Skip to main content Accessibility help
Hostname: page-component-99c86f546-t82dr Total loading time: 1.017 Render date: 2021-12-08T10:53:54.246Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }


Published online by Cambridge University Press:  05 September 2012

Michael B. Green
University of Cambridge
John H. Schwarz
California Institute of Technology
Edward Witten
Institute for Advanced Study, Princeton, New Jersey
Get access


Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Superstring Theory
25th Anniversary Edition
, pp. 435 - 464
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


1. Ademollo, M., Rubinstein, H.R., Veneziano, G. and Virasoro, M.A. (1968), ‘Bootstrap of meson trajectories from superconvergence’, Phys. Rev. 176, 1904.CrossRefGoogle Scholar
2. Ademollo, M., Veneziano, G. and Weinberg, S. (1969), ‘Quantization conditions for Regge intercepts and hadron masses’, Phys. Rev. Lett. 22, 83.CrossRefGoogle Scholar
3. Ademollo, M., Del Giudice, E., Di Vecchia, P. and Fubini, S. (1974), 'Couplings of three exrefd particles in the dual-resonance model', Nuovo Cim. 19A, 181.CrossRefGoogle Scholar
4. Ademollo, M., D'Adda, A., D'Auria, R., Napolitano, E., Sciuto, S., Di Vecchia, P., Gliozzi, F., Musto, R. and Nicodemi, F. (1974), ‘Theory of an interacting string and dual-resonance model’, Nuovo Cim. 21A, 77.CrossRefGoogle Scholar
5. Ademollo, M., Brink, L., D'Adda, A., D'Auria, R., Napolitano, E., Sciuto, S., Del Giudice, E., Di Vecchia, P., Ferrara, S., Gliozzi, F., Musto, R., Pettorini, R. and Schwarz, J. (1976), ‘Dual string with U(l) colour symmetry’, Nucl. Phys. B111, 77.CrossRefGoogle Scholar
6. Ademollo, M., Brink, L., D'Adda, A., D'Auria, R., Napolitano, E., Sciuto, S., Del Giudice, E., Di Vecchia, P., Ferrara, S., Gliozzi, F., Musto, R. and Pettorino, R. (1976), ‘Dual string models with nonAbelian colour and flavour symmetries’, Nucl. Phys. B114, 297.CrossRefGoogle Scholar
7. Ademollo, M., Brink, L., D'Adda, A., D'Auria, R., Napolitano, E., Sciuto, S., Del Giudice, E., Di Vecchia, P., Ferrara, S., Gliozzi, F., Musto, R., and Pettorino, R. (1976), ‘Supersymmetric strings and color confinement’, Phys. Lett. 62B, 105.CrossRefGoogle Scholar
8. Affleck, Ian. (1985), ‘Critical behavior of two-dimensional systems with continuous symmetries’, Phys. Rev. Lett. 55, 1355.CrossRefGoogle ScholarPubMed
9. Aharonov, Y., Casher, A. and Susskind, L. (1971), ‘Dual-parton model for mesons and baryons’, Phys. Lett. 35B, 512.CrossRefGoogle Scholar
10. Aharonov, Y., Casher, A. and Susskind, L. (1972), ‘Spin-½ partons in a dual model of hadrons’, Phys. Rev. D5, 988.Google Scholar
11. Alessandrini, V., Amati, D., Le Bellac, M. and Olive, D. (1970), ‘Duality and gauge properties of twisted propagators in multi-Veneziano theory’, Phys. Lett. 32B, 285.CrossRefGoogle Scholar
12. Alessandrini, V., Amati, D., Le Bellac, M. and Olive, D. (1971), ‘The operator approach to dual multiparticle theory’, Phys. Reports Cl, 269.CrossRefGoogle Scholar
13. Altschüler, D. and Nilles, H.P. (1985), ‘String models with lower critical dimension, compactification and nonabelian symmetries’, Phys. Lett. 154B, 135.CrossRefGoogle Scholar
14. Alvarez, E. (1986), ‘Strings at finite temperature’, Nucl. Phys. B269, 596.CrossRefGoogle Scholar
15. Alvarez, O. (1983), ‘Theory of strings with boundaries: Fluctuations, topology and quantum geometry’, Nucl. Phys. B216, 125.CrossRefGoogle Scholar
16. Alvarez, O. (1986), ‘Differential geometry in string models’, in Workshop on Unified String Theories, 29 July – 16 August, 1985, eds. M., Green and D., Gross (World Scientific, Singapore), p. 103.Google Scholar
17. Alvarez-Gaumé, L. and Freedman, D.Z. (1980), ‘Kahler geometry and the renormalization of supersymmetric σ models’, Phys. Rev. D22, 846.Google Scholar
18. Alvarez-Gaumé, L. and Freedman, D.Z. (1980), ‘Geometrical structure and ultraviolet finiteness in the supersymmetric σ-model’, Commun. Math. Phys. 80, 443.CrossRefGoogle Scholar
19. Alvarez-Gaumé, L., Freedman, D.Z. and Mukhi, S. (1981), ‘The background field method and the ultraviolet structure of the supersymmetric nonlinear σ-model’, Ann. Phys. 134, 85.CrossRefGoogle Scholar
20. Alvarez-Gaumé, L. and Witten, E. (1983) ‘Gravitational anomalies’, Nucl. Phys. B234, 269.Google Scholar
21. Amati, D., Le Bellac, M. and Olive, D. (1970), ‘The twisting operator in multi-Veneziano theory’, Nuovo Cim. 66A, 831.CrossRefGoogle Scholar
22. Ambjør, J., Durhuus, B., Frohlich, J. and Orland, P. (1986), ‘The appearance of critical dimensions in regulated string theories’, Nucl. Phys. B270[FS16], 457.CrossRefGoogle Scholar
23. Antoniadis, I., Bachas, C., Kounnas, C. and Windey, P. (1986), ‘Supersymmetry among free fermions and superstrings’, Phys. Lett. 171B, 51.CrossRefGoogle Scholar
24. Aoyama, H., Dhar, A. and Namazie, M.A. (1986), ‘Covariant amplitudes in Polyakov string theory’, Nucl. Phys. B267, 605.CrossRefGoogle Scholar
25. Appelquist, T., Chodos, A. and Freund, P., (1987), Modem Kaluza-Klein Theory and Applications (Benjamin/Cummings).Google Scholar
26. Ardalan, F. and Mansouri, F. (1986), ‘Interacting parastrings’, Phys. Rev. Lett. 56, 2456.CrossRefGoogle ScholarPubMed
27. Atick, J.J., Dhar, A. and Ratra, B. (1986), ‘Superstring propagation in curved superspace in the presence of background super Yang–Mills fields’, Phys. Lett. 169B, 54.CrossRefGoogle Scholar
28. Atick, J.J., Dhar, A. and Ratra, B. (1986), ‘Superspace formulation of ten dimensional supergravity coupled to N = 1 super-Yang-Mills theory’, Phys. Rev. D33, 2824.Google Scholar
29. Balázs, L.P. (1986), ‘Could there be a Planck-scale unitary bootstrap underlying the superstring?’, Phys. Rev. Lett. 56, 1759.CrossRefGoogle ScholarPubMed
30. Banks, T., Horn, D. and Neuberger, H. (1976), ‘Bosonization of the SU(N) Thirring models’, Nucl. Phys. B108, 119.CrossRefGoogle Scholar
