Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-rvbq7 Total loading time: 0 Render date: 2024-07-12T07:36:28.616Z Has data issue: false hasContentIssue false

2 - Recent developments in theory for biological control of insect pests by parasitoids

from Part I - Biological control theory: past and present

Published online by Cambridge University Press:  13 August 2009

Bradford A. Hawkins
Affiliation:
University of California, Irvine
Howard V. Cornell
Affiliation:
University of Delaware
Get access

Summary

Introduction

Historically, most models of insect–parasitoid interactions have been framed in terms of systems of difference equations of the Nicholson–Bailey type. These have been extensively reviewed by Hassell (1978), May & Hassell (1988), and Jones et al. (1994). Berryman (Chapter 1) explores the structure of discrete-time models of various types. Although the discrete-time framework of these models is consistent with the discrete generation natural history of a number of temperate insect systems, they are less appropriate for many pest species that can have a number of overlapping generations within a year. They are further limited by the fact that only the net effect, summed up over the year, of all of the processes affecting the species within the year can be included in the equations. This results in rather abstract models in which it is difficult to include explicitly specific behavioral or physiological mechanisms.

In this chapter we will concentrate on continuous-time models of host–parasitoid interactions that incorporate host stage-and parasitoid physiological state-dependent behaviors. We will discuss the utility of these types of models in comparing the predicted efficacy of different parasitoid species in biological control programs. We will discuss how models that incorporate within-season dynamics and parasitoid behaviors into discrete-time non-overlapping generations produce predictions that are not possible with standard discrete-time models. In much of the chapter we concentrate on the stability of, or types of dynamics produced by, the host–parasitoid interaction, because that was the focus of many of the models reviewed.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×