Skip to main content Accessibility help
×
Home
Hostname: page-component-8bbf57454-5qtdt Total loading time: 0.416 Render date: 2022-01-24T21:24:22.376Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

String Field Theory

Published online by Cambridge University Press:  05 September 2012

Michael B. Green
Affiliation:
University of Cambridge
John H. Schwarz
Affiliation:
California Institute of Technology
Edward Witten
Affiliation:
Institute for Advanced Study, Princeton, New Jersey
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Superstring Theory
25th Anniversary Edition
, pp. 586 - 590
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Aratyn, H. and Zimerman, A.H. (1986), ‘On covariant formulation of the free Neveu–Schwarz and Ramond string models’, Phys. Lett. 166B, 130.CrossRefGoogle Scholar
2. Aratyn, H. and Zimerman, A.H. (1986), ‘Gauge invariance of the bosonic free field string theory’, Phys. Lett. 168B, 75.CrossRefGoogle Scholar
3. Aratyn, H. and Zimerman, A.H. (1986), ‘Differential form formulation of the Neveu–Schwarz and Ramond free field string theories’, Nucl. Phys. B269, 349.CrossRefGoogle Scholar
4. Aulakh, C.S. (1986), ‘Consistently truncated open superstring’, Phys. Lett. 175B, 297.CrossRefGoogle Scholar
5. Awada, M.A. (1986), ‘The gauge-covariant formulation of interacting strings and superstrings’, Phys. Lett. 172B, 32.CrossRefGoogle Scholar
6. Banks, T. and Peskin, M.E. (1986), ‘Gauge invariance of string fields’, Nucl. Phys. B264, 513.CrossRefGoogle Scholar
7. Banks, T., Friedan, D., Martinec, E., Peskin, M. and Preitschopf, C., (1986), ‘All free string theories are theories of forms’, Nucl. Phys. B274, 71.CrossRefGoogle Scholar
8. Bardakçi, K. (1986), ‘Covariant gauge theory of strings’, Nucl. Phys. B217, 561.CrossRefGoogle Scholar
9. Baulieu, L. and Ouvry, S. (1986), ‘Quasi–Yang–Mills structure for the open bosonic string’, Phys. Lett. 171B, 57.CrossRefGoogle Scholar
10. Bengtsson, A.K.H., Brink, L., Cederwall, M. and Ögren, M. (1985), ‘Uniqueness of superstring actions’, Nucl. Phys. B254, 625.CrossRefGoogle Scholar
11. Bengtsson, I. (1986), ‘Hamiltonian treatment of free string field theory’, Phys. Lett. 172B, 342.CrossRefGoogle Scholar
12. Carson, L. and Hosotani, Y. (1986), ‘Line functional and string field theory’, Phys. Rev. Lett. 56, 2144.CrossRefGoogle Scholar
13. Chappell, G.J. and Taylor, J.G. (1986), ‘On gauge invariant bosonic strings’, Phys. Lett. 175B, 159.CrossRefGoogle Scholar
14. Cremmer, E. and Gervais, J.L. (1974), ‘Combining and splitting relativistic strings’, Nucl. Phys. B76, 209.CrossRefGoogle Scholar
15. Cremmer, E. and Gervais, J.L. (1975), ‘Infinite component field theory of interacting relativistic strings and dual theory’, Nucl. Phys. B90, 410.CrossRefGoogle Scholar
16. Das, S.R. and Rubin, M.A. (1986), ‘A Tomonaga–Schwinger–Dirac formulation for string theories’, Phys. Lett. 169B, 182.CrossRefGoogle Scholar
17. Daté, G.D., Günaydin, M., Pernici, M., Pilch, K. and Van Nieuwen-huizen, P. (1986), ‘A minimal covariant action for the free open spinning string field theory’, Phys. Lett. 171B, 182.CrossRefGoogle Scholar
