990c). On the classification of unstable modes in bounded compressible mixing layers. In Instability and Transition, Hussaini, M.Y. & Voigt, R.G. (eds). Springer, Vol. II, 187198.Google Scholar
Jackson, T.L. & Grosch, C.E. (1991). Inviscid spatial stability of a compressible mixing layer. Part 3. Effect of thermodynamics. J. Fluid Mech. 224, 159175.Google Scholar
Jackson, T.L. & Grosch, C.E. (1994). Structure and stability of a laminar diffusion flame in a compressible, three dimensional mixing layer. Theor. Comput. Fluid Dyn. 6, 89112.Google Scholar
Joseph, L.A., Borgoltz, A. & Devenport, W. (2014). Transition detection for low speed wind tunnel testing using infrared thermography. 30th AIAA Aerodynamic Measurement Technology and Ground Testing Conference, June 16–20, 2014, Atlanta, GA. AIAA Paper 2014–2939.Google Scholar
Joslin, R.D. (1990). The effect of compliant walls on three-dimensional primary and secondary instabilities in boundary layer transition. PhD Thesis, The Pennsylvania State University.Google Scholar
Joslin, R.D. (1995a). Evolution of stationary crossflow vortices in boundary layers on swept wings. AIAA J. 33(7), 12791285.Google Scholar
Joslin, R.D. (1995b). Direct simulation of evolution and control of three-dimensional instabilities in attachment-line boundary layers. J. Fluid Mech. 291, 369392.Google Scholar
Joslin, R.D. (1997). Direct numerical simulation of evolution and control of linear and nonlinear disturbances in three-dimensional attachment-line boundary layers. NASA TP-3623.Google Scholar
Joslin, R.D. (1998). Overview of laminar flow control. NASA TP 1998208705.Google Scholar
Joslin, R.D. & Morris, P.J. (1992). Effect of compliant walls on secondary instabilities in boundary-layer transition. AIAA J. 30(2), 332339.Google Scholar
Joslin, R.D. & Streett, C.L. (1994). The role of stationary crossflow vortices in boundary-Layer transition on swept wings. Phys. Fluids 6(10), 34423453.Google Scholar
Joslin, R.D., Morris, P.J. & Carpenter, P.W. (1991). The role of three-dimensional instabilities in compliant wall boundary-layer transition. AIAA J. 29(10), 16031610.Google Scholar
Joslin, R.D., Streett, C.L. & Chang, C.L. (1992). Validation of three-dimensional incompressible spatial direct numerical simulation code: A comparison with linear stability and parabolic stability equation theories for boundary-layer transition on a flat plate. NASA TP-3205, July.Google Scholar
Joslin, R.D., Streett, C.L. & Chang, C.L. (1993). Spatial direct numerical simulation of boundary-layer transition mechanisms: Validation of PSE theory. Theor. Comput. Fluid Dyn. 4(6), 271288.Google Scholar
Joslin, R.D., Nicolaides, R.A., Erlebacher, G., Hussaini, M.Y. & Gunzburger, M. (1995). Active control of boundary-layer instabilities: Use of sensors and spectral controller. AIAA J. 33(8), 15211523.Google Scholar
Joslin, R.D., Erlebacher, G. & Hussaini, M.Y. (1996). Active control of instabilities in laminar boundary-layer Flow. An overview. J. Fluids Eng. 118, 494497.Google Scholar
Joslin, R.D., Gunzburger, M.D., Nicolaides, R.A., Erlebacher, G. & Hussaini, M.Y. (1997). Self-contained, automated methodology for optimal flow control. AIAA J. 35(5), 816824.Google Scholar
Joslin, R.D., Kunz, R.F. & Stinebring, D.R. (2000). Flow control technology readiness: Aerodynamic versus hydrodynamic. 18th Applied Aerodynamics Conference & Exhibit, August 14–17, 2000, Denver, CO. AIAA Paper 2000–4412.Google Scholar
Kachanov, Y.S. (1994). Physical mechanisms of laminar boundary layer transition. Ann. Rev. Fluid Mech. 26, 411482.Google Scholar
Kachanov, Y.S. & Levchenko, V.Y. (1984). The resonant interaction of disturbances at laminar–turbulent transition in a boundary layer. J. Fluid Mech. 138, 209247.Google Scholar
Kachanov, Y.S. & Tararykin, O.I. (1990). The experimental investigation of stability and receptivity of a swept wing flow. In IUTAM Symposium on Laminar– Turbulent Transition, Arnal, D. & Michel, R. (eds). Springer, 499509.Google Scholar
Kachanov, Y.S., Kozlov, V.V. & Levchenko, V.Y. (1979). Experiments on nonlinear interaction of waves in boundary layers. In IUTAM Symposium on Laminar– Turbulent Transition, Arnal, D. & Michel, R. (eds). Springer, 135152.Google Scholar
Kaplan, R.E. (1964). The stability of laminar incompressible boundary layers in the presence of compliant boundaries. Massachusetts Institute of Technology, Aero-Elastic and Structures Research Laboratory, ASRL-TR 116–1.Google Scholar
Karniadakis, G.E. & Triantafyllou, G.S. (1989). Frequency selection and asymptotic states in laminar wakes. J. Fluid Mech. 199, 441469.Google Scholar
Kelvin, Lord (1871). Hydrokinetic solutions and observations. Phil. Mag. 4(42), 362– 377. (Reprinted in Mathematical and Physical Papers, 4, 152–165, 1910.)Google Scholar
Kelvin, Lord (1880). On a disturbance in Lord Rayleigh’s solution for waves in a plane vortex stratum. Nature 23, 4546. (Reprinted in Mathematical and Physical Papers 4, 186–187, 1910.)Google Scholar
Kelvin, Lord (1887a). Rectilinear motion of a viscous fluid between parallel plates. In Mathematical and Physical Papers 4, 321–330, 1910.Google Scholar
Kelvin, Lord (1887b). Broad river flowing down an inclined plane bed. In Mathematical and Physical Papers 4, 330–337, 1910.Google Scholar
Kendall, J.M. (1966). Supersonic boundary layer stability experiments. Bull. Am. Phys. Soc.Google Scholar
Kennedy, C.A. & Chen, J.H. (1998). Mean flow effects on the linear stability of compressible planar jets. Phys. Fluids 10(3), 615626.Google Scholar
Kerschen, E.J. (1987). Boundary layer receptivity and laminar flow airfoil design. In Research in Natural Laminar Flow and Laminar-Flow Control, Hefner, J.N. & Sabo, F.E. (eds). March 16–19, 1987. NASA Langley Research Center. NASA CP-2487, 273–287.Google Scholar
Kerschen, E.J. (1989). Boundary-layer receptivity. AIAA 12th Aeroacoustics Conference, April 10–12, 1989, San Antonio, TX. AIAA Paper 89–1109.Google Scholar
