Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-68ccn Total loading time: 0 Render date: 2024-07-11T09:24:50.995Z Has data issue: false hasContentIssue false

Preface

Published online by Cambridge University Press:  06 April 2017

Kwang-Je Kim
Affiliation:
Argonne National Laboratory, Illinois
Zhirong Huang
Affiliation:
SLAC National Accelerator Laboratory, California
Ryan Lindberg
Affiliation:
Argonne National Laboratory, Illinois
Kwang-Je Kim
Affiliation:
Argonne National Laboratory, Illinois
Zhirong Huang
Affiliation:
SLAC National Accelerator Laboratory, California
Ryan Lindberg
Affiliation:
Argonne National Laboratory, Illinois
Get access

Summary

X-rays produced when highly relativistic electrons are accelerated along a curved trajectory, generally referred to as synchrotron radiation, have served as an important tool for studying the structure and dynamics of various atomic and molecular systems. The first dedicated synchrotron radiation facility was built in the 1970s using an electron storage ring, and since that time the demand for synchrotron radiation has steadily increased due to its high intensity, narrow angular opening, and broad spectral coverage. Over the past few decades the effectiveness of synchrotron radiation has been further advanced by improvements in storage ring design that led to an increase in the electron beam phase space density, and by the use of magnetic devices such as undulators that dramatically increase the X-ray brightness over traditional bending magnets. These developments have widened and deepened the reach of “photon sciences” around the globe.

Another revolutionary advance in X-ray generation was made with the development of X-ray free-electron lasers (FELs). The radiation produced in an FEL acts back on the electron beam in a positive feedback loop, resulting in X-rays with dramatically improved intensity and coherence over those produced with storage-ring based sources. The X-ray FEL became feasible thanks to improvements in linear accelerator technology in general, and in particular to advances in the injector (electron source).

High-brightness, high-energy electron beams from a linear accelerator can now drive a high-gain X-ray FEL amplifier in a long undulator. The gain can be so high that the initially incoherent undulator radiation evolves to an intense, quasi-coherent field known as self-amplified spontaneous emission (SASE). The SASE pulse can be made ultrashort by using an ultrashort electron bunch. With X-ray FELs, experimental techniques developed for traditional synchrotron light sources can be made much more efficient, and new areas of material, chemistry, and biology research, such as ultrafast dynamics, have become accessible to study.

Type
Chapter
Information
Synchrotron Radiation and Free-Electron Lasers
Principles of Coherent X-Ray Generation
, pp. ix - xi
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Preface
  • Kwang-Je Kim, Argonne National Laboratory, Illinois, Zhirong Huang, Ryan Lindberg, Argonne National Laboratory, Illinois
  • Book: Synchrotron Radiation and Free-Electron Lasers
  • Online publication: 06 April 2017
  • Chapter DOI: https://doi.org/10.1017/9781316677377.001
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Preface
  • Kwang-Je Kim, Argonne National Laboratory, Illinois, Zhirong Huang, Ryan Lindberg, Argonne National Laboratory, Illinois
  • Book: Synchrotron Radiation and Free-Electron Lasers
  • Online publication: 06 April 2017
  • Chapter DOI: https://doi.org/10.1017/9781316677377.001
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Preface
  • Kwang-Je Kim, Argonne National Laboratory, Illinois, Zhirong Huang, Ryan Lindberg, Argonne National Laboratory, Illinois
  • Book: Synchrotron Radiation and Free-Electron Lasers
  • Online publication: 06 April 2017
  • Chapter DOI: https://doi.org/10.1017/9781316677377.001
Available formats
×