31. Bardakçi, K. and Ruegg, H. (1968), ‘Reggeized resonance model for the production amplitude’, Phys. Lett. 28B, 342.CrossRefGoogle Scholar
32. Bardakçi, K. and Ruegg, H. (1969), ‘Reggeized resonance model for arbitrary production processes’, Phys. Rev. 181, 1884.CrossRefGoogle Scholar
33. Bardakçi, K. and Mandelstam, S. (1969), ‘Analytic solution of the linear-trajectory bootstrap’, Phys. Rev.184, 1640.Google Scholar
34. Bardakiç, K. and Halpern, M.B. (1971), ‘New dual quark models’, Phys. Rev. D3, 2493.Google Scholar
35. Batalin, I.A. and Vilkovisky, G.A. (1977), ‘Relativistic S-matrix of dynamical systems with boson and fermion constraints’, Phys. Lett. 69B, 309.CrossRefGoogle Scholar
36. Becchi, C., Rouet, A. and Stora, R. (1974), ‘The abelian Higgs Kibble model, unitarity of the S-operator’, Phys. Lett. 52B, 344.CrossRefGoogle Scholar
37. Becchi, C., Rouet, A. and Stora, R. (1976), ‘Renormalization of gauge theories’, Ann. Phys. 98, 287.CrossRefGoogle Scholar
38. Belavin, A.A., Polyakov, A.M. and Zamolodchikov, A.B. (1984), ‘Infinite conformal symmetry in two-dimensional quantum field theory“, Nucl. Phys. B241, 333.CrossRefGoogle Scholar
39. Bengtsson, I. and Cederwall, M. (1984), ‘Covariant superstrings do not admit covariant gauge fixing’, Göteborg preprint 84-21-Rev.Google Scholar
40. Bergshoeff, E., Nishino, H. and Sezgin, E. (1986), ‘Heterotic σ-models and conformal supergravity in two dimensions’, Phys. Lett. 166B, 141.CrossRefGoogle Scholar
41. Bergshoeff, E., Sezgin, E. and Townsend, P.K. (1986), ‘Superstring actions in D = 3,4,6,10 curved superspace’, Phys. Lett. 169B, 191.CrossRefGoogle Scholar
42. Bergshoeff, E., Randjbar-Daemi, S., Salam, A., Sarmadi, H. and Sezgin, E. (1986), ‘Locally supersymmetric σ-model with Wess-Zumino term in two dimensions and critical dimensions for strings’, Nucl. Phys. B269, 77.CrossRefGoogle Scholar
43. Bershadsky, M.A., Knizhnik, V.G. and Teitelman, M.G. (1985), ‘Superconformal symmetry in two dimensions’, Phys. Lett. 151B, 31.CrossRefGoogle Scholar
44. Bershadsky, M. (1986), ‘Superconformal algebras in two dimensions with arbitrary N’, Phys. Lett. 174B, 285.CrossRefGoogle Scholar
45. Bjorken, J.D., Kogut, J.B. and Soper, D.E. (1971), ‘Quantum electrodynamics at infinite momentum: Scattering from an external field’, Phys. Rev. D3, 1382.Google Scholar
46. Boucher, W., Friedan, D. and Kent, A. (1986), ‘Determinant formulae and unitarity for the N = 2 superconformal algebras in two dimensions or exact results on string compactification’, Phys. Lett. 172B, 316.CrossRefGoogle Scholar
47. Boulware, D.G. and Newman, E.T. (1986), ‘The geometry of open bosonic strings’, Phys. Lett. 174B, 378.CrossRefGoogle Scholar
48. Bouwknegt, P. and Van Nieuwenhuizen, P. (1986), ‘Critical dimensions of the N=l and N=2 spinning string derived from Fujikawa's approach’, Class. Quant. Grav. 3, 207.CrossRefGoogle Scholar
49. Bowick, M.J. and Wijewardhana, L.C.R. (1985), ‘Superstrings at high temperature’, Phys. Rev. Lett. 54, 2485.CrossRefGoogle ScholarPubMed
50. Bowick, M. and Giirsey, F. (1986), ‘The algebraic structure of BRST quantization’, Phys. Lett. 175B, 182.CrossRefGoogle Scholar
51. Braaten, E., Curtright, T.L. and Zachos, C.K. (1985), ‘Torsion and geometrostasis in nonlinear σ models’, Nucl. Phys. B260, 630.CrossRefGoogle Scholar
52. Brink, L. and Olive, D. (1973), ‘The physical state projection operator in dual resonance models for the critical dimension of space-time’, Nucl. Phys. B56, 253.CrossRefGoogle Scholar
53. Brink, L. and Nielsen, H.B. (1973), ‘A simple physical interpretation of the critical dimension of space-time in dual models’, Phys. Lett. 45B, 332.CrossRefGoogle Scholar
54. Brink, L., Olive, D., Rebbi, C. and Scherk, J. (1973), ‘The missing gauge conditions for the dual fermion emission vertex and their consequences’, Phys. Lett. 45B, 379.CrossRefGoogle Scholar
55. Brink, L. and Winnberg, J.O. (1976), ‘The superoperator formalism of the Neveu-Schwarz-Ramond model’, Nucl. Phys. B103, 445.CrossRefGoogle Scholar
56. Brink, L., Di Vecchia, P. and Howe, P. (1976), ‘A locally supersymmetric and reparametrization invariant action for the spinning string’, Phys. Lett. 65B, 471.CrossRefGoogle Scholar
57. Brink, L., Schwarz, J.H. and Scherk, J. (1977), ‘Supersymmetric Yang-Mills theories’, Nucl. Phys. B121, 77.CrossRefGoogle Scholar
58. Brink, L. and Schwarz, J.H. (1977), ‘Local complex supersymmetry in two dimensions’, Nucl. Phys. B121, 285.CrossRefGoogle Scholar
59. Brink, L. and Schwarz, J.H. (1981), ‘Quantum superspace’, Phys. Lett. 100B, 310.CrossRefGoogle Scholar
60. Brink, L. and Green, M.B. (1981), ‘Point-like particles and off-shell supersymmetry algebras’, Phys. Lett. 106B, 393.CrossRefGoogle Scholar
61. Brink, L., Lindgren, O. and Nilsson, B.E.W. (1983), ‘N = 4 Yang-Mills theory on the light cone’, Nucl. Phys. B212, 401.CrossRefGoogle Scholar
62. Brink, L. (1985), ‘Superstrings’, Lectures delivered at the 1985 Les Houches summer school; Göteborg preprint 85–68.Google Scholar
63. Brooks, R., Muhammad, F. and Gates, S.J. (1986), ‘Unidexterous D = 2 supersymmetry in superspace’, Nucl. Phys. B268, 599.CrossRefGoogle Scholar
64. Brower, R.C. and Thorn, C.B. (1971), ‘Eliminating spurious states from the dual resonance model’, Nucl. Phys. B31, 163.CrossRefGoogle Scholar
65. Brower, R.C. and Goddard, P. (1972), ‘Collinear algebra for the dual model’, Nucl. Phys. B40, 437.CrossRefGoogle Scholar
66. Brower, R.C. (1972), ‘Spectrum-generating algebra and no-ghost theorem for the dual model’, Phys. Rev. D6, 1655.Google Scholar
67. Brower, R.C. and Friedman, K.A. (1973), ‘Spectrum-generating algebra and no-ghost theorem for the Neveu-Schwarz model’, Phys. Rev. D7, 535.Google Scholar
68. Bruce, D., Corrigan, E. and Olive, D. (1975), ‘Group theoretical calculation of traces and determinants occurring in dual theories’, Nucl. Phys. B95, 427.CrossRefGoogle Scholar