Khorrami, M.R. (1991). On the viscous modes of instability of a trailing line vortex. J. Fluid Mech. 255, 197212.Google Scholar
King, R.A. & Breuer, K.S. (2001). Acoustic receptivity and evolution of two-dimensional and oblique disturbances in a Blasius boundary layer. J. Fluid Mech. 432, 6990.Google Scholar
Kirchgässner, K. (1961). Die instabilität der Strömung zwischen zwei rotierenden Zylindern gegenuber Taylor–Wirbeln fur beliebige Spaltbreiten. Z. Angew. Math. Phys. 12, 1430.Google Scholar
Klebanoff, P.S., Tidstrom, K.D. & Sargent, L.M. (1962). The three-dimensional nature of boundary layer instability. J. Fluid Mech. 12, 134.Google Scholar
Kleiser, L. & Zang, T.A. (1991). Numerical simulation of transition in wall bounded shear flows. Ann. Rev. Fluid Mech. 23, 495537.Google Scholar
Klemp, J.B. & Acrivos, A. (1972). A note on the laminar mixing of two uniform parallel semi-infinite streams. J. Fluid Mech. 55, 2530.Google Scholar
Kloker, M. & Fasel, H. (1990). Numerical simulation of two- and three-dimensional instability waves in two-dimensional boundary layers with streamwise pressure gradients. In IUTAM Symposium on Laminar–Turbulent Transition, Arnal, D. & Michel, R. (eds). Springer, 681686.Google Scholar
Kobayashi, R., Kohama, Y. & Kurosawa, M. (1983). Boundary-layer transition on a rotating cone in axial flow, J. Fluid Mech. 127, 341–52.Google Scholar
Koch, W. (1986). Direct resonances in Orr–Sommerfeld problems. Acta Mech. 58, 1129.Google Scholar
Kohama, Y., Saric, W.S. & Hoos, J.A. (1991). A high frequency, secondary instability of crossflow vortices that leads to transition. In Royal Aeronautical Society Conference on Boundary Layer Transition and Control, Cambridge University.Google Scholar
Koochesfahani, M.M. & Frieler, C.E. (1989). Instability of nonuniform density free shear layers with a wake profile. AIAA J. 27(12), 17351740.Google Scholar
Kozusko, F., Lasseigne, D.G., Grosch, C.E. & Jackson, T.L. (1996). The stability of compressible mixing layers in binary gases. Phys. Fluids 8(7), 19541963.Google Scholar
Kramer, M.O. (1957). Boundary-layer stabilization by distributed damping. J. Aero. Sci. 24(6), 459460.Google Scholar
Kramer, M.O. (1965). Hydrodynamics of the dolphin. Advances in Hydroscience 2, 111130.Google Scholar
Kuo, A.L. (1949). Dynamic instability of two-dimensional nondivergent flow in a barotropic atmosphere. J. Meteorology 6, 105122.Google Scholar
Kuramoto, Y. (1980). Instability and turbulence of wave fronts in reaction-diffusion systems. Progr. Theor. Phys. 63(6), 18851903.Google Scholar
Ladd, D.M. (1990). Control of natural laminar instability waves on an axisymmetric body. AIAA J. 28(2), 367369.Google Scholar
Ladd, D.M. & Hendricks, E.W. (1988). Active control of 2-D instability waves on an axisymmetric body. Exp. Fluids 6, 6970.Google Scholar
Lamb, H. (1945). Hydrodynamics. Cambridge University Press. Reprinted by Dover.Google Scholar
Landahl, M.T. (1980). A note on an algebraic instability of inviscid parallel shear flows. J. Fluid Mech. 98, 243251.Google Scholar
Landau, L.D. (1944). On the problem of turbulence. Akademiya Nauk SSSR. Doklady 44, 311314.Google Scholar
Lasseigne, D.G., Joslin, R.D., Jackson, T.L. & Criminale, W.O. (1999). The transient period for boundary layer disturbances. J. Fluid Mech. 381, 89119.Google Scholar
Laufer, J. & Vrebalovich, T. (1957). Experiments on the instability of a supersonic boundary layer. 9th Int. Cong. Appl. Mech. 4, 121131.Google Scholar
Laufer, J. & Vrebalovich, T. (1958). Stability of a supersonic laminar boundary layer on a flat plate. California Institute of Technology, Jet Propulsion Laboratory Rep. 20–116.Google Scholar
Laufer, J. & Vrebalovich, T. (1960). Stability and transition of a supersonic laminar boundary layer on an insulated flat plate. J. Fluid Mech. 9, 257299.Google Scholar
Lecointe, Y. & Piquet, J. (1984). On the use of several compact methods for the study of unsteady incompressible viscous flow round a circular cylinder. Computers & Fluids 12(4), 255280.Google Scholar
Leehey, P. & Shapiro, P.J. (1980). Leading edge effect in laminar boundary layer excitation by sound. In IUTAM Symposium on Laminar–Turbulent Transition, Arnal, D. & Michel, R. (eds). Springer, 321331.Google Scholar
Lees, L. (1947). The stability of the laminar boundary layer in a compressible fluid. NACA TR-876.Google Scholar
Lees, L. & Lin, C.C. (1946). Investigation of the stability of the laminar boundary layer in a compressible fluid. NACA TN-1115.Google Scholar
Lees, L. & Reshotko, E. (1962). Stability of the compressible boundary layer. J. Fluid Mech. 12, 555590.Google Scholar
Lees, L. & Gold, H. (1964). Stability of laminar boundary layers and wakes at hypersonic speeds. I. Stability of laminar wakes. In Fundamental Phenomena in Hypersonic Flow, Hall, J.G. (ed.). Cornell University Press, 310339.Google Scholar
Lele, S.K. (1989). Direct numerical simulation of compressible free shear layer flows. AIAA Paper 89–0374.Google Scholar
Lele, S.K. (1992). Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103, 1642.Google Scholar
Lessen, M. (1950). On stability of free laminar boundary layer between parallel streams. NACA R-979.Google Scholar
Lessen, M., Fox, J.A. & Zien, H.M. (1965). On the inviscid stability of the laminar mixing of two parallel streams of a compressible fluid. J. Fluid Mech. 23, 355367.Google Scholar
Lessen, M., Fox, J.A. & Zien, H.M. (1966). Stability of the laminar mixing of two parallel streams with respect to supersonic disturbances. J. Fluid Mech. 25, 737742.Google Scholar
Lessen, M., Singh, P.J. & Paillet, F. (1974). The stability of a trailing line vortex. Part 1. Inviscid theory. J. Fluid Mech. 63, 753763.Google Scholar
Lessen, M. & Paillet, F. (1974). The stability of a trailing line vortex. Part 2. Viscous theory. J. Fluid Mech. 65, 769779.Google Scholar
Liepmann, H.W. (1943). Investigation of laminar boundary layer stability and transition on curved boundaries. NACA Advisory Conf. Rep. 31730.Google Scholar
