Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-4hcbs Total loading time: 1.227 Render date: 2021-12-03T05:14:42.238Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

References

Published online by Cambridge University Press:  05 September 2012

Michael B. Green
Affiliation:
University of Cambridge
John H. Schwarz
Affiliation:
California Institute of Technology
Edward Witten
Affiliation:
Institute for Advanced Study, Princeton, New Jersey
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Superstring Theory
25th Anniversary Edition
, pp. 562 - 585
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Achiman, Y. and Stech, B. (1978), ‘Quark-lepton symmetry and mass scales in an E6 unified gauge model’, Phys. Lett. 77B, 389.CrossRefGoogle Scholar
2. Ademollo, M., Del Giudice, E., Di Vecchia, P. and Fubini, S. (1974), ‘Couplings of three exrefd particles in the dual-resonance model’, Nuovo Cim. 19A, 181.CrossRefGoogle Scholar
3. Ademollo, M., D'Adda, A., D'Auria, R., Napolitano, E., Di Vecchia, P., Gliozzi, F. and Sciuto, S. (1974), ‘Unified dual model for interacting open and closed strings’, Nucl. Phys. B77, 189.CrossRefGoogle Scholar
4. Ademollo, M., D'Adda, A., D'Auria, R., Gliozzi, F., Napolitano, E., Sciuto, S. and Di Vecchia, P. (1975), ‘Soft dilatons and scale renormalization in dual theories’, Nucl. Phys. B94, 221.CrossRefGoogle Scholar
5. Adler, S.L. (1969), ‘Axial-vector vertex in spinor electrodynamics’, Phys. Rev. 177, 2426.CrossRefGoogle Scholar
6. Adler, S.L. and Bardeen, W.A. (1969), ‘Absence of higher-order corrections in the anomalous axial-vector divergence equation’, Phys. Rev. 182, 1517.CrossRefGoogle Scholar
7. Affleck, I., Dine, M. and Seiberg, N. (1985), ‘Dynamical supersymmetry breaking in four dimensions and its phenomenological implications’, Nucl. Phys. B256, 557.CrossRefGoogle Scholar
8. Aharonov, Y. and Casher, A. (1986), ‘On the origin of the universe in the context of string models’, Phys. Lett. 166B, 289.CrossRefGoogle Scholar
9. Ahn, Y.J., Breit, J. and Segré, G. (1985), ‘The one-loop effective Lagrangian of the superstring’, Phys. Lett. 162B, 303.Google Scholar
10. Ahn, Y.J. and Breit, J.D. (1986), ‘On one-loop effective Lagrangians and compactified superstrings’, Nucl. Phys. B273, 75.CrossRefGoogle Scholar
11. Alessandrini, V. (1971), ‘A general approach to dual multiloop diagrams’, Nuovo Cim. 2A, 321.CrossRefGoogle Scholar
12. Alessandrini, V. and Amati, D. (1971), ‘Properties of dual multiloop amplitudes’, Nuovo Cim. 4A, 793.CrossRefGoogle Scholar
13. Alessandrini, V., Amati, D. and Morel, B. (1972), The asymptotic behavior of the dual Pomeron amplitude', Nuovo Cim. 7A, 797.CrossRefGoogle Scholar
14. Alvarez, O. (1983), ‘Theory of strings with boundaries. Fluctuations, topology and quantum geometry’, Nucl. Phys. B216, 125.CrossRefGoogle Scholar
15. Alvarez, O., Singer, I. and Zumino, B. (1984), ‘Gravitational anomalies and the family's index theorem’, Commun. Math. Phys. 96, 409.CrossRefGoogle Scholar
16. Alvarez, O. (1986), ‘Differential geometry in string models’, in Work-shop on Unified String Theories, 29 July – 16 August, 1985, eds. M., Green and D., Gross (World Scientific, Singapore), p. 103.Google Scholar
17. Alvarez-Gaumé, L. and Freedman, D.Z. (1980) in Unification of the Fundamental Particle Interactions, eds. S., Ferrara et. al. (Plenum Press).Google Scholar
18. Alvarez-Gaumé, L. and Freedman, D.Z. (1980), ‘Kähler geometry and the renormalization of supersymmetric sigma models’, Phys. Rev. D22, 846.Google Scholar
19. Alvarez-Gaumé, L. and Freedman, D.Z. (1981), ‘Geometrical structure and ultraviolet finiteness in the supersymmetric σ-model’, Commun. Math. Phys. 80, 443.CrossRefGoogle Scholar
20. Alvarez-Gaumé, Mukhi, S. and D. Z., Freedman, (1981), ‘The background field method and the ultraviolet structure of the supersymmetric nonlinear σ-model’, Ann. Phys. (N.Y.) 134, 85.CrossRefGoogle Scholar
21. Alvarez-Gaumé, L. and Witten, E. (1983), ‘Gravitational anomalies’, Nucl Phys. B234, 269.Google Scholar
22. Alvarez-Gaumé, L. (1983), ‘Supersymmetry and the Atiyah–Singer index theorem’, Commun. Math. Phys. 90, 161.CrossRefGoogle Scholar
23. Alvarez-Gaumé, L. (1983), ‘A note on the Atiyah–Singer index theorem’, J. Phys. A16, 4177.Google Scholar
24. Alvarez-Gaumé, L. and Ginsparg, P. (1984), ‘The topological meaning of non-Abelian anomalies’, Nucl. Phys. B243, 449.CrossRefGoogle Scholar
25. Alvarez-Gaumé, L. and Ginsparg, P. (1985), ‘Geometry anomalies’, Nucl. Phys. B262, 439.CrossRefGoogle Scholar
26. Alvarez-Gaumé, L., Ginsparg, P., Moore, G. and Vafa, C. (1986), ‘An O(16) × O(16) heterotic string’, Phys. Lett. 171B, 155.CrossRefGoogle Scholar
27. Amati, D., Bouchiat, C. and Gervais, J.L. (1969), ‘On the building of dual diagrams from unitarity’, Nuovo Cim. Lett. 2, 399.CrossRefGoogle Scholar
28. Appelquist, T., Chodos, A. and Freund, P.G.O. (1987), Modern Kaluza-Klein Theory and Applications, (Benjamin-Cummings).Google Scholar
29. Ardalan, F. and Arfaei, H. (1986), ‘Critical dimensions from loops in a string sigma model’, Phys. Lett. 175B, 164.CrossRefGoogle Scholar
30. Aref'eva, I.Y. and Volovich, I.V. (1985), ‘Spontaneous compactification of O(32) superstrings’, Phys. Lett. 158B, 31.CrossRefGoogle Scholar
31. Arfaei, H. (1975), ‘Volume element for loop diagram in the string picture of dual models’, Nucl Phys. B85, 535.CrossRefGoogle Scholar
32. Arfaei, H. (1976), ‘Theory of closed interacting strings’, Nucl. Phys. B112, 256.CrossRefGoogle Scholar
33. Atiyah, M.F. and Singer, I.M. (1968), ‘The index of elliptic operators: I’, Ann. of Math. 87, 484.CrossRefGoogle Scholar
34. Atiyah, M.F. and Segal, G.B. (1968), ‘The index of elliptic operators: II’, Ann. of Math. 87, 531.CrossRefGoogle Scholar
35. Atiyah, M.F. and Singer, I.M. (1968), ‘The index of elliptic operators: III’, Ann. of Math. 87, 546.CrossRefGoogle Scholar
36. Atiyah, M.F. and Singer, I.M. (1968), ‘The index of elliptic operators: IV’, Ann. of Math. 93, 119.CrossRefGoogle Scholar
37. Atiyah, M.F. and Singer, I.M. (1968), ‘The index of elliptic operators: V’, Ann. of Math. 93, 139.CrossRefGoogle Scholar
38. Atiyah, M.F. and Hirzebruch, F. (1970), in Essays in Topology and Related Subjects, ed. A., Haefliger and R., Narasimhan (Springer-Verlag, New York).Google Scholar
39. Bailin, D. and Love, A. (1985), ‘Compactifications of anomaly-free ten-dimensional supergravity’, Phys. Lett. 157B, 375.CrossRefGoogle Scholar
40. Bailin, D. and Love, A. (1985), ‘Cosmological instability in tendimensional supergravity’, Phys. Lett. 163B, 135.CrossRefGoogle Scholar
41. Bailin, D., Love, A. and Wong, D. (1985), ‘Supergravity limit of superstring theory and Friedmann-Robertson-Walker cosmology’, Phys. Lett. 165B, 270.CrossRefGoogle Scholar
42. Bailin, D., Love, A. and Thomas, S. (1986), ‘Dimensional reductions of superstring theory’, Nucl. Phys. B273, 537.CrossRefGoogle Scholar
43. Banks, T. and Seiberg, N. (1986), ‘Nonperturbative infinities’, Nucl. Phys. B273, 157.CrossRefGoogle Scholar
44. Barbieri, R., Cremmer, E. and Ferrara, S. (1985), ‘Flat and positive potentials in N = 1 supergravity’, Phys. Lett. 163B, 143.CrossRefGoogle Scholar
45. Bardakçi, K., Halpern, M.B. and Shapiro, J.A. (1969), ‘Unitary closed loops in Reggeized Feynman theory’, Phys. Rev. 185, 1910.CrossRefGoogle Scholar
46. Bardakcçi, K. (1974), ‘Dual models and spontaneous symmetry breaking’, NucL Phys. B68, 331.CrossRefGoogle Scholar
47. Bardakçi, K. (1974), ‘Dual models and spontaneous symmetry breaking II’, NucL Phys. B70, 397.CrossRefGoogle Scholar
48. Bardakcçi, K. (1978), ‘Spontaneous symmetry breakdown in the standard dual string model’, Nucl. Phys. B133, 297.CrossRefGoogle Scholar
49. Bardeen, W.A. (1969), ‘Anomalous Ward identities in spinor field theories’, Phys. Rev. 184, 1848.CrossRefGoogle Scholar
50. Bardeen, W.A. and Zumino, B. (1984), ‘Consistent and covariant anomalies in gauge and gravitational theories’, Nucl. Phys. B244, 421.CrossRefGoogle Scholar
51. Barger, V., Deshpande, N.G. and Whisnant, K. (1986), ‘Phenomenological mass limits on extra Z of E6 superstrings’, Phys. Rev. Lett. 56, 30.CrossRefGoogle Scholar
52. Barger, V., Deshpande, N.G., Phillips, R.J.N. and Whisnant, K. (1986), ‘Extra fermions in E6 superstrings theories’, Phys. Rev. D33, 1912.Google Scholar
53. Barr, S.M. (1985), ‘Harmless axions in superstring theories’, Phys. Lett. 158B, 397.CrossRefGoogle Scholar
54. Barr, S.M. (1985), ‘Effects of extra light Z bosons in unified and superstring models’, Phys. Rev. Lett. 55, 2778.CrossRefGoogle Scholar
55. Bars, I. and Günaydin, M. (1980), ‘Grand unification with the exceptional group E8Phys. Rev. Lett. 45, 859.CrossRefGoogle Scholar
56. Bars, I. (1985), ‘Compactification of superstrings and torsion’, Phys. Rev. D33, 383.Google Scholar
57. Bars, I. and Visser, M. (1985), ‘Number of massless fermion families in superstring theory’, Phys. Lett. 163B, 118.CrossRefGoogle Scholar
58. Bars, I., Nemeschansky, D. and Yankielowicz, S. (1986), ‘Torsion in superstrings’, in Workshop on Unified String Theories, 29 July – 16 August, 1985, eds. M., Green and D., Gross (World Scientific, Singapore), p. 522.Google Scholar
59. Baulieu, L. (1986), ‘Anomaly evanescence and the occurrence of mixed Abelian-non-Abelian gauge symmetries’, Phys. Lett. 167B, 56.CrossRefGoogle Scholar
60. Belavin, A.A. and Knizhnik, V.G. (1986), ‘Algebraic geometry and the geometry of quantum strings’, Phys. Lett. 168B, 201.CrossRefGoogle Scholar