69. Callan, C.G., Friedan, D., Martinec, E.J. and Perry, M.J. (1985), ‘Strings in background fields’, Nucl. Phys. B262, 593.CrossRefGoogle Scholar
70. Callan, C.G. and Gan, Z. (1986), ‘Vertex operators in background fields’, Nucl. Phys. B272, 647.CrossRefGoogle Scholar
71. Campagna, P., Fubini, S., Napolitano, E. and Sciuto, S. (1971), ‘Amplitude for N nonspurious exrefd particles in dual resonance models’, Nuovo Cim. 2A, 911.CrossRefGoogle Scholar
72. Candelas, P., Horowitz, G., Strominger, A. and Witten, E. (1985), ‘Vacuum configurations for superstrings’, Nucl. Phys. B258, 46.CrossRefGoogle Scholar
73. Caneschi, L., Schwimmer, A. and Veneziano, G. (1969), ‘Twisted propagator in the operatorial duality formalism’, Phys. Lett. 30B, 351.CrossRefGoogle Scholar
74. Caneschi, L. and Schwimmer, A. (1970), ‘Ward identities and vertices in the operatorial duality formalism’, Nuovo Cim. Lett. 3, 213.CrossRefGoogle Scholar
75. Carbone, G. and Sciuto, S. (1970), ‘On amplitudes involving exrefd particles in dual-resonance models’, Nuovo Cim. Lett. 3, 246.CrossRefGoogle Scholar
76. Cardy, J.L. (1986), ‘Operator content of two-dimensional conformally invariant theories’, Nucl. Phys. B270[FS16], 186.CrossRefGoogle Scholar
77. Casalbuoni, R. (1976), ‘Relatively (sic.) and supersymmetries’, Phys. Lett. 62B, 49.CrossRefGoogle Scholar
78. Casalbuoni, R. (1976), ‘The classical mechanics for Bose-Fermi systems’, Nuovo Cim. 33A, 389.CrossRefGoogle Scholar
79. Casher, A., Englert, F., Nicolai, H. and Taormina, A. (1985), ‘Consistent superstrings as solutions of the D = 26 bosonic string theory’, Phys. Lett. 162B, 121.CrossRefGoogle Scholar
80. Chan, H.M. (1969), ‘A generalized Veneziano model for the N - point function’, Phys. Lett. 28B, 425.Google Scholar
81. Chan, H.M. and Tsou, S.T. (1969), ‘Explicit construction of the N - point function in the generalized Veneziano model’, Phys. Lett. 28B, 485.CrossRefGoogle Scholar
82. Chang, L.N. and Mansouri, F. (1972), ‘Dynamics underlying duality and gauge invariance in the dual-resonance models’, Phys. Rev. D5, 2535.Google Scholar
83. Chang, L.N., Macrae, K.I. and Mansouri, F. (1976), ‘Geometrical approach to local gauge and supergauge invariance: Local gauge theories and supersymmetric strings’, Phys. Rev. D13 235.Google Scholar
84. Chapline, G. (1985), ‘Unification of gravity and elementary particle interactions in 26 dimensions?’, Phys. Lett. 158B, 393.CrossRefGoogle Scholar
85. Chiu, C.B., Matsuda, S. and Rebbi, C. (1969), ‘Factorization properties of the dual resonance model: A general treatment of linear dependences’, Phys. Rev. Lett. 23, 1526.CrossRefGoogle Scholar
86. Chiu, C.B., Matsuda, S. and Rebbi, C. (1970), ‘A general approach to the symmetry and the factorization properties of the N-point dual amplitudes’, Nuovo Cim. 67A, 437.CrossRefGoogle Scholar
87. Chodos, A. and Thorn, C.B. (1974), ‘Making the massless string massive’, Nucl. Phys. B72, 509.CrossRefGoogle Scholar
88. Christensen, S.M. and Duff, M.J. (1978), ‘Quantum gravity in 2 + ϵ dimensions’, Phys. Lett. 79B, 213.CrossRefGoogle Scholar
89. Clavelli, L. and Ramond, P. (1970), ‘SU(1,1) analysis of dual resonance models’, Phys. Rev. D2, 973.Google Scholar
90. Clavelli, L. and Ramond, P. (1971), ‘Group-theoretical construction of dual amplitudes’, Phys. Rev. D3, 988.Google Scholar
91. Cohen, A., Moore, G., Nelson, P. and Polchinski, J. (1986), ‘An offshell propagator for string theory’, Nucl. Phys. B267, 143.CrossRefGoogle Scholar
92. Cohen, E., Gomez, C. and Mansfield, P. (1986), ‘BRS invariance of the interacting Polyakov string’, Phys. Lett. 174B, 159.CrossRefGoogle Scholar
93. Coleman, S., Gross, D. and Jackiw, R. (1969), ‘Fermion avatars of the Sugawara model’, Phys. Rev.180, 1359.Google Scholar
94. Coleman, S. (1975), ‘Quantum sine-Gordon equation as the massive Thirring model’, Phys. Rev. Dll, 2088.Google Scholar
95. Collins, P.A. and Tucker, R.W. (1977), ‘An action principle for the Neveu-Schwarz-Ramond string and other systems using supernumerary variables’, Nucl. Phys. B121, 307.CrossRefGoogle Scholar
96. Corrigan, E.F. and Olive, D. (1972), ‘Fermion-meson vertices in dual theories’, Nuovo Cim. 11 A, 749CrossRefGoogle Scholar
97. Corrigan, E.F. and Goddard, P. (1973), ‘Gauge conditions in the dual fermion model’, Nuovo Cim. 18A, 339.CrossRefGoogle Scholar
98. Corrigan, E.F. and Goddard, P. (1973), ‘The off-mass shell physical state projection operator for the dual resonance model’, Phys. Lett. B44, 502.CrossRefGoogle Scholar
99. Corrigan, E.F., Goddard, P., Smith, R.A. and Olive, D.I. (1973), ‘Evaluation of the scattering amplitude for four dual fermions’, Nucl. Phys. B67, 477.CrossRefGoogle Scholar
100. Corrigan, E.F. and Goddard, P. (1974), ‘The absence of ghosts in the dual fermion model’, Nucl. Phys. B68, 189.CrossRefGoogle Scholar
101. Corrigan, E.F. (1974), ‘The scattering amplitude for four dual fermions’, Nucl. Phys. B69, 325.CrossRefGoogle Scholar
102. Corrigan, E.F. and Fairlie, D.B. (1975), ‘Off-shell states in dual resonance theory’, Nucl. Phys. B91, 527.CrossRefGoogle Scholar
103. Corrigan, E.F. (1986), ‘Twisted vertex operators and representations of the Virasoro algebra’, Phys. Lett. 169B, 259.CrossRefGoogle Scholar
104. Corwin, L., Ne'eman, Y. and Sternberg, S. (1975), ‘Graded Lie algebras in mathematics and physics (Bose-Fermi symmetry)’, Rev. Mod. Phys. 47, 573.CrossRefGoogle Scholar
105. Craigie, N.S., Nahm, W. and Narain, K.S. (1985), ‘Realization of the Kac–Moody algebras of 2D QFTs through soliton operators’, Phys. Lett. 152B, 203.CrossRefGoogle Scholar
106. Cremmer, E. and Scherk, J. (1974), ‘Spontaneous dynamical breaking of gauge symmetry in dual models’, Nucl. Phys. B72, 117.CrossRefGoogle Scholar
107. Cremmer, E. and Scherk, J. (1976), ‘Dual models in four dimensions with internal symmetries’, Nucl. Phys. B103, 399.CrossRefGoogle Scholar