Liepmann, H.W. & Nosenchuck, D.M. (1982a). Active control of laminar–turbulent transition. J. Fluid Mech. 118, 201204.Google Scholar
Liepmann, H.W. & Nosenchuck, D.M. (1982b). Control of laminar instability waves using a new technique. J. Fluid Mech. 118, 187200.Google Scholar
Ligrani, P.M., Longest, J.E., Kendall, M.R. & Fields, W.A. (1994). Splitting, merging, and spanwise wavenumber selection of Dean vortex pairs. Exp. Fluids 18(1/2), 4158.Google Scholar
Lilly, D.K. (1966). On the instability of Ekman boundary flow. J. Atmos. Sci. 23, 481– 494.Google Scholar
Lin, C.C. (1944). On the stability of two-dimensional parallel flows. National Academy of Science, US 30, 316323.Google Scholar
Lin, C.C. (1945). On the stability of two-dimensional parallel flows. Parts I, II, III. Quart. Appl. Math. 3, 117142, 218–234, 277–301.Google Scholar
Lin, C.C. (1954). Hydrodynamic Stability. In 13th Symp. Appl. Math. Amer. Math. Soc., 1–18Google Scholar
Lin, C.C. (1955). The Theory of Hydrodynamic Stability. Cambridge University Press.Google Scholar
Lin, C.C. (1961). Some mathematical problems in the theory of the stability of parallel flows. J. Fluid Mech. 10, 430438.Google Scholar
Lin, R.S. & Malik, M.R. (1994). The stability of incompressible attachment-line boundary layers: A 2D eigenvalue approach. AIAA Paper 94–2372.Google Scholar
Lin, R.S. & Malik, M.R. (1995). Stability and transition in compressible attachment line boundary layer flow. Aerotech’95, Sept 18–21, 1995. Los Angeles, CA. SAE Paper 952041.Google Scholar
Lin, R.S. & Malik, M.R. (1996). On the stability of attachment line boundary layers. Part 1. The incompressible swept Hiemenz flow. J. Fluid Mech. 311, 239– 255.Google Scholar
Lingwood, R.J. (1995). Absolute instability of the boundary layer on a rotating-disk boundary layer flow. J. Fluid Mech. 299, 1733.Google Scholar
Lingwood, R.J. (1996). An experimental study of absolute instability of the rotating-disk boundary-layer flow. J. Fluid Mech. 314, 373405.Google Scholar
Lingwood, R.J. (1997). On the impulse response for swept boundary-layer flows. J. Fluid Mech. 344, 317334.Google Scholar
Liou, W.W. & Shih, T.H. (1997). Bypass transitional flow calculations using a Navier– Stokes solver and two equation models. AIAA Paper 97–2738.Google Scholar
Liu, C. (1998). Multigrid methods for steady and time-dependent flow. In Computational Fluid Dynamics Review, Hafez, M. & Oshima, K. (eds). World Scientific Publishers Vol. 1, 512535.Google Scholar
Liu, C. & Liu, Z. (1997). Advances in DNS/LES. First AFOSR International Conference on DNS/LES, August 4–8, 1997. Greyden Press.Google Scholar
Lock, R.C. (1951). The velocity distribution in the laminar boundary layer between parallel streams. Quart. J. Mech. Appl. Math. 4, 4262.Google Scholar
Lu, G. & Lele, S.K. (1993). Inviscid instability of a skewed compressible mixing layer. J. Fluid Mech. 249, 441463.Google Scholar
Lu, G. & Lele, S.K. (1994). On the density ratio effect on the growth rate of a compressible mixing layer. Phys. Fluids 6(2), 10731075.Google Scholar
Luther, H.A. (1966). Further explicit fifth-order Runge–Kutta formulas. SIAM Review 8(3), 374380.Google Scholar
Lynch, R.E., Rice, J.R. & Thomas, D.H. (1964). Direct solution of partial difference equations by tensor product methods. Num. Math. 6, 185199.Google Scholar
Macaraeg, M.G. (1990). Bounded free shear flows: linear and nonlinear growth. In Instability and Transition, Hussaini, M.Y. & Voigt, R.G. (eds). Springer, Vol. II, 177186.Google Scholar
Macaraeg, M.G. (1991). Investigation of supersonic modes and three-dimensionality in bounded, free shear flows. Comput. Phys. Commun. 65, 201208.Google Scholar
Macaraeg, M.G., Streett, C.L. & Hussaini, M.Y. (1988). A spectral collocation solution to the compressible stability eigenvalue problem. NASA TP-2858.Google Scholar
Macaraeg, M.G. & Streett, C.L. (1989). New instability modes for bounded, free shear flows. Phys. Fluids A 1(8), 13051307.Google Scholar
Macaraeg, M.G. & Streett, C.L. (1991). Linear stability of high-speed mixing layers. Appl. Numerical Math. 7, 93127.Google Scholar
Mack, L.M. (1960). Numerical calculation of the stability of the compressible, laminar boundary layer. California Institute of Technology, Jet Propulsion Laboratory Rep. 20–122.Google Scholar
Mack, L.M. (1965a). Computation of the stability of the laminar compressible boundary layer. In Methods in Computational Physics, Alder, B., Fernbach, S. & Rotenberg, M. (eds). Academic Press, Vol. 4, 247299.Google Scholar
Mack, L.M. (1965b). Stability of the compressible laminar boundary layer according to a direct numerical solution. Recent Developments In Boundary Layer Research, AGARDograph 97, Part 1, 329362.Google Scholar
Mack, L.M. (1966). Viscous and inviscid amplification rates of two and three-dimensional disturbances in a compressible boundary layer. Space Prog. Summary, 42, IV, November.Google Scholar
Mack, L.M. (1975). Linear stability theory and the problem of supersonic boundary layer transition. AIAA J. 13(3), 278289.Google Scholar
Mack, L.M. (1976). A numerical study of the temporal eigenvalue spectrum of the Blasius boundary layer. J. Fluid Mech. 73(3), 497520.Google Scholar
Mack, L.M. (1984). Boundary layer linear stability theory. Special Course on Stability and Transition of Laminar Flow, AGARD-R-709.Google Scholar
Mack, L.M. (1987). Review of compressible stability theory. Stability of Time Dependent and Spatially Varying Flows, Dwoyer, D.L. & Hussaini, M.Y. (eds). Springer, 164187.Google Scholar
Mack, L.M. (1988). Stability of three-dimensional boundary layers on swept wings at transonic speeds. In Transsonicum III, IUTAM, Zierep, J. & Oertel, H. (eds). Springer.Google Scholar
Mack, L.M. (1990). On the inviscid acoustic mode instability of supersonic shear flows. Part I. Two dimensional waves. Theor. Comput. Fluid Dyn. 2, 97123.Google Scholar