18. de Alwis, S.P. and Ohta, N. (1986), ‘Fully gauge-invariant field theory of free superstrings’, Phys. Lett. 174B, 383.CrossRefGoogle Scholar
19. de Alwis, S.P. and Ohta, N. (1986), ‘All free string theories are theories of BRST cohomology’, Phys. Lett. 174B, 388.CrossRefGoogle Scholar
20. Floratos, E.G., Kazama, Y. and Tamvakis, K. (1986), ‘On the relation between the gauge-covariant formulation of string field theories’, Phys. Lett. 166B, 295.CrossRefGoogle Scholar
21. Friedan, D. (1985), ‘On two-dimensional conformal invariance and the field theory of strings’, Phys. Lett. 162B, 102.CrossRefGoogle Scholar
22. Friedan, D. and Shenker, S. (1986), ‘The integrable analytic geometry of quantum string’, Phys. Lett. 175B, 287.CrossRefGoogle Scholar
23. Friedan, D. and Shenker, S. (1987), ‘The analytic geometry of conformai field theory’, Nucl. Phys. B281, 509.CrossRefGoogle Scholar
24. Friedan, D. (1986), ‘String field theory’, Nucl. Phys. B271, 540.CrossRefGoogle Scholar
25. Gervais, J.-L. (1986), ‘Group theoretic approach to the string field theory action’, Nucl. Phys. B276, 339.CrossRefGoogle Scholar
26. Giddings, S. (1986), ‘The Veneziano amplitude from gauge invariant string field theory’, Nucl. Phys. B278, 242.CrossRefGoogle Scholar
27. Giddings, S. and Martinec, E. (1986), ‘Conformai geometry and string field theory’, Nucl. Phys. B278, 91.CrossRefGoogle Scholar
28. Giddings, S., Martinec, E. and Witten, E. (1986), ‘Modular invariance in string field theory’, Phys. Lett. 176B, 362.CrossRefGoogle Scholar
29. Green, M.B. and Schwarz, J.H. (1983), ‘Superstring interactions’, Nucl. Phys. B218, 43.CrossRefGoogle Scholar
30. Green, M.B., Schwarz, J.H. and Brink, L. (1983), ‘Superfleld theory of type (II) superstrings’, Nucl. Phys. B219, 437.CrossRefGoogle Scholar
31. Green, M.B. and Schwarz, J.H. (1984), ‘Superstring field theory’, Nucl. Phys. B243, 475.CrossRefGoogle Scholar
32. Hata, H., Itoh, K., Kugo, T., Kunitomo, H. and Ogawa, K. (1986), ‘Manifestly covariant field theory of interacting string I’, Phys. Lett. 172B, 186.CrossRefGoogle Scholar
33. Hata, H., Itoh, K., Kugo, T., Kunitomo, H. and Ogawa, K. (1986), ‘Manifestly covariant field theory of interacting string II’, Phys. Lett. 172B, 195.CrossRefGoogle Scholar
34. Hata, H., Itoh, K., Kugo, T., Kunitomo, H. and Ogawa, K. (1986), ‘Covariant string field theory’, Phys. Rev. D34, 2360.Google Scholar
35. Hata, H., Itoh, K., Kugo, T., Kunitomo, H. and Ogawa, K. (1986), ‘Pregeometrical string field theory: creation of space-time and motion’, Phys. Lett. 175B, 138.CrossRefGoogle Scholar
36. Hopkinson, J.F.L., Tucker, R.W. and Collins, P.A. (1975), ‘Quantum strings and the functional calculus’, Phys. Rev. D12, 1653.Google Scholar
37. Horowitz, G.T. and Strominger, A. (1986), ‘Origin of gauge invariance in string theoryPhys. Rev. Lett. 57, 519.CrossRefGoogle ScholarPubMed
38. Horowitz, G.T., Lykken, J., Rohm, R. and Strominger, A. (1986), ‘Purely cubic action for string field theory’, Phys. Rev. Lett. 57, 283.CrossRefGoogle ScholarPubMed