108. Cremmer, E. and Scherk, J. (1976), ‘Spontaneous compactification of space in an Einstein–Yang–Mills–Higgs model’, Nucl. Phys. B108, 409.CrossRefGoogle Scholar
109. Cremmer, E. and Scherk, J. (1977), ‘Spontaneous compactification of extra space dimensions’, Nucl. Phys. B118, 61.CrossRefGoogle Scholar
110. Crnković, Č. (1986), ‘Many pictures of the superparticle’, Phys. Lett. 173B, 429.CrossRefGoogle Scholar
111. Curtright, T.L. and Zachos, C.K. (1984), ‘Geometry, topology and supersymmetry in nonlinear sigma models’, Phys. Rev. Lett. 53, 1799.CrossRefGoogle Scholar
112. Curtright, T.L., Mezincescu, L. and Zachos, C.K. (1985), ‘Geometrostasis and torsion in covariant superstrings’, Phys. Lett. 161B, 79.CrossRefGoogle Scholar
113. Curtright, T.L., Thorn, C.B. and Goldstone, J. (1986), ‘Spin content of the bosonic string’, Phys. Lett. 175B, 47.CrossRefGoogle Scholar
114. Das, S.R. and Sathiapalan, B. (1986), ‘String propagation in a tachyon background’, Phys. Rev. Lett. 56, 2664.CrossRefGoogle Scholar
115. De Alwis, S.P. (1986), ‘The dilaton vertex in the path integral formulation of strings’, Phys. Lett. 168B, 59.CrossRefGoogle Scholar
116. Del Giudice, E. and Di Vecchia, P. (1971), ‘Factorization and operator formalism in the generalized Virasoro model’, Nuovo Cim. 5A, 90.CrossRefGoogle Scholar
117. Del Giudice, E., Di Vecchia, P. and Fubini, S. (1972), ‘General properties of the dual resonance model’, Ann. Phys. 70, 378.CrossRefGoogle Scholar
118. Delia Selva, A. and Saito, S. (1970), ‘A simple expression for the Sciuto three-reggeon vertex generating duality’, Nuovo Cim. Lett. 4, 689.CrossRefGoogle Scholar
119. Deser, S. and Zumino, B. (1976), ‘Consistent supergravity’, Phys. Lett. 62B, 335.CrossRefGoogle Scholar
120. Deser, S. and Zumino, B. (1976), ‘A complete action for the spinning string’, Phys. Lett. 65B, 369.CrossRefGoogle Scholar
121. DeWitt, B., (1964), ‘Dynamical theory of groups and fields’, in Relativity, Groups, and Topology, ed. B., DeWitt and C., DeWitt (New York, Gordon and Breach), p. 587.Google Scholar
122. Di Vecchia, P., Knizhnik, V.G., Petersen, J.L. and Rossi, P. (1985), ‘A supersymmetric Wess-Zumino Lagrangian in two dimensions’, Nucl. Phys. B253, 701.CrossRefGoogle Scholar
123. Di Vecchia, P., Petersen, J.L. and Zheng, H.B. (1985), ‘N = 2 extended superconformal theories in two dimensions’, Phys. Lett. 162B, 327.CrossRefGoogle Scholar
124. Di Vecchia, P., Petersen, J.L. and Yu, M. (1986), ‘On the unitary representations of N = 2 superconformal theory’, Phys. Lett. 172B, 211.CrossRefGoogle Scholar
125. Di Vecchia, P., Petersen, J.L., Yu, M. and Zheng, H.B. (1986), ‘Explicit construction of unitary representations of the N = 2 superconformal algebra’, Phys. Lett. 174B, 280.CrossRefGoogle Scholar
126. Dolan, L. and Slansky, R. (1985), ‘Physical spectrum of compactified strings’, Phys. Rev. Lett. 54, 2075.CrossRefGoogle ScholarPubMed
127. Dolen, R., Horn, D. and Schmid, C. (1967), ‘Prediction of Regge parameters of ρ poles from low-energy πN data’, Phys. Rev. Lett. 19, 402.CrossRefGoogle Scholar
128. Dolen, R., Horn, D. and Schmid, C. (1968), ‘Finite-energy sum rules and their application to πN charge exchange’, Phys. Rev. 166, 1768.CrossRefGoogle Scholar
129. Dotsenko, Vl.S. and Fateev, V.A. (1985), ‘Operator algebra of two-dimensional conformal theories with central charge C ≤ 1’, Phys. Lett. 154B, 291.CrossRefGoogle Scholar
130. Duncan, A. and Moshe, M. (1986), ‘First-quantized superparticle action for the vector superfield’, Nucl. Phys. B268, 706.CrossRefGoogle Scholar
131. Duncan, A. and Meyer-Ortmanns, H. (1986), ‘Lattice formulation of the superstring’, Phys. Rev. D33, 3155.Google Scholar
132. Durhuus, B., Nielsen, H.B., Olesen, P. and Petersen, J.L. (1982), ‘Dual models as saddle point approximations to Polyakov's quantized string’, Nucl. Phys. B196, 498.CrossRefGoogle Scholar
133. Durhuus, B., Olesen, P. and Petersen, J.L. (1982), ‘Polyakov's quantized string with boundary terms’, Nucl. Phys. 198, 157.CrossRefGoogle Scholar
134. Durhuus, B., Olesen, P. and Petersen, J.L. (1982), ‘Polyakov's quantized string with boundary terms (II)’, Nucl. Phys. 201, 176.CrossRefGoogle Scholar
135. Eastaugh, A., Mezincescu, L., Sezgin, E. and Van Nieuwenhuizen, P. (1986), ‘Critical dimensions of spinning strings on group manifolds from Fujikawa's method’, Phys. Rev. Lett. 57, 29.CrossRefGoogle ScholarPubMed
136. Ecker, G. and Honerkamp, J. (1971), ‘Application of invariant renormalization to the non-linear chiral invariant pion lagrangian in the one-loop approximation’, Nucl. Phys. B35, 481.CrossRefGoogle Scholar
137. Eichenherr, H. (1985), 'Minimal operator algebras in superconformal quantum field theory', Phys. Lett. 151B, 26.CrossRefGoogle Scholar
138. Einstein, A. and Mayer, W. (1931), ‘Einheitliche Theorie von Bravitation und Elektrizitat’, Setz. Preuss. Akad. Wiss., 541.Google Scholar
139. Einstein, A. and Bergmann, P. (1938), ‘On a generalization of Kaluza's theory of electricity’, Ann. Math. 39, 683.CrossRefGoogle Scholar
140. Einstein, A., Bargmann, V. and Bergmann, P. (1941), in Theodore von Kármán Anniversary Volume (Pasadena) p. 212.Google Scholar
141. Englert, F. and Neveu, A. (1985), ‘Non-Abelian compactification of the interacting bosonic string’, Phys. Lett. 163B, 349.CrossRefGoogle Scholar
142. Evans, M. and Ovrut, B.A. (1986), ‘The world sheet supergravity of the heterotic string’, Phys. Lett. 171B, 177.CrossRefGoogle Scholar
143. Evans, M. and Ovrut, B.A. (1986), ‘A two-dimensional superfield formulation of the heterotic string’, Phys. Lett. 175B, 145.CrossRefGoogle Scholar
144. Faddeev, L.D. and Popov, V.N. (1967), ‘Feynman diagrams for the Yang-Mills field’, Phys. Lett. 25B, 29.CrossRefGoogle Scholar
145. Fairlie, D.B. and Nielsen, H.B. (1970), ‘An analogue model for KSV theory’, Nucl. Phys. B20, 637.CrossRefGoogle Scholar
146. Fairlie, D.B. and Martin, D. (1973), ‘New light on the Neveu-Schwarz model’, Nuovo Cim. 18A, 373.CrossRefGoogle Scholar