Maddalon, D.V., Collier, F.S. Jr., Montoya, L.C. & Putnam, R.J. (1990). Transition flight experiments on a swept wing with suction. In IUTAM Symposium on Laminar–Turbulent Transition, Arnal, D. & Michel, R. (eds). Springer, 5362.Google Scholar
Malik, M.R. (1982). COSAL-A black box compressible stability analysis code for transition prediction in three-dimensional boundary layers. NASA CR-165925.Google Scholar
Malik, M.R. (1986). The neutral curve for stationary disturbances in rotating disk flow. J. Fluid Mech. 164, 275287.Google Scholar
Malik, M.R. (1987). Stability theory applications to laminar-flow control. NASA CP-2487, 219–244.Google Scholar
Malik, M.R. (1990). Numerical methods for hypersonic boundary layer stability. J. Comp. Phys. 86, 376413.Google Scholar
Malik, M.R., Wilkinson, S.P. & Orszag, S.A. (1981). Instability and transition in rotating disk flow. AIAA J. 19, 11311138.Google Scholar
Mattingly, G.E. & Criminale, W.O. (1972). The stability of an incompressible two-dimensional wake. J. Fluid Mech. 51(2), 233272.Google Scholar
Mayer, E.W. & Powell, K.G. (1992). Instabilities of a trailing vortex. J. Fluid Mech. 245, 91114.Google Scholar
Meister, B. (1962). Das Taylor-Deansche Stabilitätsproblem für- beliebige Spaltbreiten. Z. Angew. Math. Phys. 13, 8391.Google Scholar
Meksyn, D. (1950). Stability of viscous flow over concave cylindrical surfaces. Proc. R. Soc. London Ser. A 203, 253265.Google Scholar
Meksyn, D. & Stuart, J.T. (1951). Stability of viscous motion between parallel flows for finite disturbances. Proc. R. Soc. London Ser. A 208, 517526.Google Scholar
Michalke, A. (1964). On the inviscid instability of the hyperbolic-tangent velocity profile. J. Fluid Mech. 19, 543556.Google Scholar
Michalke, A. (1965). On spatially growing disturbances in an inviscid shear layer. J. Fluid Mech. 23, 521544.Google Scholar
Miklavčič, M. (1983). Eigenvalues of the Orr–Sommerfeld equation in an unbounded domain. Arch. Rational Mech. Anal. 83, 221228.Google Scholar
Miklavčič, M. & Williams, M. (1982). Stability of mean flows over an infinite flat plate. Arch. Rational Mech. Anal. 80, 5769.Google Scholar
Miles, J.W. (1958). On the disturbed motion of a plane vortex sheet. J. Fluid Mech. 4, 538552.Google Scholar
Milling, R.W. (1981). Tollmien–Schlichting wave cancellation. Phys. Fluids 24(5), 979981.Google Scholar
Mittal, R. & Balachandar, S. (1995). Effect of three-dimensionality on the lift and drag of nominally two-dimensional cylinders. Phys. Fluids 7(8), 18411865.Google Scholar
Monkewitz, P.A. & Huerre, P. (1982). Influence of the velocity ratio on the spatial instability of mixing layers. Phys. Fluids 25(7), 11371143.Google Scholar
Morkovin, M.V. (1969). On the many faces of transition. In Viscous Drag Reduction, Wells, C.S. (ed). Plenum Press, 131.Google Scholar
Morkovin, M.V. (1985). Bypass transition to turbulence and research desiderata. Transition in Turbines, NASA Conference Publication 2386, 161–204 https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19850023129.pdfGoogle Scholar
Morris, P.J. & Giridharan, M.G. (1991). The effect of walls on instability waves in supersonic shear layers. Phys. Fluids A 3(2), 356358.Google Scholar
Mukunda, H.S., Sekar, B., Carpenter, M., Drummond, J.P. & Kumar, A. (1992). Direct simulation of high speed mixing layers. NASA TP-3186.Google Scholar
Müller, B. & Bippes, H. (1988). Experimental study of instability modes in a three-dimensional boundary layer. AGARD-CP-438.Google Scholar
Murdock, J.W. (1977). A numerical study of nonlinear effects on boundary-layer stability. AIAA J. 15, 11671173.Google Scholar
Nayfeh, A. H (1980). Stability of three-dimensional boundary layers. AIAA J. 18, 406– 416.Google Scholar
Nayfeh, A.H. (1987). Nonlinear stability of boundary layers, AIAA 25th Aerospace Sciences Meeting, January 12–15, 1987, Reno Nevada. AIAA Paper 87–0044.Google Scholar
Nayfeh, A.H. & Bozatli, A.N. (1979). Nonlinear wave interactions in boundary layers. AIAA Paper 79–1496.Google Scholar
Nayfeh, A.H. & Bozatli, A.N. (1980). Nonlinear wave interactions of two waves in boundary layers flows. Phys. Fluids 23(3), 448459.Google Scholar
Ng, B.S. & Reid, W.H. (1979). An initial value method for eigenvalue problems using compound matrices. J. Comput. Phys. 30(1), 125136.Google Scholar
Ng, B.S. & Reid, W.H. (1980). On the numerical solution of the Orr–Sommerfeld problem: Asymptotic initial conditions for shooting methods. J. Comput. Phys. 38, 275293.Google Scholar
Obremski, H.T., Morkovin, M.V. & Landahl, M.T. (1969). A portfolio of stability characteristics of incompressible boundary layers. AGARDograph 134, NATO, Paris.Google Scholar
Orr, W.McF. (1907a). Lord Kelvin’s investigations, especially the case of a stream which is shearing uniformly. Roy. Irish Academy A27, 69138.Google Scholar
Orr, W.McF. (1907b). The stability or instability of the steady motions of a perfect liquid and of a viscous liquid. Roy. Irish Academy A27, 968.Google Scholar
Orszag, S.A. (1971). Accurate solution of the Orr–Sommerfeld stability equation. J. Fluid Mech. 50, 689703.Google Scholar
Orszag, S.A. & Patera, A.T. (1980). Subcritical transition to turbulence in plane channel flows. Phys. Rev. Let., 45, 989993.Google Scholar
Orszag, S.A. & Patera, A.T. (1981). Subcritical transition to turbulence in plane shear flows. In Transition and Turbulence, Meyer, R.E. (ed). Academic Press, 127146.Google Scholar
Pal, A., Bower, W.W. & Meyer, G.H. (1991). Numerical simulations of multi-frequency instability-wave growth and suppression in the Blasius boundary layer. Phys. Fluids A3(2), 328340.Google Scholar
Papageorgiou, D.T. (1990a). Linear instability of the supersonic wake behind a flat plate aligned with a uniform stream. Theoret. Comput. Fluid Dyn. 1, 327348.Google Scholar
Papageorgiou, D.T. (1990b). The stability of two-dimensional wakes and shear layers at high Mach numbers. ICASE Rep. 90–39.Google Scholar