61. Bell, J.S. and Jackiw, R. (1969), ‘A PCAC puzzle: π0 → γγ in the σ-model’, Nuovo Cim. 60A, 47.CrossRefGoogle Scholar
62. Bergshoeff, E., De Roo, M., de Wit, B. and Van Nieuwenhuizen, P. (1982), ‘Ten-dimensional Maxwell–Einstein supergravity, its currents, and the issue of its auxiliary fields’, NucL Phys. B195, 97.CrossRefGoogle Scholar
63. Bers, L. (1972), ‘Uniformization, moduli and Kleinian groups’, Bull. London Math. Soc. 4, 257.CrossRefGoogle Scholar
64. Binétruy, P. and Gaillard, M.K. (1986), ‘Radiative corrections in compactified superstring models’, Phys. Lett. 168B, 347.CrossRefGoogle Scholar
65. Binétruy, P., Dawson, S., Hinchcliffe, I. and Sher, M. (1985), ‘Phenomenologically viable models from superstrings’, NucL Phys. B273, 501.Google Scholar
66. Bonora, L., Pasti, P. and Tonin, M. (1985), ‘Cohomologies and anomalies in super symmetric theories’, Nucl. Phys. B252, 458.CrossRefGoogle Scholar
67. Bonora, L. and Cotta-Ramusino, P. (1986), ‘Some remarks on anomaly cancellation in field theories derived from superstrings’, Phys. Lett. 169B, 187.CrossRefGoogle Scholar
68. Bost, J.B. and Jolicoeur, T. (1986), ‘A holomorphy property and critical dimension in string theory from an index theorem’, Phys. Lett. 174B, 273.CrossRefGoogle Scholar
69. Bott, R. and Tu, L. (1983), Differential Forms in Algebraic Topology, (Springer-Verlag).Google Scholar
70. Bouchiat, C., Iliopoulos, J. and Meyer, P. (1972), ‘An anomaly-free version of Weinberg's model’, Phys. Lett 38B, 519.CrossRefGoogle Scholar
71. Boulware, D.G. and Deser, S. (1985), ‘String-generated gravity models’, Phys. Rev. Lett. 55, 2656.CrossRefGoogle ScholarPubMed
72. Bowick, M.J., Smolin, L. and Wijewardhana, L.C.R. (1986), ‘Role of string excitations in the last stages of black-hole evaporation’, Phys. Rev. Lett. 56, 424.CrossRefGoogle Scholar
73. Braden, H.W., Frampton, P.H., Kephart, T.W. and Kshirsagar, A.K. (1986), ‘Limitations of heterotic-superstring phenomenology’, Phys. Rev. Lett 56, 2668.CrossRefGoogle ScholarPubMed
74. Brans, C. and Dicke, R.H. (1961), ‘Mach's principle and a relativistic theory of gravity’, Phys. Rev. 124, 925.CrossRefGoogle Scholar
75. Breit, J.D., Ovrut, B.A. and Segrè, G. (1985), ‘E6 symmetry breaking in the superstring theory’, Phys. Lett 158B, 33.CrossRefGoogle Scholar
76. Breit, J.D., Ovrut, B.A. and Segrè, G. (1985), ‘The one-loop effective Lagrangian of the superstring’, Phys. Lett 162B, 303.CrossRefGoogle Scholar
77. Brink, L., Olive, D. and Scherk, J. (1973), ‘The gauge properties of the dual model Pomeron–Reggeon vertex: Their derivation and their consequences’, Nucl. Phys. B61, 173.CrossRefGoogle Scholar
78. Brink, L. and Olive, D. (1973), ‘Recalculation of the unitary single planar dual loop in the critical dimension of space time’, Nucl. Phys. B58, 237.CrossRefGoogle Scholar
79. Brink, L. and Fairlie, D.B. (1974), ‘Pomeron singularities in the fermion meson dual model’, Nucl. Phys. B74, 321.CrossRefGoogle Scholar
80. Brink, L., Schwarz, J.H. and Scherk, J. (1977), ‘Supersymmetric Yang-Mills theories’, Nucl. Phys. B121, 77.CrossRefGoogle Scholar
81. Burgess, C., Font, A. and Quevedo, F. (1986), ‘Low-energy effective action for the superstring’, Nucl. Phys. B272, 661.CrossRefGoogle Scholar
82. Burnett, T.H., Gross, D.J., Neveu, A., Scherk, J. and Schwarz, J.H. (1970), ‘Renormalized self-energy operator in the dual-resonance model’, Phys. Lett. 32B, 115.CrossRefGoogle Scholar
83. Calabi, E. (1955), ‘On Kähler manifolds with vanishing canonical class, algebraic geometry and topology’, in Algebraic Geometry and Topology: A Symposium in Honor of S. Lefschetz (Princeton University Press), p. 78.Google Scholar
84. Callan, C.G., Friedan, D., Martinec, E.J. and Perry, M.J. (1985), ‘Strings in background fields’, Nucl. Phys. B262, 593.CrossRefGoogle Scholar
85. Campbell, B.A., Ellis, J., Enqvist, K., Nanopoulos, D.V., Hagelin, J.S. and Olive, K.A. (1986), ‘Superstring dark matter’, Phys. Lett. 173B, 270.CrossRefGoogle Scholar
86. Candelas, P., Horowitz, G., Strominger, A. and Witten, E. (1985), ‘Vacuum configurations for superstrings’, Nucl. Phys. B258, 46.CrossRefGoogle Scholar
87. Candelas, P., Horowitz, G., Strominger, A. and Witten, E. (1985), ‘Superstring phenomenology’, in Symp. on Anomalies, Geometry, Topology, March 28 – 30, 1985, eds. W.A., Bardeen and A.R., White (World Scientific, Singapore), p. 377.Google Scholar
88. Candelas, P. (1985), lecture at the Jerusalem Winter School.
89. Castellani, L. (1986), ‘Non-Abelian gauge fields from 10 → 4 compactification of closed superstrings’, Phys. Lett. 166B, 54.CrossRefGoogle Scholar
90. Castellani, L., D'Auria, R., Gliozzi, F. and Sciuto, S. (1986), ‘On the compactification of the closed supersymmetric string’, Phys. Lett. 168B, 47.CrossRefGoogle Scholar
91. Catenacci, R., Cornalba, M., Martellini, M. and Reina, C. (1986), ‘Algebraic geometry and path integrals for closed strings’, Phys. Lett. 172B, 328.CrossRefGoogle Scholar
92. Cecotti, S., Derendinger, J.P., Ferrara, S., Girardello, L. and Roncadelli, M. (1985), ‘Properties of E6 breaking and superstring theory’, Phys. Lett. 156B, 318.CrossRefGoogle Scholar
93. Cecotti, S., Ferrara, S., Girardello, L. and Porrati, M. (1985), ‘Lorentz Chern–Simons terms in N = 1 4D supergravity consistent with supersymmetry and string compactification’, Phys. Lett. 164B, 46.CrossRefGoogle Scholar
94. Cecotti, S., Ferrara, S., Girardello, L., Pasquinacci, A. and Porrati, M. (1986), ‘Matter couplings in higher derivative supergravity’, Phys. Rev. D33, 2504.Google Scholar
95. Chamseddine, A.H. (1981), ‘N = 4 supergravity coupled to N = 4 matter and hidden symmetries’, Nucl. Phys. B185, 403.CrossRefGoogle Scholar
96. Chamseddine, A.H. (1981), ‘Interacting supergravity in ten dimensions: The role of the six-index gauge field’, Phys. Rev. D24, 3065.Google Scholar
97. Chang, D. and Mohapatra, R.N. (1986), ‘A superstring inspired lowenergy electro-weak model’, Phys. Lett. 175B, 304.CrossRefGoogle Scholar
98. Chapline, G.F. and Slansky, R. (1982), ‘Dimensional reduction and flavor chirality’, Nucl Phys. B209, 461.CrossRefGoogle Scholar
99. Chapline, G.F. and Manton, N.S. (1983), ‘Unification of Yang-Mills theory and supergravity in ten dimensions’, Phys. Lett. 120B, 105.CrossRefGoogle Scholar
100. Chapline, G.F. and Grossman, B. (1984), ‘Dimension reduction and massless chiral fermions’, Phys. Lett. 135B, 109.CrossRefGoogle Scholar
101. Chern, S.S. (1967), Complex Manifolds Without Potential Theory (D. V. Nostrand Co., Princeton).Google Scholar
102. Cho, Y.M. and Freund, P.G.O. (1975), ‘Non-Abelian gauge fields as Nambu-Goldstone fields’, Phys. Rev. D12, 1711.Google Scholar
103. Choi, K. and Kim, J.E. (1985), ‘Harmful axions in superstring models’, Phys. Lett. 154B, 393.CrossRefGoogle Scholar
104. Choi, K. and Kim, J.E. (1985), ‘Domain walls in superstring models’, Phys. Rev. Lett. 55, 2637.CrossRefGoogle ScholarPubMed
105. Choi, K. and Kim, J.E. (1985), ‘Compactification and axions in E8 × E′8 superstring models’, Phys. Lett. 165B, 71.CrossRefGoogle Scholar
106. Clavelli, L. and Shapiro, J.A. (1973), ‘Pomeron factorization in general dual models’, Nucl. Phys. B57, 490.CrossRefGoogle Scholar
107. Clavelli, L. (1986), ‘Proof of one-loop finiteness of type-I SO(32) superstring theory’, Phys. Rev. D33, 1098.Google Scholar
108. Cohen, E., Ellis, J., Gomez, G. and Nanopoulos, D.V. (1985), ‘Superstring compactification and supersymmetry breaking’, Phys. Lett. 160B, 62.CrossRefGoogle Scholar
109. Cohen, E., Ellis, J., Enqvist, K. and Nanopoulos, D.V. (1985), ‘Scales in superstring models’, Phys. Lett. 161B, 85.CrossRefGoogle Scholar
110. Cohen, E., Ellis, H., Enqvist, K. and Nanopoulos, D.V. (1985), ‘Experimental predictions from the superstring’, Phys. Lett. 165B, 76.CrossRefGoogle Scholar
111. Corrigan, E.F. and Fairlie, D.B. (1975), ‘Off-shell states in dual resonance theory’, Nucl. Phys. B91, 527.CrossRefGoogle Scholar
112. Cremmer, E. and Scherk, J. (1972), ‘Factorization of the Pomeron sector and currents in the dual resonance model’, Nucl. Phys. B50, 222.CrossRefGoogle Scholar
113. Cremmer, E. and Gervais, J.L. (1974), ‘Combining and splitting relativistic strings’, Nucl. Phys. B76, 209.CrossRefGoogle Scholar
114. Cremmer, E. and Gervais, J.L. (1975), ‘Infinite component field theory of interacting relativistic strings and dual theory’, Nucl. Phys. B90, 410.CrossRefGoogle Scholar
115. Cremmer, E. and Scherk, J. (1976), ‘Dual models in four dimensions with internal symmetries’, Nucl. Phys. B103, 399.CrossRefGoogle Scholar
116. Cremmer, E. and Scherk, J. (1976), ‘Spontaneous compactification of space in an Einstein–Yang–Mills-Higgs model’, Nucl. Phys. B108, 409.CrossRefGoogle Scholar
117. Cremmer, E. and Scherk, J. (1977), ‘Spontaneous compactification of extra space dimensions’, Nucl. Phys. B118, 61.CrossRefGoogle Scholar
118. Cremmer, E., Julia, B. and Scherk, J. (1978), ‘Supergravity theory in 11 dimensions’, Phys. Lett. 76B, 409.CrossRefGoogle Scholar
119. Cremmer, E. and Julia, B. (1979), ‘The SO(8) supergravity’, Nucl. Phys. B159, 141.CrossRefGoogle Scholar
120. Cremmer, E., Scherk, J. and Schwarz, J.H. (1979), ‘Spontaneously broken N = 8 supergravity’, Phys. Lett. 84B, 83.CrossRefGoogle Scholar
121. Cremmer, E., Julia, B., Scherk, J., Ferrara, S., Girardello, L. and Van Nieuwenhuizen, P. (1979), ‘Spontaneous symmetry breaking and Higgs effect in supergravity without cosmological constant’, Nucl. Phys. B147, 105.CrossRefGoogle Scholar