147. Feigin, B.L. and Fuks, D.B. (1982), ‘Invariant skew-symmetric differential operators on the line and Verma modules over the Virasoro algebra’, Fund. Analys. Appl. 16, 114.CrossRefGoogle Scholar
148. Feingold, A. and Lepowsky, J. (1978) ‘The Weyl-Kac character formula and power series identities’, Adv. Math. 29, 271.CrossRefGoogle Scholar
149. Feynman, R.P. (1963), ‘Quantum theory of gravitation’, Acta Physica Polonica 24, 697.Google Scholar
150. Fradkin, E.S. and Vilkovisky, G.A. (1975), ‘Quantization of relativistic systems with constraints’, Phys. Lett. 55B, 224.CrossRefGoogle Scholar
151. Fradkin, E.S. and Fradkina, T.E. (1978), ‘Quantization of relativistic systems with boson and fermion first- and second-class constraints’, Phys. Lett. 72B, 343.CrossRefGoogle Scholar
152. Fradkin, E.S. and Tseytlin, A.A. (1981), ‘Quantization of two-dimensional supergravity and critical dimensions for string models’, Phys. Lett. 106B, 63.CrossRefGoogle Scholar
153. Fradkin, E.S. and Tseytlin, A.A. (1982), ‘Quantized string models’, Ann. Phys. 143, 413.CrossRefGoogle Scholar
154. Fradkin, E.S. and Tseytlin, A.A. (1985), ‘Fields as excitations of quantized coordinates’, JETP Lett. 41, 206.Google Scholar
155. Fradkin, E.S. and Tseytlin, A.A. (1985), ‘Quantum string theory effective action’, Nucl. Phys. B261, 1.CrossRefGoogle Scholar
156. Fradkin, E.S. and Tseytlin, A.A. (1985), ‘Effective field theory from quantized strings’, Phys. Lett. 158B, 316.CrossRefGoogle Scholar
157. Fradkin, E.S. and Tseytlin, A.A. (1985), ‘Effective action approach to superstring theory’, Phys. Lett. 160B, 69.CrossRefGoogle Scholar
158. Fradkin, E.S. and Tseytlin, A.A. (1985), ‘Anomaly-free two-dimensional chiral supergravity-matter models and consistent string theories’, Phys. Lett. 162B, 295.CrossRefGoogle Scholar
159. Fradkin, E.S. and Tseytlin, A.A. (1985), ‘Non-linear electrodynamics from quantized strings’, Phys. Lett. 163B, 123.CrossRefGoogle Scholar
160. Frampton, P. (1974), Dual Resonance Models, (Benjamin).Google Scholar
161. Frautschi, S. (1971), ‘Statistical bootstrap model of hadrons’, Phys. Rev. D3, 2821.Google Scholar
162. Freedman, D.Z., Van Nieuwenhuizen, P. and Ferrara, S. (1976), ‘Progress toward a theory of supergravity’, Phys. Rev. D13, 3214.Google Scholar
163. Freedman, D.Z. and Townsend, P.K. (1981), ‘Antisymmetric tensor gauge theories and non-linear σ-models’, Nucl. Phys. B177, 282.CrossRefGoogle Scholar
164. Freeman, M.D. and Olive, D.I. (1986), ‘BRS cohomology in string theory and the no-ghost theorem’, Phys. Lett. 175B, 151.CrossRefGoogle Scholar
165. Frenkel, I.B. and Kac, V.G. (1980), ‘Basic representations of affine Lie algebras and dual resonance models’, Inv. Math. 62, 23.CrossRefGoogle Scholar
166. Frenkel, I.B. (1981), ‘Two constructions of affine Lie algebra representations and boson-fermion correspondence in quantum field theory’, J. Fund. Anal. 44, 259.CrossRefGoogle Scholar
167. Frenkel, I.B., Garland, H. and Zuckerman, G. (1986), ‘Semi-infinite cohomology and string theory’, (Yale University preprint).Google ScholarPubMed
168. Freund, P.G.O. (1968), ‘Finite-energy sum rules and bootstraps’, Phys. Rev. Lett. 20, 235.CrossRefGoogle Scholar
169. Freund, P.G.O. (1969), ‘Model for the Pomeranchuk term’, Phys. Rev. Lett. 22, 565.CrossRefGoogle Scholar
170. Freund, P.G.O. and Rivers, R.J. (1969), ‘Duality, unitarity and the Pomeranchuk singularity’, Phys. Lett. 29B, 510.CrossRefGoogle Scholar
171. Freund, P.G.O. and Kaplansky, I. (1976), ‘Simple supersymmetries’, J. Math. Phys. 17, 228.CrossRefGoogle Scholar
172. Freund, P.G.O. and Nepomechie, R.I. (1982), ‘Unified geometry of antisymmetric tensor gauge fields and gravity’, Nucl. Phys. B199, 482.CrossRefGoogle Scholar
173. Freund, P.G.O. (1985), ‘Superstrings from 26 dimensions’, Phys. Lett. 151B, 387.CrossRefGoogle Scholar
174. Fridling, B. and van de Ven, A. (1986) ‘Renormalization of generalized two dimensional nonlinear a models’, Nucl. Phys. B268, 719.CrossRefGoogle Scholar
175. Fridling, B.E. and Jevicki, A. (1986), ‘Nonlinear σ-models as S-matrix generating functional of strings’, Phys. Lett. 174B, 75.CrossRefGoogle Scholar
176. Friedan, D. (1980), ‘Nonlinear models in 2 + ϵ dimensions,’ Ph.D. thesis, published in Ann. Phys. 163 (1985) 318.CrossRefGoogle Scholar
177. Friedan, D. (1980), ‘Nonlinear models in 2 + ϵ dimensions’, Phys. Rev. Lett. 45, 1057.CrossRefGoogle Scholar
178. Friedan, D. (1984), ‘Introduction to Polyakov's string theory’, in Recent Advances in Field Theory and Statistical Mechanics, eds. J.B., Zuber and R., Stora. Proc. of 1982 Les Houches Summer School (Elsevier), p. 839.Google Scholar
179. Friedan, D., Qiu, Z. and Shenker, S. (1984), ‘Conformal invariance, unitarity, and critical exponents in two dimensions’, Phys. Rev. Lett. 52, 1575.CrossRefGoogle Scholar
180. Friedan, D., Qiu, Z. and Shenker, S. (1985), ‘Superconformal invariance in two dimensions and the tricritical Ising model’, Phys. Lett. 151B, 37.CrossRefGoogle Scholar
181. Friedan, D., Shenker, S. and Martinec, E. (1985), ‘Covariant quantization of superstrings’, Phys. Lett. 160B, 55.CrossRefGoogle Scholar
182. Friedan, D. (1985), ‘On two-dimensional conformal invariance and the field theory of strings’, Phys. Lett. 162B, 102.CrossRefGoogle Scholar
183. Friedan, D. (1986), ‘Notes on string theory and two dimensional conformal field theory’, in Workshop on Unified String Theories, 29 July -16 August, 1985, eds. M., Green and D., Gross (World Scientific, Singapore), p. 162.Google Scholar
184. Friedan, D., Martinec, E. and Shenker, S. (1986), ‘Conformal invariance, supersymmetry and string theory’, Nucl. Phys. B271, 93.CrossRefGoogle Scholar
185. Fubini, S., Gordon, D. and Veneziano, G. (1969), ‘A general treatment of factorization in dual resonance models’, Phys. Lett. 29B, 679.CrossRefGoogle Scholar
