Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-swqlm Total loading time: 0.299 Render date: 2021-12-07T16:27:26.781Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

8 - One-loop diagrams in the bosonic string theory

Published online by Cambridge University Press:  05 September 2012

Michael B. Green
Affiliation:
University of Cambridge
John H. Schwarz
Affiliation:
California Institute of Technology
Edward Witten
Affiliation:
Institute for Advanced Study, Princeton, New Jersey
Get access

Summary

Our discussions of string scattering amplitudes in the first volume of this book were limited to tree diagrams. These are the lowest-order approximations to string scattering amplitudes. In principle, quantum corrections to the tree level or classical results should be obtained by a perturbation expansion derived from string quantum field theory. Our present state of knowledge does not make this possible. Historically, loop diagrams were constructed by using unitarity to construct loop diagrams from tree diagrams. This unitarization of the tree diagrams led, in time, to the topological expansion, as sketched in chapter 1.

As has been explained in chapters 1 and 7, the tree amplitudes for onmass-shell string states can be represented by functional integrals over Riemann surfaces that are topologically equivalent to a disk (for open strings) or a sphere (for closed strings). Higher-order corrections are identified with functional integrals over surfaces of higher genus. An important ingredient in the calculation of scattering amplitudes is the correlation function of vertex operators corresponding to the external particles emitted from the surface. The possible world-sheet topologies include surfaces with holes or “windows” cut out (for type I theories, where the surfaces have boundaries) or “handles” attached. For theories with oriented strings the surfaces must be orientable. Similarly, for theories containing only closed strings the surfaces must be closed.

Type
Chapter
Information
Superstring Theory
25th Anniversary Edition
, pp. 1 - 74
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Send book to Kindle

To send this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Send book to Dropbox

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Dropbox.

Available formats
×

Send book to Google Drive

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Google Drive.

Available formats
×