Papageorgiou, D.T. (1990c). Accurate calculation and instability of supersonic wake flows. In Instability and Transition, Hussaini, M.Y. & Voigt, R.G. (eds). Springer, Volume II, 216229.Google Scholar
Papageorgiou, D.T. & Smith, F.T. (1988). Nonlinear instability of the wake behind a flat plate placed parallel to a uniform stream. Proc. R. Soc. London Ser. A 419, 128.Google Scholar
Papageorgiou, D.T. & Smith, F.T. (1989). Linear instability of the wake behind a flat plate placed parallel to a uniform stream. J. Fluid Mech. 208, 6789.Google Scholar
Papamoschou, D. & Roshko, A. (1986). Observations of supersonic free-shear layers. AIAA Paper 86–0162.Google Scholar
Papamoschou, D. & Roshko, A. (1988). The compressible turbulent shear layer: an experimental study. J. Fluid Mech. 197, 453477.Google Scholar
Papas, P., Monkewitz, P.A. & Tomboulides, A.G. (1999). New instability modes of a diffusion flame near extinction. Phys. Fluids 11(10), 28182820.Google Scholar
Pavithran, S. & Redekopp, L.G. (1989). The absolute-convective transition in subsonic mixing layers. Phys. Fluids A 1(10), 17361739.Google Scholar
Peerhossaini, H. (1987). L’Instabilité d’une couche limité sur une paroi concave (les tourbilons de Görtler). Thèse de Doctorat, Univ. Pierre et Marie Curie.Google Scholar
Peroomian, O. & Kelly, R.E. (1994). Absolute and convective instabilities in compressible confined mixing layers. Phys. Fluids 6(9), 31923194.Google Scholar
Pfenninger, W. (1965). Flow phenomena at the leading edge of swept wings. Recent Developments in Boundary Layer Research, AGARDograph 97.Google Scholar
Piomelli, U. & Zang, T.A. (1991). Large-eddy simulation of transitional channel flow. Comput. Phys. Commun. 65, 224230.Google Scholar
Piomelli, U. & Liu, J. (1995). Large-eddy simulation of rotating channel flows using a localized dynamic model. Phys. Fluids 23, 839848.Google Scholar
Piomelli, U., Zang, T.A., Speziale, C.G. & Hussaini, M.Y. (1990). On the large eddy simulation of transitional wall-bounded flows. Phys. Fluids A 2, 257265.Google Scholar
Planche, O.H. & Reynolds, W.C. (1991). Compressibility effect on the supersonic reacting mixing layer. AIAA Paper 91–0739.Google Scholar
Potter, M.C. (1966). Stability of plane Couette-Poiseuille flow. J. Fluid Mech. 24, 609619.Google Scholar
Prandtl, L. (1921–1926). Bemerkungen über die entstehung der turbulenz. Zeitschrift für Angewandte Mathematik und Mechanik 1, 431436; Physik. Z. 23, 1922, 19–23. Discussion after Solberg’s paper, 1924; and with F. Noether, Zeitschrift für Angewandte Mathematik und Mechanik 6, 1926, 339, 428.Google Scholar
Prandtl, L. (1930). Einfluss stabilisierender kräfte auf die turbulenz. Vorträge aus dem Gebiete det Aerodynamik und Verwandter Gebiete, Aachen. Springer, 117.Google Scholar
Prandtl, L. (1935). Aerodynamic Theory, Durand, W.F. (ed). Springer, Vol 3, 178190.Google Scholar
Press, W.H., Teukolsky, S.A., Vetterling, W.T. & Flannery, B.P. (1992). Numerical Recipes in Fortran, 2nd edition. Cambridge University Press.Google Scholar
Pruett, C.D. & Chang, C.L. (1995). Spatial direct numerical simulation of high-speed boundary-layer flows. Part II: Transition on a cone in Mach 8 flow. Theor. & Comput. Fluid Dyn. 7(5), 397424.Google Scholar
Pupator, P. & Saric, W. (1989). Control of random disturbances in a boundary layer. AIAA Paper 89–1007.Google Scholar
Raetz, G.S. (1964). Calculation of precise proper solutions for the resonance theory of transition. I. Theoretical investigations. Contract AF 33–657–11618, Final Rept., Document Rept. ASD-TDR, Northrop Aircraft Inc., Norair Division, Hawthorne, CA.Google Scholar
Ragab, S.A. (1988). Instabilities in the wake mixing-layer region of a splitter plate separating two supersonic streams. AIAA Paper 88–3677.Google Scholar
Ragab, S.A. & Wu, J.L. (1989). Linear instabilities in two dimensional compressible mixing layers. Phys. Fluids A 1(6), 957966.Google Scholar
Rai, M.M. & Moin, P. (1991a). Direct numerical simulation of transition and turbulence in a spatially-evolving boundary layer. AIAA Paper 91–1607.Google Scholar
Rai, M.M. & Moin, P. (1991b). Direct numerical simulation of turbulent flow using finite-difference schemes. J. Comput. Phys. 96, 1553.Google Scholar
Rayleigh, Lord (1879). On the in stability of jets. Proc. London Math. Soc. 10, 413. (Reprinted in Scientific Papers, J.W. Strutt (ed). Cambridge University Press, Vol. 1, 361–371, 1899).Google Scholar
Rayleigh, Lord (1880). On the stability or instability of certain fluid motions. Proc. London Math. Soc. 11, 5770. (Reprinted in Scientific Papers, J.W. Strutt (ed). Cambridge University Press, Vol. 1, 474–487, 1899.)Google Scholar
Rayleigh, Lord (1883). Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proc. London Math. Soc. 14, 170177. (Reprinted in Scientific Papers, J.W. Strutt (ed). Cambridge University Press, Vol. 2, 200–207, 1900.)Google Scholar
Rayleigh, Lord (1887). On the stability or instability of certain fluid motions. Part II. Scientific Papers, Strutt, J.W. (ed). Cambridge University Press, Vol. 3, 1723.Google Scholar
Rayleigh, Lord (1892a). On the question of the stability of the flow of fluids. Phil. Mag. 34, 5970. (Reprinted in Scientific Papers, J.W. Strutt (ed). Cambridge University Press, Vol. 3, 575–584, 1902.)Google Scholar
Rayleigh, Lord (1892b). On the stability of a cylinder of viscous liquid under capillary force. Scientific Papers, Strutt, J.W. (ed). Cambridge University Press, Vol. 3, 2– 23, 1899.Google Scholar
Rayleigh, Lord (1892c). On the instability of cylindrical fluid surfaces. Phil. Mag., 34, 177180. (Reprinted Scientific Papers, J.W. Strutt (ed). Cambridge University Press, Vol. 3, 594–596, 1902.)Google Scholar
Rayleigh, Lord (1894). The Theory of Sound, 2nd edition. Macmillan.Google Scholar
Rayleigh, Lord (1895). On the stability or instability of certain fluid motions. III. Scientific Papers, Strutt, J.W. (ed). Cambridge University Press, Vol. 4, 203209, 1899.Google Scholar