186. Fubini, S. and Veneziano, G. (1969), ‘Level structure of dual-resonance models’, Nuovo Cim. 64A, 811.CrossRefGoogle Scholar
187. Fubini, S. and Veneziano, G. (1970), ‘Duality in operator formalism’, Nuovo Cim. 67A, 29.CrossRefGoogle Scholar
188. Fubini, S. and Veneziano, G. (1971), ‘Algebraic treatment of subsidiary conditions in dual resonance models’, Ann. Phys. 63, 12.CrossRefGoogle Scholar
189. Fubini, S., Hanson, A.J. and Jackiw, R. (1973), ‘New approach to field theory’, Phys. Rev. D7, 1732.Google Scholar
190. Fujikawa, K. (1982), ‘Path integral of relativistic strings’, Phys. Rev. D25, 2584.Google Scholar
191. Fujikawa, K. (1983), ‘Path integral measure for gravitational interactions’, Nucl. Phys. B226, 437.CrossRefGoogle Scholar
192. Gates, S.J., Grisaru, M., Rocek, M. and Siegel, W. (1983), Super space or One Thousand and One Lessons in Supersymmetry, (Benjamin/Cummings).Google Scholar
193. Gervais, J.L. (1970), ‘Operator expression for the Koba and Nielsen multi-Veneziano formula and gauge identities’, Nucl. Phys. B21, 192.CrossRefGoogle Scholar
194. Gervais, J.L. and Sakita, B. (1971), ‘Generalizations of dual models’, Nucl Phys. B34, 477.CrossRefGoogle Scholar
195. Gervais, J.L. and Sakita, B. (1971), ‘Field theory interpretation of supergauges in dual models’, Nucl. Phys. B34, 632.CrossRefGoogle Scholar
196. Gervais, J.L. and Sakita, B. (1971), ‘Functional-integral approach to dual-resonance theory’, Phys. Rev. D4, 2291.Google Scholar
197. Gervais, J.L. and Neveu, A. (1972), ‘Feynman rules for massive gauge fields with dual diagram topology’, Nucl. Phys. B46, 381.CrossRefGoogle Scholar
198. Gervais, J.L. and Sakita, B. (1973), ‘Ghost-free string picture of Veneziano model’, Phys. Rev. Lett. 30, 716.CrossRefGoogle Scholar
199. Gervais, J.L. and Neveu, A. (1986), ‘Dimension shifting operators and null states in 2D conformally invariant field theories’, Nucl. Phys. B264, 557.CrossRefGoogle Scholar
200. Gleiser, M. and Taylor, J.G. (1985), ‘Very hot superstrings’, Phys. Lett. 164B, 36.CrossRefGoogle Scholar
201. Gliozzi, F. (1969), ‘Ward-like identities and twisting operator in dual resonance models’, Nuovo Cim. Lett. 2, 846.CrossRefGoogle Scholar
202. Gliozzi, F., Scherk, J. and Olive, D. (1976), ‘Supergravity and the spinor dual model’, Phys. Lett. 65B, 282.CrossRefGoogle Scholar
203. Gliozzi, F., Scherk, J. and Olive, D. (1977), ‘Supersymmetry, supergravity theories and the dual spinor model’, Nucl. Phys. B122, 253.CrossRefGoogle Scholar
204. Goddard, P. and Thorn, C.B. (1972), ‘Compatibility of the dual Pomeron with unitarity and the absence of ghosts in the dual resonance model’, Phys. Lett. 40B, 235.CrossRefGoogle Scholar
205. Goddard, P., Rebbi, C. and Thorn, C.B. (1972), ‘Lorentz covariance and the physical states in dual-resonance models’, Nuovo Cim. 12A, 425.CrossRefGoogle Scholar
206. Goddard, P., Goldstone, J., Rebbi, C. and Thorn, C.B. (1973), ‘Quantum dynamics of a massless relativistic string’, Nucl. Phys. B56, 109.CrossRefGoogle Scholar
207. Goddard, P., Kent, A. and Olive, D. (1985), ‘Virasoro algebras and coset space models’, Phys. Lett. 152B, 88.CrossRefGoogle Scholar
208. Goddard, P., Olive, D. and Schwimmer, A. (1985), ‘The heterotic string and a fermionic construction of the Eg Kac-Moody algebra’, Phys. Lett. 157B, 393.CrossRefGoogle Scholar
209. Goddard, P., Nahm, W. and Olive, D. (1985), ‘Symmetric spaces, Sugawara's energy momentum tensor in two dimensions and free fermions’, Phys. Lett. 160B, 111.CrossRefGoogle Scholar
210. Goddard, P. and Olive, D. (1985), ‘Algebras, lattices and strings’ in Vertex Operators in Mathematics and Physics, Proceedings of a Conference, November 10–17, 1983, eds. J., Lepowsky, S., Mandelstam, I.M., Singer (Springer-Verlag, New York), p. 51.Google Scholar
211. Goddard, P. and Olive, D. (1985), ‘Kac-Moody algebras, conformal symmetry and critical exponents’, Nucl. Phys. B257[FS14], 226.CrossRefGoogle Scholar
212. Goddard, P. and Olive, D. (1986), ‘An introduction to Kac-Moody algebras and their physical applications’, in Workshop on Unified String Theories, 29 July – 16 August, 1985, eds. M., Green and D., Gross (World Scientific, Singapore), p. 214.Google Scholar
213. Goddard, P., Kent, A. and Olive, D. (1986), ‘Unitary representations of the Virasoro and super-Virasoro algebras’, Commun. Math. Phys. 103, 105.CrossRefGoogle Scholar
214. Goebel, C.J. and Sakita, B. (1969), ‘Extension of the Veneziano form to N - particle amplitudes’, Phys. Rev. Lett. 22, 257.CrossRefGoogle Scholar
215. Gol'fand, Y.A. and Likhtman, E.P. (1971), ‘Extension of the algebra of Poincare group generators and violation of P invariance’, JETP Lett. 13, 323.Google Scholar
216. Gomes, J.F. (1986), ‘The triviality of representations of the Virasoro algebra with vanishing central element and Lo positive’, Phys. Lett. 171B, 75.CrossRefGoogle Scholar
217. Goto, T. (1971), ‘Relativistic quantum mechanics of one-dimensional mechanical continuum and subsidiary condition of dual resonance model’, Prog. Theor. Phys. 46, 1560.CrossRefGoogle Scholar
218. Green, M.B. and Veneziano, G. (1971), ‘Average properties of dual resonances’, Phys. Lett. 36B, 477.CrossRefGoogle Scholar
219. Green, M.B. and Shapiro, J.A. (1976), ‘Off shell states in the dual model’, Phys. Lett. 64B, 454.CrossRefGoogle Scholar
220. Green, M.B. (1976), ‘Reciprocal space-time and momentum-space singularities in the narrow resonance approximation’, Nucl. Phys. B116, 449.CrossRefGoogle Scholar
221. Green, M.B. (1976), ‘The structure of dual Green functions’, Phys. Lett. 65B, 432.CrossRefGoogle Scholar
222. Green, M.B. (1977), ‘Point-like structure and off-shell dual strings’, Nucl. Phys. B124, 461.CrossRefGoogle Scholar
223. Green, M.B. (1977), ‘Dynamical point-like structure and dual strings’, Phys. Lett. 69B, 89.CrossRefGoogle Scholar
224. Green, M.B. and Schwarz, J.H. (1981), ‘Supersymmetrical dual string theory’, Nucl. Phys. B181, 502.CrossRefGoogle Scholar