122. Daniel, M. and Mavromatos, N.E. (1986), ‘The heterotic string and supersymmetric counterparts of the Lorentz Chern–Simons terms’, Phys. Lett. 173B, 405.CrossRefGoogle Scholar
123. del Aguila, F., Blair, G., Daniel, M. and Ross, G.G. (1986), ‘Superstring inspired models’, Nucl. Phys. B272, 413.CrossRefGoogle Scholar
124. del Aguila, F., Blair, G., Daniel, M. and Ross, G.G. (1987), ‘Analysis of neutral currents in superstring inspired models’, Nucl. Phys. B283, 50.CrossRefGoogle Scholar
125. Derendinger, J.P., Ibañez, L.E. and Nilles, H.P. (1985), ‘On the low energy d = 4, N = 1 supergravity theory extracted from the d = 10, N = 1 superstring’, Phys. Lett. 155B, 65.CrossRefGoogle Scholar
126. Derendinger, J.P., Ibañez, L.E. and Nilles, H.P. (1986), ‘On the lowenergy limit of superstring theories’, Nucl. Phys. B267, 365.CrossRefGoogle Scholar
127. Deser, S. and Zumino, B. (1976), ‘Consistent supergravity’, Phys. Lett. 62B, 335.CrossRefGoogle Scholar
128. de Wit, B. and Freedman, D.Z. (1977), ‘On SO(8) extended supergravity’, Nucl. Phys. B130, 105.CrossRefGoogle Scholar
129. de Wit, B. and Nicolai, H. (1982), ‘N = 8 supergravity with local SO(8) × SU(8) invariance’, Phys. Lett. 108B, 285.CrossRefGoogle Scholar
130. DeWitt, B.S. (1967), ‘Quantum theory of gravity. I. The canonical theory’, Phys. Rev. 160, 1113.CrossRefGoogle Scholar
131. D'Hoker, E. and Phong, D.H. (1986), ‘Length-twist parameters in string path integrals’, Phys. Rev. Lett. 56, 912.CrossRefGoogle ScholarPubMed
132. D'Hoker, E. and Phong, D.H. (1986), ‘Multiloop amplitudes for the bosonic Polyakov string’, Nucl. Phys. B269, 205.CrossRefGoogle Scholar
133. Diamandis, G.A., Ellis, J., Lahanas, A.B. and Nanopoulos, D.V. (1986), ‘Vanishing scalar masses in no-scale supergravity’, Phys. Lett. 173B, 303.CrossRefGoogle Scholar
134. Dimopoulos, S. (1981), ‘Softly broken supersymmetry and SU(5)’, Nucl. Phys. B193, 150.CrossRefGoogle Scholar
135. Dine, M., Fischler, W. and Srednicki, M. (1981), ‘A simple solution to the strong CP problem with a harmless axion’, Phys. Lett. 104B, 199.CrossRefGoogle Scholar
136. Dine, M., Rohm, R., Seiberg, N. and Witten, E. (1985), ‘Gluino condensation in superstring models’, Phys. Lett. 156B, 55.CrossRefGoogle Scholar
137. Dine, M., Kaplunovsky, V., Mangano, M., Nappi, C.R. and Seiberg, N. (1985), ‘Superstring model building’, Nucl Phys. B259, 549.CrossRefGoogle Scholar
138. Dine, M. and Seiberg, N. (1985), ‘Couplings and scales in superstring models’, Phys. Rev. Lett. 55, 366.CrossRefGoogle ScholarPubMed
139. Dine, M. and Seiberg, N. (1985), ‘Is the superstring weakly coupled?’, Phys. Lett. 162B, 299.CrossRefGoogle Scholar
140. Dine, M. and Seiberg, N. (1985), ‘Is the superstring semiclassical’, in Workshop on Unified String Theories, 29 July – 16 August, 1985, eds. M., Green and D., Gross (World Scientific, Singapore), p. 678.Google Scholar
141. Dine, M. and Seiberg, N. (1986), ‘String theory and the strong CP problem’, Nucl. Phys. B273, 109.CrossRefGoogle Scholar
142. Dine, M., Seiberg, N., Wen, X.G. and Witten, E. (1986), ‘Nonperturbative effects on the string world sheet’, Nucl. Phys. B278, 769.CrossRefGoogle Scholar
143. Dirac, P.A.M. (1937), Nature 139, 323.CrossRef
144. Dirac, P.A.M. (1938), ‘A new basis for cosmology’, Proc. Roy. Soc. A, 165, 199.CrossRefGoogle Scholar
145. Dixon, L., Harvey, J., Vafa, C. and Witten, E. (1985), ‘Strings on orbifolds’, Nucl. Phys. B261, 678.CrossRefGoogle Scholar
146. Dixon, L. and Harvey, J. (1986), ‘String theories in ten dimensions without spacetime supersymmetry’, Nucl. Phys. B274, 93.CrossRefGoogle Scholar
147. Dixon, L., Harvey, J., Vafa, C. and Witten, E. (1986), ‘Strings on orbifolds II’, Nucl. Phys. B274, 285.CrossRefGoogle Scholar
148. Dixon, L., Friedan, D., Martinec, E. and Shenker, S. (1987), ‘The conformal field theory of orbifolds’, Nucl. Phys. B282, 13.CrossRefGoogle Scholar
149. Donaldson, S. (1983), ‘An application of gauge theory to four dimensional topology’, J. Diff. Geom. 18, 279.CrossRefGoogle Scholar
150. Drees, M., Falck, N.K. and Glück, M. (1986), ‘The electroweak sector in superstring models’, Phys. Lett. 167B, 187.CrossRefGoogle Scholar
151. Duff, M.J., Nilsson, B.E.W. and Pope, C.N. (1985), ‘Kaluza–Klein approach to the heterotic string’, Phys. Lett. 163B, 343.CrossRefGoogle Scholar
152. Duff, M.J., Nilsson, B.E.W., Warner, N.P. and Pope, C.N. (1986), ‘Kaluza–Klein approach to the heterotic string II’, Phys. Lett. 171B, 170.CrossRefGoogle Scholar
153. Duff, M.J., Nilsson, B.E.W. and Pope, C.N. (1986), ‘Gauss–Bonnet from Kaluza–Klein’, Phys. Lett 173B, 69.CrossRefGoogle Scholar
154. Duff, M.J. (1986), ‘Hidden string symmetries?’, Phys. Lett. 173B, 289.CrossRefGoogle Scholar
155. Durhuus, B., Nielsen, H.B., Olesen, P. and Petersen, J.L. (1982), ‘Dual models as saddle point approximations to Polyakov's quantized string’, Nucl. Phys. B196, 498.CrossRefGoogle Scholar
156. Durhuus, B., Olesen, P. and Petersen, J.L. (1982), ‘Polyakov's quantized string with boundary terms’, Nucl. Phys. 198, 157.CrossRefGoogle Scholar
157. Durhuus, B., Olesen, P. and Petersen, J.L. (1982), ‘Polyakov's quantized string with boundary terms (II)’, Nucl. Phys. 201, 176.CrossRefGoogle Scholar
158. Dyson, F.J. (1978), in Current Trends in the Theory of Fields, ed. J. E., Lannutti and P. K., Williams, AIP Conference Proceedings No. 48, (Oxford University Press), p. 163.Google Scholar
159. Eguchi, T., Gilkey, P.B. and Hansen, A.J. (1980), ‘Gravitation, gauge theories and differential geometry’, Phys. Reports 66, 213.CrossRefGoogle Scholar
160. Ellis, J., Enqvist, K., Nanopoulos, D.V. and Sarkar, S. (1986), ‘Primordial nucleosynthesis, additional neutrinos and neutral currents from the superstring’, Phys. Lett. 167B, 457.CrossRefGoogle Scholar
161. Ellis, J., Gómez, C. and Nanopoulos, D.V. (1986), ‘Axions, dilatons and Wess–Zumino terms in superstring theories’, Phys. Lett. 168B, 215.CrossRefGoogle Scholar
162. Ellis, J., Gomez, C. and Nanopoulos, D.V. (1986), ‘No-scale structure from the superstring’, Phys. Lett. 171B, 203.CrossRefGoogle Scholar
163. Ellis, J., Enqvist, K., Nanopoulos, D.V. and Zwirner, F. (1986), ‘Observables in low-energy superstring models’, Mod. Phys. Lett. A1, 57.CrossRefGoogle Scholar
164. Ellis, J., Gómez, C., Nanopoulos, D.V. and Quirós, M. (1986), ‘World sheet instanton effects on no-scale structure’, Phys. Lett. 173B, 59.CrossRefGoogle Scholar
165. Ellis, J., Nanopoulos, D.V. and Quirós, M. (1986), ‘On the axion, dilaton, Polonyi, gravitino and shadow matter problems in supergravity and superstring models’, Phys. Lett. 174B, 176.CrossRefGoogle Scholar
166. Ellis, J. (1986), ‘From the Higgs to superstring phenomenology’, Proc. of the Lake Louise Winter Institute, p. 225.Google Scholar
167. Ellis, J., Nanopoulos, D.V., Petcov, S.T. and Zwirner, F. (1987), ‘Gauginos and Higgs particles in superstring models’, Nucl. Phys. B283, 93.CrossRefGoogle Scholar
168. Englert, F. (1982), ‘Spontaneous compactification of elevendimensional supergravity’, Phys. Lett. 119B, 339.CrossRefGoogle Scholar
169. Enqvist, K., Nanopoulos, D.V. and Quiros, M. (1986), ‘Cosmological difficulties for intermediate scales in superstring models’, Phys. Lett. 169B, 343.CrossRefGoogle Scholar
170. Evans, M. and Ovrut, B.A. (1986), ‘Splitting the superstring vacuum degeneracy’, Phys. Lett. 174B, 63.CrossRefGoogle Scholar
171. Fairlie, D.B. and Nielsen, H.B. (1970), ‘An analogue model for KSV theory’, Nucl. Phys. B20, 637.CrossRefGoogle Scholar
172. Fairlie, D.B. and Martin, D. (1974), ‘Green's function techniques and dual fermion loops’, Nuovo Cim. 21A, 647.CrossRefGoogle Scholar
173. Fayet, P. and Iliopoulos, J. (1974), ‘Spontaneously broken supergauge symmetries and Goldstone spinors’, Phys. Lett 51B, 46.Google Scholar
174. Fayet, P. (1977), ‘Spontaneously broken supersymmetric theories of weak, electromagnetic and strong interactions’, Phys. Lett. 69B, 489.CrossRefGoogle Scholar
175. Fischler, W. and Susskind, L. (1986), ‘Dilaton tadpoles, string condensates and scale invariance’, Phys. Lett. 171B, 383.CrossRefGoogle Scholar
176. Fischler, W. and Susskind, L. (1986), ‘Dilaton tadpoles, string condensates and scale invariance II’, Phys. Lett. 173B, 262.CrossRefGoogle Scholar
177. Foda, O. and Helayël-Neto, J.A. (1986), ‘A coset space compactification of the field theory limit of a heterotic string’, Class. Quant. Grav. 3, 607.CrossRefGoogle Scholar
178. Ford, L.R. (1951), Automorphic Functions (Chelsea, New York).Google Scholar
179. Forgacs, P. and Manton, N.S. (1980), ‘Space-time symmetries in gauge theories’, Commun. Math. Phys. 72, 15.CrossRefGoogle Scholar
180. Frampton, P.H., Goddard, P. and Wray, D. (1971), ‘Perturbative unitarity of dual loops’, Nuovo Cim. 3A, 755.CrossRefGoogle Scholar
181. Frampton, P.H. and Kephart, T.W., (1983), ‘Explicit evaluation of anomalies in higher dimensions’, Phys. Rev. Lett. 50, 1343.CrossRefGoogle Scholar
182. Frampton, P.H. and Kephart, T.W. (1983), ‘Consistency conditions for Kaluza-Klein anomalies’, Phys. Rev. Lett. 50, 1347.CrossRefGoogle Scholar
183. Frampton, P.H. and Kephart, T.W. (1983), ‘Analysis of anomalies in higher space-time dimensions’, Phys. Rev. D28, 1010.Google Scholar
184. Frampton, P.H. and Kephart, T.W. (1984), ‘Left-right asymmetry from the eight-sphere’, Phys. Rev. Lett. 53, 867.CrossRefGoogle Scholar
185. Frampton, P.H., van Dam, H. and Yamamoto, K. (1985), ‘Chiral fermions from compactiflcation of O(32) and E(8) ⊗ E(8) string theories’, Phys. Rev. Lett. 54, 1114.CrossRefGoogle Scholar