Rayleigh, Lord (1911). Hydrodynamical notes. Phil. Mag. 21, 177195.Google Scholar
Rayleigh, Lord (1913). On the stability of the laminar motion of an inviscid fluid. Scientific Papers, Strutt, J.W. (ed). Cambridge University Press, Vol. 6, 197204.Google Scholar
Rayleigh, Lord (1914). Further remarks on the stability of viscous fluid motion. Phil. Mag. 28, 609619. (Reprinted in Scientific Papers, J.W. Strutt (ed). Cambridge University Press, Vol. 6, 266–275, 1920.)Google Scholar
Rayleigh, Lord (1915). On the stability of the simple shearing motion of a viscous incompressible fluid. Scientific Papers, Strutt, J.W. (ed). Cambridge University Press, Vol. 6, 341349.Google Scholar
Rayleigh, Lord (1916a). On convection currents in a horizontal layer of fluid when the higher temperature is on the other side. Phil. Mag. 32, 529546. (Reprinted in Scientific Papers, J.W. Strutt (ed). Cambridge University Press, Vol. 6, 432–446, 1920.)Google Scholar
Rayleigh, Lord (1916b). On the dynamics of revolving fluids. Proc. Roy. Soc. London Ser. A 93, 148154. (Reprinted in Scientific Papers, J.W. Strutt (ed). Cambridge University Press, Vol. 6, 447–453, 1920.)Google Scholar
Reddy, S.C. & Henningson, D.S. (1993). Energy growth in viscous channel flows. J. Fluid Mech. 252, 209238.Google Scholar
Reed, H.L. & Saric, W.S. (1998). Stability of three-dimensional boundary layers. Ann. Rev. Fluid Mech. 21, 235.Google Scholar
Reibert, M.S., Saric, W.S., Carrillo, R.B. Jr. & Chapman, K.L. (1996). Experiments in nonlinear saturation of stationary crossflow vortices in a swept-wing boundary layer. 34th Aerospace Sciences Meeting & Exhibit, January 15–18, 1996, Reno, NV. AIAA Paper 96–0184.Google Scholar
Reischman, M.M. (1984). A review of compliant coating drag reduction research at ONR. Laminar-Turbulent Boundary Layers 11, 99105.Google Scholar
Reshotko, E. (1960). Stability of the compressible laminar boundary layer. California Institute of Technology, Guggenheim Aeronautical Laboratory, GALCIT Memo. No. 52.Google Scholar
Reshotko, E. (1976). Boundary-layer stability and transition. Ann. Rev. Fluid Mech. 8, 311349.Google Scholar
Reshotko, E. (1984). Environment and receptivity. AGARD-R-709.Google Scholar
Reynolds, O. (1883). An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Phil. Trans. R. Soc. London 34, 8499. (Reprinted in Scientific Papers, J.W. Strutt (ed). Cambridge University Press, Vol. 2, 51–105.)Google Scholar
Reynolds, W.C. & Potter, M.C. (1967). Finite amplitude instability of parallel shear flows. J. Fluid Mech. 27, 465492.Google Scholar
Romanov, V.A. (1973). Stability of plane-parallel Couette flow. Funkcional Anal. i Prolozen 7(2), 6273. (Translation: Functional Anal. & Its Applications 7, 137–146, 1973.)Google Scholar
Rozendaal, R.A. (1986). Natural laminar flow flight experiments on a swept wing business jet: Boundary layer stability analyses. NASA CR-3975.Google Scholar
Salwen, H. & Grosch, C.E. (1981). The continuous spectrum of the Orr–Sommerfeld equation. Part 2. Eigenfunction expansions. J. Fluid Mech. 104, 445465.Google Scholar
Sandham, N.D. & Reynolds, W.C. (1990). Compressible mixing layer: Linear theory and direct simulation. AIAA J. 28(4), 618624.Google Scholar
Saric, W.S. (1994a). Görtler vortices. Ann. Rev. Fluid Mech. 26, 379409.Google Scholar
Saric, W.S. (1994b) Low speed boundary layer transition experiments. In Transition: Experiments, Theory, and Computations, Corke, T.C., Erlebacher, G. & Hussaini, M.Y. (eds). Oxford University Press.Google Scholar
Saric, W.S. (2008). Flight experiments on local and global effects of surface roughness on 2-D and 3-D boundary-layer stability and transition. Final Report AFOSR Grant FA9550–05–1–0044.Google Scholar
Saric, W.S., Hoos, J.A. & Radeztsky, R.H. (1991). Boundary layer receptivity of sound with roughness. In Boundary Layer Stability and Transition to Turbulence, Reda, D.C., Reed, H.L. & Kobayashi, R.K. (eds). ASME FED 114, 1722.Google Scholar
Schlichting, H. (1932). Über die stabilität der Couette-strömung. Ann. Physik (Leipzig) 14, 905936.Google Scholar
Schlichting, H. (1933a). Zur entstehung der turbulenz bei der Plattenströmung, Mathematisch–Physikalische Klasse, Gessellschaft der Wissenschaften, Göttingen, 181–208.Google Scholar
Schlichting, H. (1933b). Berechnung der anfachung kleiner Störungen bei der Plattenströmung. Zeitschrift für Angewandte Mathematik und Mechanik 13(3), 171174.Google Scholar
Schlichting, H. (1933c). Laminar spread of a jet. Zeitschrift für Angewandte Mathematik und Mechanik 13(4), 260263.Google Scholar
Schlichting, H. (1934). Neuere untersuchungen über die turbulenzenstehung. Naturwiss. 22, 376381.Google Scholar
Schlichting, H. (1935). Amplitudenverteilung und Energiebilanz der kleinen Störungen bei der Plattengrenzschicht. Gesellschaft der Wissenschatten. Göttingen. Mathematisch-Naturwissenschattliche Klasse 1, 4778.Google Scholar
Schmid, P.J. & Henningson, D.S. (1992a). Channel flow transition induced by a pair of oblique waves. In Instability, Transition, and Turbulence, Hussaini, M.Y., Kumar, A. & Streett, C.L. (eds). Springer, 356366.Google Scholar
Schmid, P.J. & Henningson, D.S. (1992b). A new mechanism for rapid transition involving a pair of oblique waves. Phys. Fluids A 4(9), 19861989.Google Scholar
Schrauf, G., Bieler, H. & Thiede, P. (1992). Transition prediction – the Deutsche Airbus view. In First European Forum on Laminar Flow Technology, Hamburg, Germany, March 16–18, 1992, 7381.Google Scholar
Schreivogel, P. (2010). Detection of laminar-turbulent transition in a free-flight experiment using thermography and hot-film anemometry. In 21st International Congress of the Aeronautical Sciences, ICAS2010, 1–8.Google Scholar
Schubauer, G.B. & Skramstad, H.K. (1943). Laminar boundary layer oscillations and transition on a flat plate. NACA TR-909.Google Scholar
Schubauer, G.B. & Skramstad, H.K. (1947). Laminar boundary layer oscillations and stability of laminar flow. J. Aeron. Sci. 14(2), 6978.Google Scholar