225. Green, M.B. and Schwarz, J.H. (1982), ‘Supersymmetric dual string theory (II). Vertices and trees’, Nucl. Phys. B198, 252.CrossRefGoogle Scholar
226. Green, M.B. and Schwarz, J.H. (1982), ‘Supersymmetrical string theories’, Phys. Lett. 109B, 444.CrossRefGoogle Scholar
227. Green, M.B., Schwarz, J.H. and Brink, L. (1982), ‘N = 4 Yang-Mills and N = 8 supergravity as limits of string theories’, Nucl. Phys. B198, 474.CrossRefGoogle Scholar
228. Green, M.B. (1983), ‘Supersymmetrical dual string theories and their field theory limits – a review’, Surveys in High Energy Physics 3, 127.CrossRefGoogle Scholar
229. Green, M.B. and Schwarz, J.H. (1984), ‘Covariant description of superstrings’, Phys. Lett. 136B, 367.CrossRefGoogle Scholar
230. Green, M.B. and Schwarz, J.H. (1984), ‘Properties of the covariant formulation of superstring theories’, Nucl. Phys. B243, 285.CrossRefGoogle Scholar
231. Green, M.B. and Schwarz, J.H. (1984), ‘Anomaly cancellations in supersymmetric D = 10 gauge theory and superstring theory’, Phys. Lett. 149B, 117.CrossRefGoogle Scholar
232. Green, M.B. (1986), ‘Lectures on superstrings’, in Workshop on Unified String Theories, 29 July – 16 August, 1985, eds. M., Green and D., Gross (World Scientific, Singapore), p. 294.Google Scholar
233. Green, M.B., and Gross, D.J. (1986), eds. Unified String Theories (World Scientific).
234. Grisaru, M.T., Howe, P., Mezincescu, L., Nilsson, B.E.W. and Townsend, P.K. (1985), ‘N = 2 superstrings in a supergravity background’, Phys. Lett. 162B, 116.CrossRefGoogle Scholar
235. Gross, D.J., Neveu, A., Scherk, J. and Schwarz, J.H. (1970), ‘The primitive graphs of dual-resonance models’, Phys. Lett. 31B, 592.CrossRefGoogle Scholar
236. Gross, D.J. and Schwarz, J.H. (1970), ‘Basic operators of the dualresonance model’, Nucl. Phys. B23, 333.CrossRefGoogle Scholar
237. Gross, D.J., Harvey, J.A., Martinec, E. and Rohm, R. (1985), ‘Heterotic string’, Phys. Rev. Lett. 54, 502.CrossRefGoogle ScholarPubMed
238. Gross, D.J., Harvey, J.A., Martinec, E. and Rohm, R. (1985), ‘Heterotic string theory (I). The free heterotic string’, Nucl. Phys. B256, 253.CrossRefGoogle Scholar
239. Gross, D.J., Harvey, J.A., Martinec, E. and Rohm, R. (1986), ‘Heterotic string theory (II). The interacting heterotic string’, Nucl. Phys. B267, 75.CrossRefGoogle Scholar
240. Hagedorn, R. (1968), ‘Hadronic matter near the boiling point’, Nuovo Cim. 56A, 1027.CrossRefGoogle Scholar
241. Halpern, M.B., Klein, S.A. and Shapiro, J.A. (1969), ‘Spin and internal symmetry in dual Feynman theory’, Phys. Rev. 188, 2378.CrossRefGoogle Scholar
242. Halpern, M.B. and Thorn, C.B. (1971), ‘Dual model of pions with no tachyon’, Phys. Lett. 35B, 441.CrossRefGoogle Scholar
243. Halpern, M.B. (1971), ‘The two faces of a dual pion-quark model’, Phys. Rev. D4, 2398.Google Scholar
244. Halpern, M.B. (1971), ‘New dual models of pions with no tachyon’, Phys. Rev. D4, 3082.Google Scholar
245. Halpern, M.B. and Thorn, C.B. (1971), ‘Two faces of a dual pionquark model. II. Fermions and other things’, Phys. Rev. D4, 3084.Google Scholar
246. Halpern, M.B. (1975), ‘Quantum ‘solitons” which are SU(N) fermions’, Phys. Rev. D12, 1684.Google Scholar
247. Hara, O. (1971), ‘On origin and physical meaning of Ward-like iden tity in dual-resonance model’, Prog. Theor. Phys. 46, 1549.CrossRefGoogle Scholar
248. Harari, H. (1968), ‘Pomeranchuk trajectory and its relation to lowenergy scattering amplitudes’, Phys. Rev. Lett. 20, 1395.CrossRefGoogle Scholar
249. Harari, H. (1969), ‘Duality diagrams’, Phys. Rev. Lett. 22, 562.CrossRefGoogle Scholar
250. Henneaux, M. and Mezincescu, L. (1985), ‘A σ-model interpretation of Green-Schwarz covariant superstring action’, Phys. Lett. 152B, 340.CrossRefGoogle Scholar
251. Henneaux, M. (1986), ‘Remarks on the cohomology of the BRS operator in string theory’, Phys. Lett. 177B, 35.CrossRefGoogle Scholar
252. Hlousek, Z. and Yamagishi, K. (1986), ‘An approach to BRST formulation of Kac-Moody algebra’, Phys. Lett. 173B, 65.CrossRefGoogle Scholar
253. Honerkamp, J. (1972), ‘Chiral multi-loops’, Nucl. Phys. B36, 130.CrossRefGoogle Scholar
254. Hori, T. and Kamimura, K. (1985), ‘Canonical formulation of superstring’, Prog. Theor. Phys. 73, 476.CrossRefGoogle Scholar
255. Hosotani, Y. (1985), ‘Hamilton-Jacobi formalism and wave equations for strings’, Phys. Rev. Lett. 55, 1719.CrossRefGoogle ScholarPubMed
256. Howe, P.S. (1977), ‘Superspace and the spinning string’, Phys. Lett. 70B, 453.CrossRefGoogle Scholar
257. Howe, P.S. (1979), ‘Super Weyl transformations in two dimensions’, J. Phys. A12, 393.Google Scholar
258. Hsue, C.S., Sakita, B. and Virasoro, M.A. (1970), ‘Formulation of dual theory in terms of functional integrations’, Phys. Rev. D2, 2857.Google Scholar
259. Hull, C.M. and Witten, E. (1985), ‘Supersymmetric sigma models and the heterotic string’, Phys. Lett. 160B, 398.CrossRefGoogle Scholar
260. Hull, C.M. (1986), ‘Sigma model beta-functions and string compactifications’, Nucl. Phys. B267, 266.CrossRefGoogle Scholar
261. Hwang, S. (1983), ‘Covariant quantization of the string in dimensions D ≤ 26 using a Becchi-Rouet-Stora formulation’, Phys. Rev. D28, 2614.Google Scholar
262. Hwang, S. and Marnelius, R. (1986), ‘Modified strings in terms of zweibein fields’, Nucl. Phys. B271, 369.CrossRefGoogle Scholar
263. Hwang, S. and Marnelius, R. (1986), ‘The bosonic string in nonconformal gauges’, Nucl. Phys. B272, 389.CrossRefGoogle Scholar
264. Igi, K. and Matsuda, S. (1967), ‘New sum rules and singularities in the complex J plane’, Phys. Rev. Lett. 18, 625.CrossRefGoogle Scholar
265. Igi, K. and Matsuda, S. (1967), ‘Some consequences from superconvergence for πN scattering’, Phys. Rev. 163, 1621.CrossRefGoogle Scholar
266. Iwasaki, Y. and Kikkawa, K. (1973), ‘Quantization of a string of spinning material – Hamiltonian and Lagrangian formulations’, Phys. Rev. D8, 440.Google Scholar