186. Frampton, P.H., Moxhay, P. and Ng, Y.J. (1985), ‘One-loop finiteness in O(32) open-superstring theory’, Phys. Rev. Lett. 55, 2107.CrossRefGoogle Scholar
187. Frampton, P.H., Kikuchi, Y. and Ng, Y.J. (1986), ‘Modular invariance in closed superstrings’, Phys. Lett. 174B, 262.CrossRefGoogle Scholar
188. Freedman, D.Z., Van Nieuwenhuizen, P. and Ferrara, S. (1976), ‘Progress toward a theory of supergravity’, Phys. Rev. D13, 3214.Google Scholar
189. Freedman, D.Z., Gibbons, G.W. and West, P.C. (1983), ‘Ten into four won't go’, Phys. Lett. 124B, 491.CrossRefGoogle Scholar
190. Freeman, M.D. and Pope, C.N. (1986), ‘Beta-functions and superstring compactifications’, Phys. Lett. 174B, 48.CrossRefGoogle Scholar
191. Freeman, M.D. and Olive, D.I. (1986), ‘The calculation of planar oneloop diagrams in string theory using the BRS formalism’, Phys. Lett. 175B, 155.CrossRefGoogle Scholar
192. Freund, P.G.O. and Rubin, M.A. (1980), ‘Dynamics of dimensional reduction’, Phys. Lett. 97B, 233.CrossRefGoogle Scholar
193. Freund, P.G.O. and Oh, P. (1985), ‘Cosmological solutions with “ten into four” compactification’, Nucl. Phys. B255, 688.CrossRefGoogle Scholar
194. Friedan, D. and Windey, P. (1984), ‘Supersymmetric derivation of the Atiyah–Singer index and the chiral anomaly’, Nucl. Phys. B235 [FS11], 395.CrossRefGoogle Scholar
195. Friedan, D., Shenker, S. and Martinec, E. (1985), ‘Covariant quantization of superstrings’, Phys. Lett. 160B, 55.CrossRefGoogle Scholar
196. Friedan, D. and Shenker, S. (1987), ‘The analytic geometry of conformal field theory’, Nucl. Phys. B281, 509.CrossRefGoogle Scholar
197. Friedan, D. and Shenker, S. (1986), ‘The integrable analytic geometry of quantum string’, Phys. Lett. 175B, 287.CrossRefGoogle Scholar
198. Friedan, D., Martinec, E. and Shenker, S. (1986), ‘Conformal invariance, supersymmetry and string theory’, Nucl. Phys. B271, 93.CrossRefGoogle Scholar
199. Fritzsch, H. and Minkowski, P. (1975), ‘Unified interactions of leptons and hadrons’, Ann. Phys. 93, 193.CrossRefGoogle Scholar
200. Frye, G. and Susskind, L. (1970), ‘Removal of the divergence of a planar dual-symmetric loop’, Phys. Lett. 31B, 537.CrossRefGoogle Scholar
201. Frye, G. and Susskind, L. (1970), ‘Non-planar dual symmetric loop graphs and the Pomeron’, Phys. Lett. 31B, 589.CrossRefGoogle Scholar
202. Gates, S.J., Grisaru, M., Roček, M. and Siegel, W. (1983), Superspace or One Thousand and One Lessons in Supersymmetry, (Benjamin/Cummins).Google Scholar
203. Gates, S.J. and Nishino, H. (1985), ‘New D = 10, N = 1 supergravity coupled to Yang–Mills supermultiplet and anomaly cancellations’, Phys. Lett. 157B, 157.CrossRefGoogle Scholar
204. Gates, S.J. and Nishino, H. (1986), ‘New D = 10, N = 1 superspace supergravity and local symmetries of superstrings’, Phys. Lett. 173B, 46.CrossRefGoogle Scholar
205. Gates, S.J. and Nishino, H. (1986), ‘Manifestly supersymmetric O(α′) superstring corrections in new D = 10, N = 1 supergravity Yang–Mills theory’, Phys. Lett. 173B, 52.CrossRefGoogle Scholar
206. Gava, E., Iengo, R., Jayaraman, T. and Ramachandran, R. (1986), ‘Multiloop divergences in the closed bosonic string theory’, Phys. Lett. 168B, 207.CrossRefGoogle Scholar
207. Gell-Mann, M., Ramond, P. and Slansky, R. (1978), ‘Color embeddings, charge assignments, and proton stability in unified gauge theories’, Rev. Mod. Phys. 50, 721.CrossRefGoogle Scholar
208. Gell-Mann, M., Ramond, P. and Slansky, R. (1979), ‘Complex spinors and unified theories’, in Supergravity, ed. P., van Nieuwenhuizen et. al. (North-Holland), p. 315.Google Scholar
209. Gell-Mann, M. and Zwiebach, B. (1984), ‘Spacetime compactification due to scalars’, Phys. Lett. 141B, 333.CrossRefGoogle Scholar
210. Gell-Mann, M. and Zwiebach, B. (1985), ‘Dimensional reduction of spacetime induced by nonlinear scalar dynamics and noncompact extra dimensions’, Nucl. Phys. B260, 569.CrossRefGoogle Scholar
211. Georgi, H. and Glashow, S.L. (1972), ‘Gauge theories without anomalies’, Phys. Rev. D6, 429.Google Scholar
212. Georgi, H. and Glashow, S.L. (1974), ‘Unity of all elementary-particle forces’, Phys. Rev. Lett. 32, 438.CrossRefGoogle Scholar
213. Georgi, H. (1974), ‘The state of the art – gauge theories’, in Proceedings of the American Institute of Physics #23 ed. C. E., Carlson, p. 575.Google Scholar
214. Georgi, H., Quinn, H.R. and Weinberg, S. (1974), ‘Hierarchy of interactions in unified gauge theories’, Phys. Rev. Lett. 33, 451.CrossRefGoogle Scholar
215. Gervais, J.L. and Sakita, B. (1971), ‘Functional-integral approach to dual-resonance theory’, Phys. Rev. D4, 2291.Google Scholar
216. Gervais, J.L. and Sakita, B. (1973), ‘Ghost-free string picture of Veneziano model’, Phys. Rev. Lett. 30, 716.CrossRefGoogle Scholar
217. Gildener, E. and Weinberg, S. (1976), ‘Symmetry breaking and scalar bosons’, Phys. Rev. D13, 3333.Google Scholar
218. Gildener, E. (1976), ‘Gauge-symmetry hierarchies’, Phys. Rev. D14, 1667.Google Scholar
219. Giles, R. and Thorn, C.B. (1977), ‘Lattice approach to string theory’, Phys. Rev. D16, 366.Google Scholar
220. Gilkey, P.B. (1975), ‘The spectral geometry of a Riemannian manifold’, J. Diff. Geom. 10, 601.CrossRefGoogle Scholar
221. Glashow, S. (1986), ‘The fifth force’, proc. of the 1986 Moriond workshop.
222. Gliozzi, F., Scherk, J. and Olive, D. (1976), ‘Supergravity and the spinor dual model’, Phys. Lett. 65B, 282.CrossRefGoogle Scholar
223. Gliozzi, F., Scherk, J. and Olive, D. (1977), ‘Supersymmetry, supergravity theories and the dual spinor model’, Nucl. Phys. B122, 253.CrossRefGoogle Scholar
224. Goddard, P. (1971), ‘Analytic renormalization of dual one-loop amplitudes’, Nuovo Cim. 4A, 349.CrossRefGoogle Scholar
225. Goddard, P. and Waltz, R.E. (1971), ‘One-loop amplitudes in the model of Neveu and Schwarz’, Nucl. Phys. B34, 99.CrossRefGoogle Scholar
226. Goddard, P., Goldstone, J., Rebbi, C. and Thorn, C.B. (1973), ‘Quantum dynamics of a massless relativistic string’, Nucl. Phys. B56, 109.CrossRefGoogle Scholar
227. Gomez, C. (1986), ‘Topologically non-trivial gauge configurations and the heterotic string’, Phys. Lett. 168B, 212.CrossRefGoogle Scholar
228. Gomez, C. (1986), ‘Modular invariance and compactification of the moduli space’, Phys. Lett. 175B, 32.CrossRefGoogle Scholar
229. Goodman, M. and Witten, E. (1986), ‘Global symmetries in four and higher dimensions’, Nucl. Phys. B271, 21.CrossRefGoogle Scholar
230. Goodman, M. (1986), ‘Proof of character-valued index theorems’, Princeton preprint, to appear in Nucl. Phys. B.Google Scholar
231. Goroff, M.H. and Sagnotti, A. (1985), ‘Quantum gravity at two loops’, Phys. Lett. 160B, 81.CrossRefGoogle Scholar
232. Goroff, M.H. and Sagnotti, A. (1986), ‘The ultraviolet behavior of Einstein gravity’, Nucl. Phys. B266, 709.CrossRefGoogle Scholar
233. Govindrajan, T.R., Jayraman, T., Mukherjee, A. and Wadia, S.R. (1986), ‘Twisted current algebras and gauge symmetry breaking in string theory’, Mod. Phys. Lett. A1, 29.CrossRefGoogle Scholar
234. Green, M.B. (1973), ‘Cancellation of the leading divergence in dual loops’, Phys. Lett. 46B, 392.CrossRefGoogle Scholar
235. Green, M.B. (1976), ‘Reciprocal space-time and momentum-space singularities in the narrow resonance approximation’, Nucl. Phys. B116, 449.CrossRefGoogle Scholar
236. Green, M.B. and Shapiro, J.A. (1976), ‘Off-shell states in the dual model’, Phys. Lett. 64B, 454.CrossRefGoogle Scholar
237. Green, M.B. (1976), ‘The structure of dual Green functions’, Phys. Lett. 65B, 432.CrossRefGoogle Scholar
238. Green, M.B. (1977), ‘Point-like structure and off-shell dual strings’, Nucl. Phys. B124, 461.CrossRefGoogle Scholar
239. Green, M.B. (1977), ‘Dynamical point-like structure and dual strings’, Phys. Lett. 69B, 89.CrossRefGoogle Scholar
240. Green, M.B. and Schwarz, J.H. (1982), ‘Supersymmetric dual string theory (III). Loops and renormalization’, Nucl. Phys. B198, 441.Google Scholar
241. Green, M.B., Schwarz, J.H. and Brink, L. (1982), ‘N = 4 Yang–Mills and N = 8 supergravity as limits of string theories’, Nucl. Phys. B198, 474.CrossRefGoogle Scholar
242. Green, M.B. and Schwarz, J.H. (1982), ‘Supersymmetrical string theories’,Phys. Lett. 109B, 444.CrossRefGoogle Scholar
243. Green, M.B. and Schwarz, J.H. (1983), ‘Superstring interactions’, Nucl Phys. B218, 43.CrossRefGoogle Scholar
244. Green, M.B., Schwarz, J.H. and Brink, L. (1983), ‘Superfield theory of type (II) superstrings’, Nucl. Phys. B219, 437.CrossRefGoogle Scholar
245. Green, M.B. and Schwarz, J.H. (1983), ‘Extended supergravity in ten dimensions’, Phys. Lett. 122B, 143.CrossRefGoogle Scholar
246. Green, M.B. (1983), ‘Supersymmetrical dual string theories and their field theory limits – a review’, Surveys in High Energy Physics 3, 127.CrossRefGoogle Scholar
247. Green, M.B. and Schwarz, J.H. (1984), ‘Covariant description of superstrings’, Phys. Lett. 136B, 367.CrossRefGoogle Scholar
248. Green, M.B. and Schwarz, J.H. (1984), ‘Superstring field theory’, Nucl. Phys. B243, 475.CrossRefGoogle Scholar
249. Green, M.B. and Schwarz, J.H. (1984), ‘Anomaly cancellations in supersymmetric D = 10 gauge theory and superstring theory’, Phys. Lett. 149B, 117.CrossRefGoogle Scholar
250. Green, M.B. and Schwarz, J.H. (1985), ‘Infinity cancellations in SO(32) superstring theory’, Phys. Lett. 151B, 21.CrossRefGoogle Scholar
251. Green, M.B., Schwarz, J.H. and West, P.C. (1985), ‘Anomaly-free chiral theories in six dimensions’, Nucl. Phys. B254, 327.CrossRefGoogle Scholar