39. Itoh, K., Kugo, T., Kunimoto, H. and Ooguri, H. (1986), ‘Gauge invariant local action of string field from BRS formalism’, Prog. Theor. Phys. 75, 162.CrossRefGoogle Scholar
40. Kaku, M. and Kikkawa, K. (1974), ‘Field theory of relativistic strings. I. Trees’, Phys. Rev. D10, 1110.Google Scholar
41. Kaku, M. and Kikkawa, K. (1974), ‘Field theory of relativistic strings. II. Loops and pomerons’, Phys. Rev. D10, 1823.Google Scholar
42. Kaku, M. (1985), ‘Locality in the gauge-covariant field theory of strings’, Phys. Lett. 162B, 97.CrossRefGoogle Scholar
43. Kaku, M. (1986), ‘Gauge field theory of covariant strings’, Nucl. Phys. B267, 125.CrossRefGoogle Scholar
44. Kaku, M. and Lykken, J. (1985), ‘Supergauge field theory of super-strings’, in Symp. on Anomalies, Geometry, Topology, March 28 – 30, 1985, eds. W.A., Bardeen and A.R., White (World Scientific, Singapore), p. 360.Google Scholar
45. Kazama, Y., Neveu, A., Nicolai, H. and West, P.C. (1986), ‘Symmetry structures of superstring field theories’, Nucl. Phys. B276, 366.CrossRefGoogle Scholar
46. LeClair, A. (1986), ‘Fermionic string field theory’, Phys. Lett. 168B, 53.CrossRefGoogle Scholar
47. LeClair, A. and Distler, J. (1986), ‘Gauge invariant superstring field theory’, Nucl. Phys. B273, 552.CrossRefGoogle Scholar
48. Marcus, N. and Sagnotti, A. (1986), ‘String field theory and equations of motion’, Phys. Lett. I78B, 343.CrossRefGoogle Scholar
49. Marshall, C. and Ramond, P. (1975), ‘Field theory of the interacting string: The closed string’, Nucl. Phys. B85, 375.CrossRefGoogle Scholar
50. Meurice, Y. (1986), ‘About the uniqueness of covariant string field theory’, Phys. Lett. 173B, 257.CrossRefGoogle Scholar
51. Nakawaki, Y. and Saito, T. (1972), ‘Field theory of dual-resonance model’, Prog. Theor. Phys. 48, 1324.CrossRefGoogle Scholar
52. Neveu, A., Schwarz, J.H. and West, P.C. (1985), ‘Gauge symmetries of the free bosonic string field theory’, Phys. Lett. 164B, 51.CrossRefGoogle Scholar
53. Neveu, A. and West, P.C. (1985), ‘Gauge symmetries of the free su-persymmetric string field theories’, Phys. Lett. 165B, 63.CrossRefGoogle Scholar
54. Neveu, A., Nicolai, H. and West, P.C. (1986), ‘Gauge covariant local formulation of free strings and superstrings’, Nucl. Phys. B264, 573.CrossRefGoogle Scholar
55. Neveu, A., Nicolai, H. and West, P.C. (1986), ‘New symmetries and ghost structure of covariant string theories’, Phys. Lett. 167B, 307.CrossRefGoogle Scholar
56. Neveu, A. and West, P.C. (1986), ‘The interacting gauge covariant bosonic string’, Phys. Lett. 168B, 192.CrossRefGoogle Scholar
57. Neveu, A. and West, P.C. (1986), ‘Gauge covariant local formulation of bosonic strings’, Nucl. Phys. B268, 125.CrossRefGoogle Scholar
58. Ohta, N. (1986), ‘Covariant second quantization of superstrings’, Phys. Rev. Lett. 56, 440.CrossRefGoogle ScholarPubMed
59. Ohta, N. (1986), ‘Covariant quantization of superstrings based on Becchi–Rouet–Stora invariance’, Phys. Rev. D33, 1681.Google Scholar
60. Ooguri, H. (1986), ‘String field theory with spacetime supersymme-try’, Phys. Lett. 172B, 204.CrossRefGoogle Scholar