Schubauer, G.B. & Klebanoff, P.S. (1955). Contributions on the mechanics of boundary-layer transition. NACA TN-3489.Google Scholar
Schubauer, G.B. & Klebanoff, P.S. (1956). Contributions on the mechanics of boundary-layer transition. NACA Rep. 1289.Google Scholar
Shanthini, R. (1989). Degeneracies of the temporal Orr–Sommerfeld eigenmodes in plane Poiseuille flow. J. Fluid Mech. 201, 1334.Google Scholar
Shen, S.F. (1952). On the boundary layer equations in hypersonic flow. J. Aeron. Sci. 19, 500501.Google Scholar
Shin, D.S. & Ferziger, J.H. (1991). Linear stability of the reacting mixing layer. AIAA J. 29(10), 16341642.Google Scholar
Shin, D.S. & Ferziger, J.H. (1993). Linear stability of the confined compressible reacting mixing layer. AIAA J. 31(3), 571577.Google Scholar
Shivamoggi, B.K. (1977). Inviscid theory of stability of parallel compressible flows. J. de Mecanique 16(2), 227255.Google Scholar
Shivamoggi, B.K. (1979). Effects of compressibility upon the stability characteristics of a free shear layer. Z. Angew. Math. Mech. 59, 405415.Google Scholar
Shivamoggi, B.K. & Rollins, D.K. (2001). Linear stability theory of zonal shear flows with a free surface. Geophys. Astrophys. Fluid Dyn. 95(1–2), 3153.Google Scholar
Singer, B.A., Choudhari, M. & Li, F. (1995). Weakly nonparallel and curvature effects on stationary crossflow instability: Comparison of results from multiple scales analysis and parabolized stability theory. NASA CR-198200.Google Scholar
Sivashinsky, G. (1977). Nonlinear analysis of hydrodynamic instability in laminar flames. Part I. Derivation of basic equations. Acta Astronaut. 4, 11171206.Google Scholar
Smagorinsky, J. (1963). General circulation experiments with the primitive equations. I. The basic experiment. Mon. Weather Rev. 91, 99164.Google Scholar
Smith, A.M.O. (1953). Review of research on laminar boundary layer control at the Douglas Aircraft Company El Segundo Division. Douglas Aircraft Co. Rep. No. ES-19475, June.Google Scholar
Smith, A.M.O. (1955). On the growth of Taylor–Görtler vortices along highly concave walls. Quart. Appl. Math. 13, 233262.Google Scholar
Smith, A.M.O. (1956). Transition, pressure gradient, and stability theory. International Congress on Applied Mechanics, Brussels, Belgium, 234244.Google Scholar
Smith, A.M.O. & Gamberoni, N. (1956). Transition, pressure gradient, and stability theory. Douglas Aircraft Company Rep. ES-26388.Google Scholar
Smith, B.A. (1996). Laminar flow data evaluated. Aviation Week & Space Tech., October 7, 1996.Google Scholar
Smith, F.T. & Brown, S.N. (1990). The inviscid instability of a Blasius boundary layer at large values of the Mach number. J. Fluid Mech. 219, 499518.Google Scholar
Smol’yakov, A.V. & Tkachenko, V.M. (1983). The Measurement of Turbulent Fluctuations. An Introduction to Hot-Wire Anemometry and Related Transducers. Springer.Google Scholar
Sommerfeld, A. (1908). Ein beitraz zur hydrodynamischen erklaerung der turbulenten fluessigkeitsbewegungen. In Proc. Fourth Inter. Congr. Mathematicians, Rome, Italy, 116124.Google Scholar
Spalart, P.R. (1989). Direct numerical study of leading-edge contamination. In Fluid Dynamics of Three-Dimensional Turbulent Shear Flows and Transition. AGARD-CP-438, 5.1–5.13.Google Scholar
Spalart, P.R. (1990). Direct numerical study of cross-flow instability. In IUTAM Symposium on Laminar–Turbulent Transition, Arnal, D. & Michel, R. (eds). Springer, 621630.Google Scholar
Spalart, P.R. & Yang, K.S. (1987). Numerical study of ribbon-induced transition in Blasius flow. J. Fluid Mech. 178, 345365.Google Scholar
Spooner, G.F. (1980). Fluctuations in geophysical boundary layers. PhD Dissertation, Department of Oceanography, University of Washington.Google Scholar
Spooner, G.F. & Criminale, W.O. (1982). The evolution of disturbances in an Ekman boundary layer. J. Fluid Mech. 115, 327346.Google Scholar
Squire, H.B. (1933). On the stability for three-dimensional disturbances of viscous fluid flow between parallel walls. Proc. R. Soc. London Ser. A. 142, 621628.Google Scholar
Srokowski, A.J. & Orszag, S.A. (1977). Mass flow requirements for LFC wing design. AIAA Paper 77–1222.Google Scholar
Streett, C.L. & Macaraeg, M.G. (1989). Spectral multi-domain for large-scale fluid dynamics simulations. Appl. Num. Math. 6, 123140.Google Scholar
Streett, C.L. & Hussaini, M.Y. (1991). A numerical simulation of the appearance of chaos in finite-length Taylor–Couette flow. Appl. Num. Math. 7, 4171.Google Scholar
Stuart, J.T. (1960). On the non-linear mechanics of wave disturbances in stable and unstable parallel flows. Part 1. J. Fluid Mech. 9, 353370.Google Scholar
Swearingen, J.D. & Blackwelder, R.F. (1986). Spacing of streamwise vortices on concave walls. AIAA J. 24, 17061709.Google Scholar
Swearingen, J.D. & Blackwelder, R.F. (1987). The growth and breakdown of streamwise vortices in the presence of a wall. J. Fluid Mech. 182, 255290.Google Scholar
Synge, J.L. (1938). Hydrodynamic stability. Semicentennial Publ. Amer. Math. Soc. 2, 227269.Google Scholar
Tadjfar, M. & Bodonyi, R.J. (1992). Receptivity of a laminar boundary layer to the interaction of a three-dimensional roughness element with time-harmonic free-stream disturbances. J. Fluid Mech. 242, 701720.Google Scholar
Tam, C.K.W. & Hu, F.Q. (1989). The instability and acoustic wave modes of supersonic mixing layers inside a rectangular channel. J. Fluid Mech. 203, 5176.Google Scholar
Tatsumi, T. (1952). Stability of the laminar inlet flow prior to the formation of Poiseuille region. J. Phys. Soc. Japan 7, 489502.Google Scholar
Tatsumi, T. & Kakutani, T. (1958). The stability of a two dimensional jet. J. Fluid Mech. 4, 261275.Google Scholar
Taylor, G.I. (1921). Experiments with rotating fluids. Proc. Camb. Phil. Soc. 20, 326329.Google Scholar
Taylor, G.I. (1923). Stability of a viscous liquid contained between two rotating cylinders. Phil. Trans. R. Soc. London Ser. A 223, 289343.Google Scholar