252. Green, M.B. and Schwarz, J.H. (1985), ‘The hexagon gauge anomaly in type I superstring theory’, Nucl. Phys. B255, 93.CrossRefGoogle Scholar
253. Greenberg, M.J. (1967), Lectures on Algebraic Topology (Benjamin).Google Scholar
254. Greene, B.R., Kirklin, K.H. and Miron, P.J. (1986), ‘Superstring models with SU(5) and SO(10) unifying groups’, Nucl. Phys. B274, 574.CrossRefGoogle Scholar
255. Greene, B.R., Kirklin, K.H., Miron, P.J. and Ross, G.G. (1986), ‘A three generation superstring model’, Nucl. Phys. B278, 667.CrossRefGoogle Scholar
256. Greene, B.R., Kirklin, K.H., Miron, P.J. and Ross, G.G. (1986), ‘A superstring inspired standard model’, Phys. Lett. 180B, 69.CrossRefGoogle Scholar
257. Griffiths, P. and Harris, J. (1978), Principles of Algebraic Geometry (Wiley-Interscience).Google Scholar
258. Grimm, R. and Marculescu, S. (1974), ‘The structure of anomalies for arbitrary dimension of the space-time’, Nucl. Phys. B68, 203.CrossRefGoogle Scholar
259. Grisaru, M.T., van de Ven, A. and Zanon, D. (1986), ‘Four-loop β-function for the N = 1 and N = 2 supersymmetric non-linear sigma model in two dimensions’, Phys. Lett. 173B, 423.CrossRefGoogle Scholar
260. Grisaru, M.T., van de Ven, A.E.M. and Zanon, D. (1986), ‘Twodimensional supersymmetric sigma models on Ricci flat Kahler manifolds are not finite’, Nucl. Phys. B277, 388.CrossRefGoogle Scholar
261. Grisaru, M.T., van de Ven, A.E.M. and Zanon, D. (1986), ‘Four loop divergences for the N = 1 supersymmetric nonlinear sigma model in two dimensions’, Nucl. Phys. B277, 409.CrossRefGoogle Scholar
262. Gross, D.J., Neveu, A., Scherk, J. and Schwarz, J.H. (1970), ‘The primitive graphs of dual-resonance models’, Phys. Lett. 31B, 592.CrossRefGoogle Scholar
263. Gross, D.J., Neveu, A., Scherk, J. and Schwarz, J.H. (1970), ‘Renormalization and unitarity in the dual-resonance model’, Phys. Rev. D2, 697.Google Scholar
264. Gross, D.J. and Schwarz, J.H. (1970), ‘Basic operators of the dualresonance model’, Nucl. Phys. B23, 333.CrossRefGoogle Scholar
265. Gross, D.J. and Jackiw, R. (1972), ‘Effect of anomalies on quasirenormalizable theories’, Phys. Rev. D6, 477.Google Scholar
266. Gross, D.J. and Perry, M.J. (1983), ‘Magnetic monopoles in Kaluza-Klein theories’, NucL Phys. B226, 29.CrossRefGoogle Scholar
267. Gross, D.J., Harvey, J.A., Martinec, E. and Rohm, R. (1985), ‘Heterotic string’, Phys. Rev. Lett. 54, 502.CrossRefGoogle ScholarPubMed
268. Gross, D.J., Harvey, J.A., Martinec, E. and Rohm, R. (1985), ‘Heterotic string theory (I). The free heterotic string’, NucL Phys. B256, 253.CrossRefGoogle Scholar
269. Gross, D.J., Harvey, J.A., Martinec, E. and Rohm, R. (1986), ‘Heterotic string theory (II). The interacting heterotic string’, Nucl. Phys. B267, 75.CrossRefGoogle Scholar
270. Gross, D.J. and Witten, E. (1986), ‘Superstring modifications of Einstein's equations’, NucL Phys. B277, 1.CrossRefGoogle Scholar
271. Günaydin, M., Romans, L.J. and Warner, N.P. (1985), ‘Gauged N = 8 supergravity in five dimensions’, Phys. Lett. 154B, 268.CrossRefGoogle Scholar
272. Günaydin, M., Romans, L.J. and Warner, N.P. (1985), ‘IIB or not IIB: That is the questionPhys. Lett. 164B, 309.CrossRefGoogle Scholar
273. Gürsey, F. and Sikivie, P. (1976), ‘E7 as a universal gauge group’, Phys. Rev. Lett. 36, 775.CrossRefGoogle Scholar
274. Gürsey, F., Ramond, P. and Sikivie, P. (1976), ‘A universal gauge theory model based on E6’, Phys. Lett. 60B, 177.CrossRefGoogle Scholar
275. Gürsey, F. and Sikivie, P. (1977), ‘Quark and lepton assignments in the E7 model’, Phys. Rev. D16, 816.Google Scholar
276. Guth, A.H. and Tye, S.H. (1980), ‘Phase transitions and magnetic monopole production in the very early universe’, Phys. Rev. Lett. 44, 631; erratum 963.CrossRefGoogle Scholar
277. Guth, A.H. (1981), ‘Inflationary universe: A possible solution to the horizon and flatness problems’, Phys. Rev. D23, 347.Google Scholar
278. Hamidi, S. and Vafa, C. (1987), ‘Interactions on orbifolds’, Nucl. Phys. B279, 465.CrossRefGoogle Scholar
279. Han, C.W., Han, S.K., Jun, J.W., Kim, J.K. and Koh, I.G. (1986), ‘Absence of leading divergence in the parity-odd one-loop amplitude of type-I SO(32) superstring theory’, Phys. Rev. D34, 1219.Google Scholar
280. Hartshorne, R. (1977), Algebraic Geometry (Springer-Verlag).CrossRefGoogle Scholar
281. Harvey, J.A. (1986), ‘Twisting the heterotic string’, in Workshop on Unified String Theories, 29 July – 16 August, 1985, eds. M, Green and D., Gross (World Scientific, Singapore), p. 704.Google Scholar
282. Hawking, S.W. and Pope, C.N. (1978), ‘Generalized spin structures in quantum gravity’, Phys. Lett. 73B, 42.CrossRefGoogle Scholar
283. Hawking, S.W. (1978), ‘Spacetime foam’, NucL Phys. B144, 349.CrossRefGoogle Scholar
284. Hawking, S.W., Page, D.N. and Pope, C.N. (1979), ‘The propagation of particles in spacetime foam’, Phys. Lett. 86B, 175.CrossRefGoogle Scholar
285. Hawking, S.W., Page, D.N. and Pope, C.N. (1980), ‘Quantum gravitational bubbles’, NucL Phys. B170, 283.CrossRefGoogle Scholar
286. Helayël-Neto, J.A. and Smith, A.W. (1986), ‘A possible role of gravitino condensates in superstring compactification’, Phys. Lett. 175B, 37.CrossRefGoogle Scholar
287. Hellings, R.W., Adams, P.J., Anderson, J.D., Keesey, M.S., Lau, E.L.Standish, E.M., Canuto, V.M. and Goldman, I. (1983), ‘Experimental test of the variability of G using Viking lander ranging data’, Phys. Rev. Lett. 51, 1609.CrossRefGoogle Scholar
288. Henneaux, M. (1986), ‘Hamiltonian formulation of d = 10 supergravity theories’, Phys. Lett. 168B, 233.CrossRefGoogle Scholar
289. Hewett, J.L., Rizzo, T.G. and Robinson, J.A. (1986), ‘Low-energy phenomenology of some supersymmetric E6-breaking patterns’, Phys. Rev. D33, 1476.Google Scholar
290. Holding, S.C., Stacey, F.D. and Tuck, G.J. (1986), ‘Gravity in mines an investigation of Newton's law’, Phys. Rev. D33, 3487.Google Scholar
291. Holman, R. and Reiss, D.B. (1986), ‘Fermion masses in E8 × E′8 superstring theories’, Phys. Lett. 166B, 305.CrossRefGoogle Scholar
292. Holman, R. and Reiss, D.B. (1986), ‘Fermion masses and phenomenology in SO(10) or SU(5) superstring compactifications’, Phys. Lett. 176B, 74.CrossRefGoogle Scholar
293. Hopkinson, J.F.L., Tucker, R.W. and Collins, P.A. (1975), ‘Quantum strings and the functional calculus’, Phys. Rev. D12, 1653.Google Scholar
294. Horowitz, G. (1986), ‘What is a Calabi–Yau space?’, in Workshop on Unified String Theories, 29 July – 16 August, 1985, eds. M., Green and D., Gross (World Scientific, Singapore), p. 635.Google Scholar
295. Horvath, Z.Palla, L., Cremmer, E. and Scherk, J. (1977), ‘Grand unified schemes and spontaneous compactification’, Nucl. Phys. B127, 57.CrossRefGoogle Scholar
296. Horvath, Z. and Palla, L. (1978), ‘Spontaneous compactification and “monopoles” in higher dimensions’, Nucl. Phys. B142, 327.CrossRefGoogle Scholar
297. Hosotani, Y. (1983), ‘Dynamical gauge symmetry breaking as the Casimir effect’, Phys. Lett. 129B, 193.CrossRefGoogle Scholar
298. Howe, P.S. and West, P.C. (1984), ‘The complete N = 2, d = 10 supergravity’, Nucl. Phys. B238, 181.CrossRefGoogle Scholar
299. Howe, P.S., Papadopoulos, G. and Stelle, K.S. (1986), ‘Quantizing the N = 2 super sigma-model in two dimensions’, Phys. Lett. 174B, 405.CrossRefGoogle Scholar
300. Hsue, C.S., Sakita, B. and Virasoro, M.A. (1970), ‘Formulation of dual theory in terms of functional integrations’, Phys. Rev. D2, 2857.Google Scholar
301. Hübsch, T., Nishino, H. and Pati, J.C. (1985), ‘Do superstrings lead to quarks or to preons?’, Phys. Lett. 163B, 111.CrossRefGoogle Scholar
302. Hübsch, T. (1987), ‘Calabi-Yau manifolds: motivations and constructionsCommun. Math. Phys. 108, 291.CrossRefGoogle Scholar
303. Hull, C.M. and Witten, E. (1985), ‘Supersymmetric sigma models and the heterotic string’, Phys. Lett. 160B, 398.CrossRefGoogle Scholar
304. Hull, C.M. (1986), ‘Sigma model beta-functions and string compactifications’, Nucl. Phys. B267, 266.CrossRefGoogle Scholar
305. Hull, C.M. (1986), ‘Anomalies, ambiguities and superstrings’, Phys. Lett. 167B, 51.CrossRefGoogle Scholar
306. Husemoller, D. (1966), Fibre Bundles (Springer-Verlag).CrossRefGoogle Scholar
307. Ibáñez, L.E., Lopez, C. and Muñoz, C. (1985), ‘The low-energy supersymmetric spectrum according to N = 1 supergravity GUTs’, Nucl. Phys. B256, 218.CrossRefGoogle Scholar
308. Ibáñez, L.E. and Nilles, H.P. (1986), ‘Low-energy remnants of superstring anomaly cancellation terms’, Phys. Lett. 169B, 354.CrossRefGoogle Scholar
309. Ibáñez, L.E. (1985), ‘Phenomenology from superstrings’, in proc. of the First Torino Meeting on Superunification and Extra Dimensions (World Scientific), p. 189.Google Scholar
310. Ibáñez, L.E. (1986), ‘Some topics in the low energy physics from superstrings’, CERN preprint Th.4459/86.Google Scholar
311. Ibáñez, L.E., and Mas, J. (1987), ‘Low energy supergravity and superstring-inspired models’, Nucl. Phys. B286, 107.CrossRefGoogle Scholar
312. Ida, M., Matsumoto, H. and Yazaki, S. (1970), ‘Factorization and duality of multiloop diagrams’, Prog. Theor. Phys. 44, 456.CrossRefGoogle Scholar
313. Imbimbo, C. and Mukhi, S. (1986), ‘Chiral fermions and the Witten index for the compactified heterotic string’, Nucl. Phys. B263, 629.CrossRefGoogle Scholar
314. Ito, K. (1985), ‘Manifestly supersymmetric path integral formulation of the superstring field theories’, Phys. Lett. 164B, 301.CrossRefGoogle Scholar
315. Itoyama, H. and Leon, J. (1986), ‘Some quantum corrections to Calabi–Yau compactification’, Phys. Rev. Lett. 56, 2352.CrossRefGoogle ScholarPubMed