61. Peskin, M.B. and Thorn, C.B. (1986), ‘Equivalence of the light-cone formulation and the gauge-invariant formulation of string dynamics’, Nucl. Phys. B269, 509.CrossRefGoogle Scholar
62. Pfeffer, D., Ramond, P. and Rodgers, V.G.J. (1985), ‘Gauge invariant field theory of free strings’, Nucl. Phys. B276, 131.Google Scholar
63. Raby, S., Slansky, R. and West, G. (1985), ‘Toward a covariant string field theory’, in proc. of the Lewes String Theory Workshop, (World Scientific), p. 246.Google Scholar
64. Ramond, P. (1986), ‘A pedestrian approach to covariant string theory’, SuppL Prog. Theor. Phys. 86, 126.CrossRefGoogle Scholar
65. Sciuto, S. (1969), ‘The general vertex function in dual resonance models’, Nuovo Cim. Lett. 2, 411.CrossRefGoogle Scholar
66. Senda, I. (1986), ‘Light-cone field theory of closed bosonic strings compactified on a torus’, Phys. Lett. 174B, 267.CrossRefGoogle Scholar
67. Siegel, W. (1984), ‘Covariantly second–quantized string III’, Phys. Lett. 149B, 157; 151B, 391.CrossRefGoogle Scholar
68. Siegel, W. (1984), ‘Covariantly second-quantized string III’, Phys. Lett. 149B, 162; 151B, 396.CrossRefGoogle Scholar
69. Siegel, W. and Zwiebach, B. (1986), ‘Gauge string fields’, Nucl. Phys. B263, 105.CrossRefGoogle Scholar
70. Taylor, J.G. and Restuccia, A. (1985), European Physical Society meeting, Bari, Italy.
71. Terao, H. and Uehara, S. (1986), ‘Covariant second quantization of free superstring’, Phys. Lett. 168B, 70.CrossRefGoogle Scholar
72. Terao, H. and Uehara, S. (1986), ‘Gauge invariant actions and gauge fixed actions of free superstring field theory’, Phys. Lett. 173B, 134.CrossRefGoogle Scholar
73. Terao, H. and Uehara, S. (1986), ‘Gauge invariant actions of free closed superstring field theories’, Phys. Lett. 173B, 409.CrossRefGoogle Scholar
74. Thorn, C.B. (1985), ‘Comments on covariant formulations of string theories’, Phys. Lett. 159B, 107.CrossRefGoogle Scholar
75. Thorn, C.B. (1986), ‘The theory of interacting relativistic strings’, Nucl. Phys. B263, 493.CrossRefGoogle Scholar
76. Tseytlin, A.A. (1986), ‘Covariant string field theory and effective action’, Phys. Lett. 168B, 63.CrossRefGoogle Scholar
77. Witten, E. (1986), ‘Non-commutative geometry and string field theory’, Nucl. Phys. B268, 253.CrossRefGoogle Scholar
78. Witten, E. (1986), ‘Interacting field theory of open superstrings’, Nucl. Phys. B276, 291.CrossRefGoogle Scholar
79. Yamron, J.P. (1986), ‘A gauge invariant action for the free Ramond string’, Phys. Lett. 174B, 69.CrossRefGoogle Scholar
80. Yoneya, T. (1985), ‘Space-time local symmetry of string field theory’, Phys. Rev. Lett. 55, 1828.CrossRefGoogle ScholarPubMed
81. Zwiebach, B. (1985), ‘Gauge invariant string actions’, in Workshop on Unified String Theories, 29 July – 16 August, 1985, eds. M., Green and D., Gross (World Scientific, Singapore), p. 607.Google Scholar

Send book to Kindle

To send this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Send book to Dropbox

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Dropbox.

Available formats
×

Send book to Google Drive

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Google Drive.

Available formats
×