Published online by Cambridge University Press: 05 February 2013
Introduction
Fully developed turbulence is a phenomenon involving huge numbers of degrees of dynamical freedom. The motions of a turbulent fluid are sensitive to small differences in flow conditions, so though the latter are seemingly identical they may give rise to large differences in the motions.1 It is difficult to predict them in full detail.
This difficulty is similar, in a sense, to the one we face in treating systems consisting of an Avogadro number of molecules, in which it is impossible to predict the motions of them all. It is known, however, that certain relations, such as the ideal gas laws, between a few number of variables such as pressure, volume, and temperature are insensitive to differences in the motions, shapes, collision processes, etc. of the molecules.
Given this, it is natural to ask whether there is any such relation in turbulence. In this regard, we recall that fluid motion is determined by flow conditions, such as boundary conditions and forcing. It is unlikely that the motion would be insensitive to the difference in these conditions, especially at large scales. It is also tempting, however, to assume that, in the statistics at sufficiently small scales in fully developed turbulence at sufficiently high Reynolds number, and away from the flow boundaries, there exist certain kinds of relation which are universal in the sense that they are insensitive to the detail of large-scale flow conditions. In fact, this idea underlies Kolmogorov's theory (Kolmogorov, 1941a, hereafter referred as K41), and has been at the heart of many modern studies of turbulence. Hereafter, universality in this sense is referred to as universality in the sense of K41
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.