316. Jacob, M. editor. (1974), ‘Dual theory’, in Physics Reports, Reprint Volume I, (North-Holland, Amsterdam, 1974).
317. Jevicki, A. (1986), ‘Covariant string theory Feynman amplitudes’, Phys. Lett. 169B, 359.CrossRefGoogle Scholar
318. Joshipura, A.S. and Sarkar, U. (1986), ‘Phenomenologically consistent discrete symmetries in superstrings theories’, Phys. Rev. Lett. 57, 33.CrossRefGoogle Scholar
319. Kaku, M. and Thorn, C.B. (1970), ‘Unitary nonplanar closed loops’, Phys. Rev. D1, 2860.Google Scholar
320. Kaku, M. and Yu, L. (1970), ‘The general multi-loop Veneziano amplitude’, Phys. Lett. 33B, 166.CrossRefGoogle Scholar
321. Kaku, M. and Scherk, J. (1971), ‘Divergence of the two-loop planar graph in the dual-resonance model’, Phys. Rev. D3, 430.Google Scholar
322. Kaku, M. and Scherk, J. (1971), ‘Divergence of the AMoop planar graph in the dual-resonance model’, Phys. Rev. D3, 2000.Google Scholar
323. Kaku, M. and Yu, L. (1971), ‘Unitarization of the dual-resonance amplitude. I. Planar N-loop amplitude’, Phys. Rev. D3, 2992.Google Scholar
324. Kaku, M. and Yu, L. (1971), ‘Unitarization of the dual-resonance amplitude. II. The nonplanar N-loop amplitude’, Phys. Rev. D3, 3007.Google Scholar
325. Kaku, M. and Yu, L. (1971), ‘Unitarization of the dual-resonance amplitude. III. General rules for the orientable and nonorientable multiloop amplitudes’, Phys. Rev. D3, 3020.Google Scholar
326. Kaku, M. and Kikkawa, K. (1974), ‘Field theory of relativistic strings. I. Trees’, Phys. Rev. D10, 1110.Google Scholar
327. Kaku, M. and Kikkawa, K. (1974), ‘Field theory of relativistic strings. II. Loops and pomerons’, Phys. Rev. D10, 1823.Google Scholar
328. Kalb, M. and Ramond, P. (1974), ‘Classical direct interstring action’, Phys. Rev. D9, 2273.Google Scholar
329. Kallosh, R.E. (1985), ‘Ten-dimensional supersymmetry requires E8 × E8 or SO(32)’, Phys. Lett. 159B, 111.CrossRefGoogle Scholar
330. Kallosh, R.E. and Nilsson, B.E.W. (1986), ‘Scale invariant d = 10 superspace and the heterotic string’, Phys. Lett. 167B, 46.CrossRefGoogle Scholar
331. Kaluza, Th. (1921), ‘On the problem of unity in physics’, Site. Preuss. Akad. Wiss. K1, 966.Google Scholar
332. Kalyniak, P. and Sundaresan, M.K. (1986), ‘Symmetry-breaking scenarios of Wilson-loop broken E6’, Phys. Lett. 167B, 320.CrossRefGoogle Scholar
333. Kaplunovsky, V. (1985), ‘Mass scales of the string unification’, Phys. Rev. Lett. 55, 1036.CrossRefGoogle ScholarPubMed
334. Kendig, K. (1977), Elementary Algebraic Geometry (Springer-Verlag).CrossRefGoogle Scholar
335. Kent, A. (1986), ‘Conformal invariance, current algebra and modular invariance’, Phys. Lett 173B, 413.CrossRefGoogle Scholar
336. Kephart, T. and Frampton, P. (1983), ‘Analysis of anomalies in higher space-time dimensions’, Phys. Rev. D28, 1010.Google Scholar
337. Kikkawa, K., Sakita, B. and Virasoro, M.A. (1969), ‘Feynman-like diagrams compatible with duality. I. Planar diagrams’, Phys. Rev. 184, 1701.CrossRefGoogle Scholar
338. Kikkawa, K. (1969), ‘Regge cut from a nonplanar duality amplitude’, Phys. Rev. 187, 2249.CrossRefGoogle Scholar
339. Kikkawa, K., Klein, S.A., Sakita, B. and Virasoro, M.A. (1970), ‘Feynman-like diagrams compatible with duality. II. General discussion including nonplanar diagrams’, Phys. Rev. D1, 3258.Google Scholar
340. Kikuchi, Y., Marzban, C. and Ng, Y. (1986), ‘Heterotic string modifications of Einstein's and Yang–Mills' actions’, Phys. Lett. 176B, 57.CrossRefGoogle Scholar
341. Kim, J.E. (1979), ‘Weak-interaction singlet and strong CP invariance’, Phys. Rev. Lett. 43, 103.CrossRefGoogle Scholar
342. Kim, J.K., Koh, I.G. and Yoon, Y. (1986), ‘Calabi–Yau manifolds from arbitrary weighted homogeneous spaces’, Phys. Rev. D33, 2893.Google Scholar
343. Klein, O. (1926), ‘Quantentheorie und fünfdimensionale Relativitätstheorie’, Z. Phys. 37, 895.CrossRefGoogle Scholar
344. Koba, Z. and Nielsen, H.B. (1969), ‘Reaction amplitude for n-mesons a generalization of the Veneziano–Bardakçi–Ruegg–Virasoro model’, Nucl. Phys. B10, 633.CrossRefGoogle Scholar
345. Koba, Z. and Nielsen, H.B. (1969), ‘Manifestly crossing-invariant parametrization of n-meson amplitude’, Nucl. Phys. B12, 517.CrossRefGoogle Scholar
346. Kodaira, K. (1985), Complex Manifolds and Deformation of Complex Structures (Springer-Verlag).Google Scholar
347. Kogan, Ya., Morozov, A. and Perelomov, A. (1984), ‘Finiteness of N = 4 supersymmetry sigma models’, Pis'ma v ZhETF 40, 38.Google Scholar
348. Koh, I.G. and Nishino, H., (1985), ‘Towards realistic D = 6, N = 2 Kaluza–Klein supergravity on coset E7SO(12) × Sp(1) with chiral fermions’, Phys. Lett. 153B, 45.CrossRefGoogle Scholar
349. Kolb, E.W. and Slansky, R. (1984), ‘Dimensional reduction in the early universe: Where have all the massive particles gone?’, Phys. Lett. 135B, 378.CrossRefGoogle Scholar
350. Kolb, E.W., Perry, M.J. and Walker, T.P. (1986), ‘Time variation of fundamental constants, primordial nucleosynthesis, and the size of extra dimensions’, Phys. Rev. D33, 869.Google Scholar
351. Kreuzer, L.B. (1968), ‘Experimental measurement of the equivalence of active and passive gravitational mass’, Phys. Rev. 169, 1007.CrossRefGoogle Scholar
352. Labastida, J.M.F. (1986), ‘Equivalence of dual-field theoretical limits of superstring theories’, Phys. Lett. 171B, 377.CrossRefGoogle Scholar
353. Lam, C.S. and Li, D-X. (1986), ‘Modular invariance and one-loop finiteness of five-point amplitudes in type-II and heterotic string theories’, Phys. Rev. Lett. 56, 2575.CrossRefGoogle ScholarPubMed
354. Lang, W. and Louis, J. (1985), ‘16/16 supergravity coupled to matter: The low energy limit of the superstring’, Phys. Lett. 158B, 40.CrossRefGoogle Scholar
355. Lazarides, G., Panagiotakopoulos, C. and Shafi, Q. (1986), ‘Phenomenology and cosmology with superstrings’, Phys. Rev. Lett. 56, 432.CrossRefGoogle ScholarPubMed
356. Lazarides, G., Panagiotakopoulos, C. and Shafi, Q. (1986), ‘Baryon asymmetry, stable proton and n–n oscillations in superstring models’, Phys. Lett. 175B, 309.CrossRefGoogle Scholar
357. Linde, A.D. (1982), ‘A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems’, Phys. Lett. 108B, 389.CrossRefGoogle Scholar
358. Lorenzo, F.J., Mittelbrunn, J.R., Medrano, M.R. and Sierra, G. (1986), ‘Quantum mechanical amplitude for string propagation’, Phys. Lett. 171B, 369.CrossRefGoogle Scholar
359. Lovelace, C. (1970), ‘M-loop generalized Veneziano formula’, Phys. Lett. 32B, 703.CrossRefGoogle Scholar
360. Lovelace, C. (1971), ‘Pomeron form factors and dual Regge cuts’, Phys. Lett. 34B, 500.CrossRefGoogle Scholar
361. Luciano, J.F. (1978), ‘Space-time geometry and symmetry breaking’, Nucl. Phys. B135, 111.CrossRefGoogle Scholar
362. Maeda, K. (1986), ‘Cosmological solutions with Calabi–Yau compactification’, Phys. Lett. 166B, 59.CrossRefGoogle Scholar
363. Maeda, K. and Pollock, M.D. (1986), ‘On inflation in the heterotic superstring model’, Phys. Lett. 173, 251.CrossRefGoogle Scholar
364. Mahapatra, S. and Misra, S.P. (1986), ‘Fermion condensates and weak symmetry breaking in a superstring-based model’, Phys. Rev. D33, 3464.Google Scholar
365. Mandelstam, S. (1973), ‘Interacting-string picture of dual resonance models’, Nucl. Phys. B64, 205.CrossRefGoogle Scholar
366. Mandelstam, S. (1973), ‘Manifestly dual formulation of the Ramondmodel’, Phys. Lett. 46B, 447.CrossRefGoogle Scholar
367. Mandelstam, S. (1974), ‘Interacting-string picture of the Neveu–Schwarz–Ramond model’, Nucl. Phys. B69, 77.CrossRefGoogle Scholar
368. Mandelstam, S. (1974), ‘Dual-resonance models’, Phys. Reports C13, 259.CrossRefGoogle Scholar
369. Mandelstam, S. (1974), ‘Lorentz properties of the three-string vertex’, Nucl. Phys. B83, 413.CrossRefGoogle Scholar
370. Mandelstam, S. (1986), ‘The interacting-string picture and functional integration’, in Workshop on Unified String Theories, 29 July – 16 August, 1985, eds. M., Green and D., Gross (World Scientific, Singapore), p. 46.Google Scholar
371. Mandelstam, S. (1986), ‘Interacting-string picture of the fermionic string’, in Workshop on Unified String Theories, 29 July – 16 August, 1985, eds. M., Green and D., Gross (World Scientific, Singapore), p. 577.Google Scholar
372. Mangano, M. (1985), ‘Low energy aspects of superstring theories’, Z. Phys. C. 28, 613.CrossRefGoogle Scholar
373. Mani, H.S., Mukherjee, A., Ramachandran, R. and Balachandran, A.P. (1986), ‘Embedding of SU(5) GUT in SO(32) superstring theories’, Nucl. Phys. B263, 621.CrossRefGoogle Scholar
374. Manin, Yu.I. (1986), ‘The partition function of the Polyakov string can be expressed in terms of theta-functions’, Phys. Lett. 172B, 184.CrossRefGoogle Scholar
375. Manin, Yu.I. (1986), ‘Theta-function representation of the partition function of a Polyakov string’, Pis'ma Zh. Eksp. Teor. Fiz. 43, 161.Google Scholar
376. Manton, N.S. (1981), ‘Fermions and parity violation in dimensional reduction schemes’, Nucl. Phys. B193, 502.CrossRefGoogle Scholar
377. Manton, N.S. (1986), ‘Dimensional reduction of supergravity’, Ann. Phys. 167, 328.CrossRefGoogle Scholar
378. Marcus, N. and Sagnotti, A. (1984), ‘A test of finiteness predictions for supersymmetric theories’, Phys. Lett. 135, 85.CrossRefGoogle Scholar
379. Marcus, N. and Sagnotti, A. (1985), ‘The ultraviolet behavior of N = 4 Yang–Mills and the power counting of extended superspace’, Nucl. Phys. B256, 77.CrossRefGoogle Scholar
380. Markushevich, D.G., Ol'shanetskii, M.A. and Perelomov, A.M. (1986), ‘Vacuum configurations in superstrings associated with semisimple Lie algebras’, Pis'ma Zh. Eksp. Teor. Fiz. 43, 59.Google Scholar
381. Martinec, E. (1986), ‘Nonrenormalization theorems and fermionic string finiteness’, Phys. Lett. 171B, 189.CrossRefGoogle Scholar
382. Matsuoka, T. and Suematsu, D. (1986), ‘Gauge hierarchies in the E8 × E′8 superstring theory’, Nucl. Phys. B274, 106.CrossRefGoogle Scholar
383. McKean, H.P., Jr. and Singer, I.M. (1967), ‘Curvature and the eigenvalues of the Laplacian’, J. Diff. Geom. 1, 43.CrossRefGoogle Scholar
384. Miao, L. (1986), ‘The θ-structure in string theories: superstrings’, Phys. Lett. 175B, 284.CrossRefGoogle Scholar
385. Milnor, J.W. and Stasheff, J.D. (1974), Characteristic Classes (Princeton University Press).Google Scholar
386. Mohapatra, R.N. (1986), ‘Mechanism for understanding small neutrino mass in superstring theories’, Phys. Rev. Lett. 56, 561.CrossRefGoogle ScholarPubMed
387. Mohapatra, P.K. (1986), ‘Realization of the discrete group in E6 and the possible low-energy gauge groups in superstrings’, Phys. Lett. 174B, 51.CrossRefGoogle Scholar
388. Moore, G. and Nelson, P. (1986), ‘Measure for moduli. The Polyakov string has no local anomalies’, Nucl. Phys. B266, 58.CrossRefGoogle Scholar
389. Morozov, A. Yu. and Perelomov, A. M. (1986), ‘Hyperkählerian manifolds and exact beta functions of two-dimensional N = 4 supersymmetric sigma models’, Nucl. Phys. B271, 620.CrossRefGoogle Scholar
390. Müller–Hoissen, F. (1985), ‘Spontaneous compactification with quadratic and cubic curvature terms’, Phys. Lett. 163B, 106.CrossRefGoogle Scholar
391. Mumford, D. (1975), Curves and Their Jacobians (University of Michigan Press).Google Scholar
392. Nahm, W. (1978), ‘Supersymmetries and their representations’, Nucl. Phys. B135, 149.CrossRefGoogle Scholar
393. Nandi, S. and Sarkar, U. (1986), ‘Solution to the neutrino-mass problem in superstring E6 theory’, Phys. Rev. Lett. 56, 564.CrossRefGoogle ScholarPubMed
394. Nash, C. and Sen, S. (1983), Topology and Geometry for Physicists, (Academic Press).Google Scholar