Theofilis, V., Fedorov, A., Obrist, D. & Dallmann, U. (2003). The extended Görtler– Hammerlin model for linear instability of three-dimensional incompressible swept attachment-line boundary layer flow. J. Fluid Mech. 487, 271313.Google Scholar
Thomas, A.S.W. (1983). The control of boundary-layer transition using a wave-superposition principle. J. Fluid Mech. 137, 233250.Google Scholar
Thomas, R.H., Choudhari, M.M. & Joslin, R.D. (2002). Flow and noise control: Review and assessment of future directions. NASA TM-2002–211631.Google Scholar
Tietjens, O. (1925). Beiträge zur entsehung der turbulenz. Zeitschrift für Angewandte Mathematik und Mechanik 5, 200217.Google Scholar
Ting, L. (1959). On the mixing of two parallel streams. J. Math. Phys. 28, 153165.Google Scholar
Tollmien, W. (1929). Über die Entstehung der Turbulenz. Mathematisch– Naturwissenschaftliche Klasse. Nachrichten, Gesellschaft der Wissenschaften, Göttingen, 21–44. (Translation: The production of turbulence. NACA TM-609, 1931.)Google Scholar
Tollmien, W. (1935). Ein allgemeines Kriterium der Instabilität laminarer Geschwindigkeitsverteilungen. Nachr. Wiss. Fachgruppe, Göttingen, Math. phys. 1, 79114. (Translation: General instability criterion of laminar velocity disturbances. NACA TM 792, 1936.)Google Scholar
Tung, K.K. (1981). Barotropic instability of zonal flows. J. Atmospheric Sci. 38, 308321.Google Scholar
Vallikivi, M., Hultmark, M., Bailey, S.C.C. & Smits, A.J. (2011). Turbulence measurements in pipe flow using a nano-scale thermal anemometry probe. Exp. Fluids 51(6), 15211527.Google Scholar
van Dyke, M. (1975). Perturbation Methods in Fluid Mechanics. Annotated edition. The Parabolic Press.Google Scholar
van Dyke, M. (1982). An Album of Fluid Motion. The Parabolic Press.Google Scholar
van Ingen, J.L. (1956). A suggested semi-empirical method for the calculation of the boundary layer transition region. University of Delft Rep. VTH-74, Delft, The Netherlands.Google Scholar
Vasilyev, O.V. (2000). High order finite difference schemes on non-uniform meshes with good conservation properties. J. Comp. Phys. 157, 746761.Google Scholar
Vijgen, P.M.H.W., Dodbele, S.S., Holmes, B.J. & van Dam, C.P. (1986). Effects of compressibility on design of subsonic natural laminar flow fuselages. AIAA 4th Applied Aerodynamics Conference, June 9–11, 1986, San Diego, CA. AIAA Paper 86–1825CP.Google Scholar
von Karman, T. (1921). Über laminare und turbulente Reibung. Zeitschrift für Angewandte Mathematik und Mechanik 1, 233252.Google Scholar
Von Mises, R. & Friedrichs, K.O. (1971). Fluid Dynamics. Springer.Google Scholar
Warren, E.S. & Hassan, H.A. (1996). An alternative to the eN method for determining onset of transition. AIAA 35th Aerospace Sciences Meeting & Exhibit, January 6–10, 1997, Reno, NV. AIAA Paper 96–0825.Google Scholar
Warren, E.S. & Hassan, H.A. (1997). A transition closure model for predicting transition onset. SAE/AIAA World Aviation Congress & Exposition 97, Anaheim, CA. Paper 97WAC-121.Google Scholar
Watson, J. (1960). On the non-linear mechanics of wave disturbances in stable and unstable parallel flows. Part 2. J. Fluid Mech. 9, 371389.Google Scholar
Wazzan, A.R., Okamura, T. & Smith, A.M.O. (1966). Spatial stability study of some Falkner–Skan similarity profiles. Fifth U.S. National Congress on Applied Mechanics, ASME University of Minnesota, 836.Google Scholar
Wazzan, A.R., Okamura, T. & Smith, A.M.O. (1968). Spatial and temporal stability charts for the Falkner–Skan boundary layer profiles. Report No. DAC-67086, McDonnell–Douglas Aircraft Co., Long Beach, CA.Google Scholar
Werlé, H. (1974). Le tunnel hydrodynamique au service de la recherche Aérospatiale. ONERA No. 156.Google Scholar
White, F.M. (1974). Viscous Fluid Flow. McGraw-Hill.Google Scholar
Wiegel, M. & Wlezien, R.W. (1993). Acoustic receptivity of laminar boundary layers over wavy walls. AIAA Paper 93–3280.Google Scholar
Wilkinson, S.P. & Malik, M.R. (1985) Stability experiments in the flow over a rotating disk. AIAA J. 21, 588595.Google Scholar
Williamson, C.H.K. (1996). Vortex dynamics in the cylinder wake. Ann. Rev. Fluid Mech. 28, 477539.Google Scholar
Williamson, J.H. (1980). Low storage Runge–Kutta schemes. J. Comput. Phys. 35(1), 4856.Google Scholar
Willis, G.J.K. (1986). Hydrodynamic stability of boundary layers over compliant surfaces. PhD Thesis, University of Exeter.Google Scholar
Winoto, S.H., Zhang, D.H. & Chew, Y.T. (2000). Transition in boundary layers on a concave surface. J. Prop. & Power 16(4), 653660.Google Scholar
Witting, H. (1958). Über den Einfluss der Stromlinienkrummung auf die Stabilität laminarer Stromungen. Arch. Rat. Mech. Anal. 2, 243283.Google Scholar
Wray, A. & Hussaini, M.Y. (1984). Numerical experiments in boundary layer stability. Proc. R. Soc. London Ser. A 392, 373389.Google Scholar
Yeo, K.S. (1986). The stability of flow over flexible surfaces. PhD Thesis, University of Cambridge.Google Scholar
Zang, T.A. (1991). On the rotation and skew-symmetric forms for incompressible flow simulations. Appl. Num. Math. 7, 2740.Google Scholar
Zang, T.A. & Hussaini, M.Y. (1987). Numerical simulation of nonlinear interactions in channel and boundary layer transition. In Nonlinear Wave Interactions in Fluids, Miksad, R.W., Akylas, T.R., Herbert, T. (eds). New York: ASME, AMD-87, 131145.Google Scholar
Zang, T.A. & Hussaini, M.Y. (1990). Multiple paths to subharmonic laminar breakdown in a boundary layer. Phys. Rev. Lett. 64, 641644.Google Scholar
Zhuang, M., Kubota, T. & Dimotakis, P.E. (1988). On the instability of inviscid, compressible free shear layers. AIAA Paper 88–3538.Google Scholar
Zhuang, M., Kubota, T. & Dimotakis, P.E. (1990a). Instability of inviscid, compressible free shear layers. AIAA J. 28(10), 17281733.Google Scholar
Zhuang, M., Kubota, T. & Dimotakis, P.E. (1990b). The effect of walls on a spatially growing supersonic shear layer. Phys. Fluids A 2(4), 599604.Google Scholar