395. Nemeschansky, D. and Sen, A. (1986), ‘Conformal invariance of supersymmetric σ-models on Calabi–Yau manifolds’, Phys. Lett. 178B, 365.CrossRefGoogle Scholar
396. Nepomechie, R.I., Wu, Y.S. and Zee, A. (1985), ‘New compactifications on Calabi–Yau manifolds’, Phys. Lett. 158B, 311.CrossRefGoogle Scholar
397. Nepomechie, R.I. (1986), ‘Chern-Simons terms and bosonic strings’, Phys. Lett. B171, 195.CrossRefGoogle Scholar
398. Neveu, A. and Scherk, J. (1970), ‘Parameter-free regularization of one-loop unitary dual diagram’, Phys. Rev. D1, 2355.Google Scholar
399. Neveu, A. and Schwarz, J.H. (1971), ‘Factorizable dual model of pions’, Nucl. Phys. B31, 86.CrossRefGoogle Scholar
400. Neveu, A. and Schwarz, J.H. (1971), ‘Quark model of dual pions’, Phys, Rev. D4, 1109.Google Scholar
401. Neveu, A. and Scherk, J. (1972), ‘Gauge invariance and uniqueness of the renormalization of dual models with unit intercept’, Nucl. Phys. B36, 317.CrossRefGoogle Scholar
402. Nielsen, H.B. and Olesen, P. (1970), ‘A parton view on dual amplitudes’, Phys. Lett. 32B, 203.CrossRefGoogle Scholar
403. Nilles, H.P. (1984), ‘Supersymmetry, supergravity and particle physics’, Phys. Reports 110, 1.CrossRefGoogle Scholar
404. Nilles, H.P. (1986), ‘Supergravity and the low-energy limit of superstring theories’, (CERN preprint Th.4444/86).Google Scholar
405. Nilsson, B.E.W. and Tollstén, A.K. (1986), ‘Superspace formulation of the ten-dimensional coupled Einstein–Yang–Mills system’, Phys. Lett. 171B, 212.CrossRefGoogle Scholar
406. Nilsson, B.E.W. and Tollstén, A.K. (1986), ‘The geometrical off-shell structure of pure N = 1; d = 10 supergravity in superspace’, Phys. Lett. 169B, 369.CrossRefGoogle Scholar
407. Nilsson, B.E.W. (1986), ‘Off-shell d = 10, N = 1 Poincaré supergravity and the embeddibility of higher-derivative field theories in superspace’, Phys. Lett. 175B, 319.CrossRefGoogle Scholar
408. Nishino, H. and Gates, S.J. (1986), ‘Dual versions of higherdimensional supergravities and anomaly cancellations in lower dimensions’, Nucl. Phys. B268, 532.CrossRefGoogle Scholar
409. Olive, D. and West, P. (1982), ‘The N = 4 supersymmetric E8 gauge theory and coset space dimensional reduction’, Nucl. Phys. B217, 248.Google Scholar
410. Palla, L. (1978), ‘Spontaneous compactification’, in Proceedings of the 1978 Tokyo Conference on High Energy Physics, p. 629.Google Scholar
411. Pati, J.C. and Salam, A. (1973), ‘Unified lepton-hadron symmetry and a gauge theory of the basic interactions’, Phys. Rev. D8, 1240.Google Scholar
412. Pati, J.C. and Salam, A. (1974), ‘Lepton number as the fourth “color”’, Phys. Rev. D10, 275.Google Scholar
413. Paton, J.E. and Chan, H.M. (1969), ‘Generalized Veneziano model with isospin’, Nucl. Phys. B10, 516.CrossRefGoogle Scholar
414. Peccei, R.D. and Quinn, H. (1977), ‘CP conservation in the presence of pseudoparticles’, Phys. Rev. Lett. 38, 1440.CrossRefGoogle Scholar
415. Pilch, K. and Schellekens, A.N. (1985), ‘Fermion spectra from superstrings’, Nucl Phys. B259, 637.CrossRefGoogle Scholar
416. Polchinski, J. (1986), ‘Evaluation of the one loop string path integral’, Commun. Math. Phys. 104, 37.CrossRefGoogle Scholar
417. Polyakov, A.M. (1981), ‘Quantum geometry of bosonic strings’, Phys. Lett. 103B, 207.CrossRefGoogle Scholar
418. Polyakov, A.M. (1981), ‘Quantum geometry of fermionic strings’, Phys. Lett. 103B, 211.CrossRefGoogle Scholar
419. Pope, C.N., Sohnius, M.F. and Stelle, K.S. (1987), ‘Counterterm counterexamples’, Nucl. Phys. B283, 192.CrossRefGoogle Scholar
420. Preskill, J., Frampton, P.H. and van Dam, H. (1983), ‘Anomalies and fermion masses in D dimensions’, Phys. Lett. 124B, 209.CrossRefGoogle Scholar
421. Quiros, M. (1986), ‘On the effective potential and gravitino mass determination in compactified superstring models’, Phys. Lett. 173B, 265.CrossRefGoogle Scholar
422. Rabin, J.M. (1986), ‘Chern–Simons and Wess–Zumino terms in string theory’, Phys. Lett. 172B, 333.CrossRefGoogle Scholar
423. Raby, S. and Slansky, R. (1986), ‘Compactification of closed bosonic strings’, Phys. Rev. Lett. 56, 693.CrossRefGoogle ScholarPubMed
424. Ramond, P. (1971), ‘Dual theory for free fermions’, Phys. Rev. D3, 2415.Google Scholar
425. Randjbar-Daemi, S., Salam, A. and Strathdee, S. (1983), ‘Spontaneous compactification in six-dimensional Einstein–Maxwell theory’, Nucl. Phys. B214, 491.CrossRefGoogle Scholar
426. Randjbar–Daemi, S., Salam, A., Sezgin, E. and Strathdee, J. (1985), ‘An anomaly-free model in six dimensions’, Phys. Lett. 151B, 351.CrossRefGoogle Scholar
427. Rebbi, C. (1974), ‘Dual models and relativistic quantum strings’, Phys. Reports C12, 1.CrossRefGoogle Scholar
428. Restuccia, A. and Taylor, J.G. (1986), ‘On the construction of higher loop closed superstring amplitudes’, Phys. Lett. 174B, 56.CrossRefGoogle Scholar
429. Rohm, R. (1984), ‘Spontaneous supersymmetry breaking in supersymmetric string theories’, Nucl. Phys. B237, 553.CrossRefGoogle Scholar
430. Rohm, R. and Witten, E. (1986), ‘The antisymmetric tensor field in superstring theory’, Ann. Phys. 170, 454.CrossRefGoogle Scholar
431. Romans, L.J. (1985), ‘New compactifications of chiral N = 2, d = 10 supergravity’, Phys. Lett. 153B, 392.CrossRefGoogle Scholar
432. Romans, L.J. and Warner, N.P. (1986), ‘Some supersymmetric counterparts of the Lorentz Chern–Simons term’, Nucl. Phys. B273, 320.CrossRefGoogle Scholar
433. Romans, L.J. (1986), ‘Massive N = 2a supergravity in ten dimensions’, Phys. Lett. 169B, 374.CrossRefGoogle Scholar
434. Sakai, N. and Senda, I. (1986), ‘Vacuum energies of string compactified on torus’, Prog. Theor. Phys. 75, 692.CrossRefGoogle Scholar
435. Salam, A. and Strathdee, J. (1982), ‘On Kaluza–Klein theory’, Ann. Phys. 141, 316.CrossRefGoogle Scholar
436. Schellekens, A.N. (1986), ‘Anomaly cancellation in ten dimensions and beyond’, Phys. Lett. 175B, 41.CrossRefGoogle Scholar
437. Scherk, J. (1971), ‘Renormalization in the dual resonance model. Its arbitrariness in the general case and for unit intercept’, Nucl. Phys. B29, 357.CrossRefGoogle Scholar
438. Scherk, J. (1971), ‘Zero-slope limit of the dual resonance model’, Nucl Phys. B31, 222.CrossRefGoogle Scholar
439. Scherk, J. and Schwarz, J.H. (1974), ‘Dual models for non-hadrons’, Nucl. Phys. B81, 118.CrossRefGoogle Scholar
440. Scherk, J. and Schwarz, J.H. (1974), ‘Dual models and the geometry of space-time’, Phys. Lett. 52B, 347.CrossRefGoogle Scholar
441. Scherk, J. (1975), ‘An introduction to the theory of dual models and strings’, Rev. Mod. Phys. 47, 123.CrossRefGoogle Scholar
442. Scherk, J. and Schwarz, J.H. (1979), ‘How to get masses from extra dimensions’, Nucl Phys. B153, 61.CrossRefGoogle Scholar
443. Scherk, J. and Schwarz, J.H. (1979), ‘Spontaneous breaking of supersymmetry through dimensional reduction’, Phys. Lett. 82B, 60.CrossRefGoogle Scholar
444. Schwarz, J.H. (1973), ‘Dual resonance theory’, Phys. Reports 8, 269.CrossRefGoogle Scholar
445. Schwarz, J.H. (1973), ‘Off-shell dual amplitudes without ghosts’, Nucl. Phys. B65, 131.CrossRefGoogle Scholar
446. Schwarz, J.H. and Wu, C.C. (1974), ‘Off-mass-shell dual amplitudes (II)’, Nucl. Phys. B72, 397.CrossRefGoogle Scholar
447. Schwarz, J.H. (1974), ‘Off-mass-shell dual amplitudes III’, Nucl Phys. B76, 93.CrossRefGoogle Scholar
448. Schwarz, J.H. (1982), ‘Superstring theory’, Phys. Reports 89, 223.CrossRefGoogle Scholar
449. Schwarz, J.H. and West, P.C. (1983), ‘Symmetries and transformations of chiral N = 2, D = 10 supergravity’, Phys. Lett. 126B, 301.CrossRefGoogle Scholar
450. Schwarz, J.H. (1983), ‘Covariant field equations of chiral N = 2, D = 10 supergravity’, Nucl Phys. B226, 269.CrossRefGoogle Scholar
451. Schwarz, J.H. (1985), Superstrings. The First Fifteen Years of Superstring Theory, in 2 volumes (World Scientific, Singapore).CrossRefGoogle Scholar
452. Schwinger, J. (1951), ‘On gauge invariance and vacuum polarization’, Phys. Rev. 82, 664.CrossRefGoogle Scholar
453. Segrè, G. C. (1985), ‘Low energy physics from superstrings’ (Cargese summer school lectures).Google Scholar
454. Seiberg, N. and Witten, E. (1986), ‘Spin structures in string theory’, Nucl Phys. B276, 272.CrossRefGoogle Scholar
455. Sen, A. (1985), ‘Heterotic string in an arbitrary background field’, Phys. Rev. D32, 2102.Google Scholar
456. Sen, A. (1986), ‘Local gauge and Lorentz invariance of heterotic string theory’, Phys. Lett. 166B, 300.CrossRefGoogle Scholar
457. Sen, A. (1986), ‘σ model approach to the heterotic string theory’, in Workshop on Unified String Theories, 29 July – 16 August, 1985, eds. M., Green and D., Gross (World Scientific, Singapore), p. 497.Google Scholar
458. Sen, A. (1986), ‘Superspace analysis of local Lorentz and gauge anomalies in the heterotic string theory’, Phys. Lett. 174B, 277.CrossRefGoogle Scholar
459. Sen, A. (1986), ‘Central charge of the Virasoro algebra for supersymmetric sigma models on Calabi-Yau manifolds’, Phys. Lett. 178B, 370.CrossRefGoogle Scholar
460. Shafarevich, I.R. (1974), Basic Algebraic Geometry (Springer-Verlag).CrossRefGoogle Scholar
461. Shafi, Q. and Wetterich, C. (1983), Cosmology from higher-dimensional gravity', Phys. Lett. 129B, 387.CrossRefGoogle Scholar
462. Shapiro, J.A. (1970), ‘Electrostatic nalogue for the Virasoro model’, Phys. Lett. 33B, 361.CrossRefGoogle Scholar
463. Shapiro, J.A. (1971), ‘Nonorientable dual loop graphs and isospin’, Phys. Rev. D4, 1249.Google Scholar
464. Shapiro, J.A. (1972), ‘Loop graph in the dual-tube model’, Phys. Rev. D5, 1945.Google Scholar
465. Shapiro, J.A. (1975), ‘Renormalization of dual models’, Phys. Rev. D11, 2937.Google Scholar
466. Sierra, G. and Townsend, P.K. (1984), ‘Chiral anomalies and constraints on the gauge group in higher-dimensional supersymmetric Yang–Mills theories’, Nucl Phys. B222, 493.Google Scholar
467. Slansky, R. (1981), ‘Group theory for unified model building’, Phys. Reports 79, 1.CrossRefGoogle Scholar
468. Steinberger, J. (1949), ‘On the use of subtraction fields and the lifetimes of some types of meson decay’, Phys. Rev. 76, 1180.CrossRefGoogle Scholar
469. Strominger, A. and Witten, E. (1985), ‘New manifolds for superstring compactification’, Commun. Math. Phys. 101, 341.CrossRefGoogle Scholar
470. Strominger, A. (1985), ‘Topology of superstring compactification’, in Workshop on Unified String Theories, 29 July – 16 August, 1985, eds. M., Green and D., Gross (World Scientific, Singapore), p. 654.Google Scholar
471. Strominger, A. (1986), ‘Superstrings with torsion’, Nucl. Phys. B274, 253.CrossRefGoogle Scholar
472. Tanii, Y. (1985), ‘Absence of the supersymmetry anomaly in heterotic string theory’, Phys. Lett. 165B, 275.CrossRefGoogle Scholar
473. Taylor, T.R. (1985), ‘Hidden sector of superstring models: An effective Lagrangian analysis’, Phys. Lett. 164B, 43.CrossRefGoogle Scholar
474. Thierry–Mieg, J. (1985), ‘Remarks concerning the E8 × E8 and D16 string theories’, Phys. Lett. 156B, 199.CrossRefGoogle Scholar
475. Thierry–Mieg, J. (1986), ‘Anomaly cancellation and fermionisation in 10-, 18-and 26-dimensional superstrings’, Phys. Lett. 171B, 163.CrossRefGoogle Scholar
476. Thorn, C.B. (1986), ‘The theory of interacting relativistic strings’, Nucl. Phys. B263, 493.CrossRefGoogle Scholar
477. Thorn, C.B. (1986), ‘Introduction to the theory of relativistic strings’, in Workshop on Unified String Theories, 29 July – 16 August, 1985, eds. M., Green and D., Gross (World Scientific, Singapore), p. 5.Google Scholar
478. Townsend, P.K. and Sierra, G. (1983), ‘Chiral anomalies and constraints on the gauge group in higher-dimensional supersymmetric Yang-Mills theories’, Nucl. Phys. B222, 493.CrossRefGoogle Scholar
479. Uhlenbeck, K. and Yau, S.T. (1986), preprint.
480. Vafa, C. (1986), ‘Modular invariance and discrete torsion on orbifolds’,Nucl. Phys. B273, 592.CrossRefGoogle Scholar
481. Van Nieuwenhuizen, P. (1981), ‘Supergravity’, Phys. Reports 68, 189.CrossRefGoogle Scholar
482. Veneziano, G. (1974), ‘An introduction to dual models of strong interactions and their physical motivations’, Phys. Rev. C9, 199.Google Scholar
483. Weinberg, S. (1972), Gravitation and Cosmology (Wiley-Interscience).Google Scholar
484. Weinberg, S. (1978), ‘A new light boson?’, Phys. Rev. Lett. 40, 223.CrossRefGoogle Scholar
485. Weinberg, S. (1984), ‘Charges from extra dimensions’, Phys. Lett. 125B, 265.Google Scholar
486. Weinberg, S. (1984), ‘Quasi-Riemannian theories of gravitation in more than four dimensions’, Phys. Lett. 138B, 47.CrossRefGoogle Scholar
487. Weiss, N. (1986), ‘Superstring cosmology: Is it consistent with a matter-dominated universe?’, Phys. Lett. 172B, 180.CrossRefGoogle Scholar
488. Wells, R.O., Jr. (1980), Differential Analysis on Complex Manifolds, (Springer-Verlag).CrossRefGoogle Scholar
489. Wen, X.G. and Witten, E. (1986), ‘World-sheet instantons and the Peccei–Quinn symmetry’, Phys. Lett. 166B, 397.CrossRefGoogle Scholar
490. Wen, X.G. and Witten, E. (1985), ‘Electric and magnetic charges in superstring models’, Nucl. Phys. B261, 651.CrossRefGoogle Scholar
491. Wess, J. and Zumino, B. (1971), ‘Consequences of anomalous Ward identities’, Phys. Lett. 37B, 95.CrossRefGoogle Scholar
492. Wess, J. and Zumino, B. (1974), ‘Supergauge transformations in four dimensions’, Nucl. Phys. B70, 39.CrossRefGoogle Scholar
493. Wess, J. and Bagger, J. (1983), Supersymmetry and Supergravity, (Princeton Univ. Press).Google Scholar
494. Wetterich, C. (1982), ‘SO(10) unification from higher dimensions’, Phys. Lett. 110B, 379.CrossRefGoogle Scholar
495. Wetterich, C. (1982), ‘Spontaneous compactification in higher dimensional gravity’, Phys. Lett. 113B, 377.CrossRefGoogle Scholar
496. Wetterich, C. (1983), ‘Massless spinors in more than four dimensions’, Nucl. Phys. B211, 177.CrossRefGoogle Scholar
497. Wetterich, C. (1983), ‘Dimensional reduction of Weyl, Majorana and Majorana–Weyl spinors’, Nucl. Phys. B222, 20.CrossRefGoogle Scholar
498. Wetterich, C. (1983), ‘Chirality index and dimensional reduction of fermions’, Nucl. Phys. B223, 109.CrossRefGoogle Scholar
499. Wetterich, C. (1984), ‘Discrete symmetries in Kaluza-Klein theories’, Nucl. Phys. B234, 413.CrossRefGoogle Scholar
500. Wetterich, C. (1984), ‘Dimensional reduction of fermions in generalized gravity’, Nucl. Phys. B242, 473.CrossRefGoogle Scholar
501. Wetterich, C. (1985), ‘Spontaneous symmetry breaking and fermion chirality in higher-dimensional gauge theory’, Nucl. Phys. B260, 402.CrossRefGoogle Scholar
502. Wetterich, C. (1985), ‘Fermion mass predictions from higher dimensions’, Nucl. Phys. B261, 461.CrossRefGoogle Scholar
503. Wilczek, F. (1978), ‘Problem of strong P and T invariance in the presence of instantons’, Phys. Rev. Lett. 40, 279.CrossRefGoogle Scholar
504. Wilczek, F. and Zee, A. (1979), Princeton preprint, unpublished.
505. Wilczek, F. and Zee, A. (1982), ‘Families from spinors’, Phys. Rev. D25, 553.Google Scholar
506. Winnberg, J.-O. (1975), ‘Recalculation of the single planar dual fermion loop’, Nucl. Phys. B94, 205.CrossRefGoogle Scholar
507. Witten, E. (1981), ‘Search for a realistic Kaluza–Klein theory’, Nucl. Phys. B186, 412.CrossRefGoogle Scholar
508. Witten, E. (1981), ‘Dynamical breaking of supersymmetry’, Nucl. Phys. B188, 513.CrossRefGoogle Scholar
509. Witten, E. (1982), ‘Instability of the Kaluza–Klein vacuum’, Nucl. Phys. B195, 481.CrossRefGoogle Scholar
510. Witten, E. (1982), ‘Constraints on supersymmetry breaking’, Nucl. Phys. B202, 253.CrossRefGoogle Scholar
511. Witten, E. (1982) ‘Supersymmetry and Morse theory’, J. Diff. Geom. 17, 661.CrossRef
512. Witten, E. (1983), ‘D = 10 superstring theory’, in Fourth Workshop on Grand Unification, eds. P., Langacker et al. (Birkhauser), p. 395.CrossRefGoogle Scholar
513. Witten, E. (1983), ‘Global aspects of current algebra’, Nucl. Phys. B223, 422.CrossRefGoogle Scholar
514. Witten, E. (1984), ‘Some properties of O(32) superstrings’, Phys. Lett. 149B, 351.CrossRefGoogle Scholar
515. Witten, E. (1985), ‘Cosmic superstrings’, Phys. Lett. 153B, 243.CrossRefGoogle Scholar
516. Witten, E. (1985), ‘Dimensional reduction of superstring models’, Phys. Lett. 155B, 151.CrossRefGoogle Scholar
517. Witten, E. (1985), ‘Superconducting strings’, Nucl. Phys. B249, 557.CrossRefGoogle Scholar
518. Witten, E. (1985), ‘Symmetry breaking patterns in superstring models’, Nucl. Phys. B258, 75.CrossRefGoogle Scholar
519. Witten, E. (1985), ‘Fermion quantum numbers in Kaluza–Klein theory’, in Shelter Island II: Proceedings of the 1983 Shelter Island Conference on Quantum Field Theory and the Fundamental Problems of Physics, eds. R., Jackiw et al. (MIT Press, Cambridge, Mass.), p. 227.Google Scholar
520. Witten, E. (1985), ‘Global gravitational anomalies’, Commun. Math. Phys. 100, 197.CrossRefGoogle Scholar
521. Witten, E. (1986), ‘Global anomalies in string theory’, in Symposium on Anomalies, Geometry, Topology, March 28-30, 1985, eds. W.A., Bardeen and A.R., White (World Scientific, Singapore), p. 61.Google Scholar
522. Witten, E. (1986), ‘Topological tools in ten dimensional physics’, in Workshop on Unified String Theories, 29 July – 16 August, 1985, eds M., Green and D., Gross (World Scientific, Singapore), p. 400. With an appendix by R.E. Stong, ‘Calculation of ΩSpin11(K(Z,4))’.Google Scholar
523. Witten, E. (1986), ‘New issues in manifolds of SU(3) holonomy’, Nucl. Phys. B268, 79.CrossRefGoogle Scholar
524. Witten, L. and Witten, E. (1987), ‘Large radius expansion of superstring compactification’, Nucl. Phys. B281, 109.CrossRefGoogle Scholar
525. Wu, Y.-S. and Zi, Wang (1986), ‘The time variation of Newton's gravitational constant in superstring theories’, Phys. Rev. Lett. 57, 1978.CrossRefGoogle ScholarPubMed
526. Yahikozawa, S. (1986), ‘Evaluation of the one-loop amplitude in heterotic string theory’, Phys. Lett. 166B, 135.CrossRefGoogle Scholar
527. Yamamoto, K. (1985), ‘Saving the axions in superstring models’, Phys. Lett. 161B, 289.CrossRefGoogle Scholar
528. Yamamoto, K. (1986), ‘The phase transition associated with intermediate gauge symmetry breaking in superstring models’, Phys. Lett. 168B, 341.CrossRefGoogle Scholar
529. Yasuda, O. (1986), ‘Higher derivative terms and zero modes in D = 10 supergravity’, Phys. Lett. 169B, 64.CrossRefGoogle Scholar
530. Yau, S.T. (1977), ‘Calabi's conjecture and some new results in algebraic geometry’, Proc. Natl. Acad. Sci. 74, 1798.CrossRefGoogle ScholarPubMed
531. Yau, S.T. (1985), ‘Compact three dimensional Kahler manifolds with zero Ricci curvature’, in Symp. on Anomalies, Geometry, Topology, March 28 – 30, 1985, eds. W.A., Bardeen and A.R., White (World Scientific, Singapore), p. 395.Google Scholar
532. Zee, A. (1972), ‘Axial-vector anomalies and the scaling property of field theory’, Phys. Rev. Lett. 29, 1198.CrossRefGoogle Scholar
533. Zee, A. (1982), Unity of Forces in The Universe (World Scientific).CrossRefGoogle Scholar
534. Zumino, B. (1975), ‘Supersymmetry and the vacuum’, Nucl. Phys. B89, 535.CrossRefGoogle Scholar
535. Zumino, B., Wu, Y.S. and Zee, A. (1984), ‘Chiral anomalies, higher dimensions, and differential geometry’, Nucl. Phys. B239, 477.CrossRefGoogle Scholar
536. Zwiebach, B. (1985), ‘Curvature squared terms and string theories’, Phys. Lett. 156B, 315.CrossRefGoogle Scholar