267. Jacob, M. editor. (1974), ‘Dual theory’, Physics Reports Reprint Volume I, (North-Holland, Amsterdam).
268. Jain, S., Shankar, R. and Wadia, S. (1985), ‘Conformal invariance and string theory in compact space: bosons’, Phys. Rev. D32, 2713.Google Scholar
269. Jain, S., Mandal, G. and Wadia, S.R. (1987), ‘Virasoro conditions, vertex operators, and string dynamics in curved space’, Phys. Rev. D35, 778.Google Scholar
270. Jevicki, A. (1986), ‘Covariant string theory Feynman amplitudes’, Phys. Lett. 169B, 359.CrossRefGoogle Scholar
271. Jimenez, F., Ramirez Mittelbrunn, J. and Sierra, G. (1986), ‘Causality on the world-sheet of the string’, Phys. Lett. 167B, 178.CrossRefGoogle Scholar
272. Jordan, P. (1947), ‘Erweiterung der projektiven Relativitatstheorie’, Ann. der Phys. 1, 219.CrossRefGoogle Scholar
273. Julia, B. (1985), 7Supergeometry and Kac-Moody algebras', in Vertex Operators in Mathematics and Physics, Proceedings of a Conference, November 10 – 17, 1983, eds. J., Lepowsky, S., Mandelstam, I.M., Singer (Springer-Verlag, New York), p. 393.Google Scholar
274. Kac, V.G. (1967), ‘Simple graded Lie algebras of finite growth’, Funkt. Anali. i ego Prilozhen. 1, 82. (English translation: Fuctional Anal. Appl. 1, 328.)Google Scholar
275. Kac, V.G. (1975), ‘Classification of simple Lie superalgebras’, Funct. Analys. Appl. 9, 263.Google Scholar
276. Kac, V.G. (1983) Infinite Dimensional Lie Algebras (Birkhauser, Boston).CrossRefGoogle Scholar
277. Kac, V.G. and Todorov, I.T. (1985), ‘Superconformal current algebras and their unitary representations’, Commun. Math. Phys. 102, 337; Erratum, Commun. Math. Phys. 104, 175.CrossRefGoogle Scholar
278. Kallosh, R. (1986), ‘World-sheet symmetries of the heterotic string in (10 + 496) + 16-dimensional superspace’, Phys. Lett. 176B, 50.CrossRefGoogle Scholar
279. Kaluza, Th. (1921), ‘On the problem of unity in physics’, Sitz. Preuss. Akad. Wiss. Kl, 966.Google Scholar
280. Kantor, I.L. (1968), ‘Infinite dimensional simple graded Lie algebras’, Doklady AN SSR 179, 534 (English translation: Sov. Math. Dokl. 9 (1968), 409.)Google Scholar
281. Karlhede, A. and Lindström, U. (1986), ‘The classical bosonic string in the zero tension limit’, Glass. Quant. Grav. 3, L73.CrossRefGoogle Scholar
282. Kato, M. and Ogawa, K. (1983), ‘Covariant quantization of string based on BRS invariance’, Nucl. Phys. B212, 443.CrossRefGoogle Scholar
283. Kato, M. and Matsuda, S. (1986), ‘Construction of singular vertex operators as degenerate primary conformal fields’, Phys. Lett. 172B, 216.CrossRefGoogle Scholar
284. Kawai, H., Lewellen, D.C. and Tye, S.-H.H. (1986), ‘A relation between tree amplitudes of closed and open strings’, Nucl. Phys. B269, 1.CrossRefGoogle Scholar
285. Kawai, T. (1986), ‘Remarks on a class of BRST operators’, Phys. Lett. 168B, 355.CrossRefGoogle Scholar
286. Klein, O. (1926), ‘Quantentheorie und fünfdimensionale Relativitätstheorie’, Z. Phys. 37, 895.CrossRefGoogle Scholar
287. Klein, O. (1955), ‘Generalizations of Einstein's theory of gravitation considered from the point of view of quantum field theory’, Helv. Phys. Ada Suppl. IV(1956) 58.Google Scholar
288. Knizhnik, V.G. and Zamolodchikov, A.B. (1984), ‘Current algebra and Wess–Zumino model in two dimensions’, Nucl. Phys. B247, 83.CrossRefGoogle Scholar
289. Knizhnik, V.G. (1985), ‘Covariant fermionic vertex in superstrings’, Phys. Lett. 160B, 403.CrossRefGoogle Scholar
290. Koba, Z. and Nielsen, H.B. (1969), ‘Reaction amplitude for n-mesons, a generalization of the Veneziano–Bardakçi–Ruegg–Virasoro model’, Nucl. Phys. B10, 633.CrossRefGoogle Scholar
291. Koba, Z. and Nielsen, H.B. (1969), ‘Manifestly crossing-invariant parametrization of n–meson amplitude’, Nucl. Phys. B12, 517.CrossRefGoogle Scholar
292. Kogut, J.B. and Soper, D.E. (1970), ‘Quantum electrodynamics in the infinite-momentum frame’, Phys. Rev. Dl, 2901.Google Scholar
293. Kosterlitz, J.M. and Wray, D.A. (1970), ‘The general N- point vertex in a dual model’, Nuovo Cim. Lett. 3, 491.CrossRefGoogle Scholar
294. Kraemmer, A.B. and Nielsen, H.B. (1975), ‘Quantum description of a twistable string and the Neveu–Schwarz–Ramond model‘, Nucl. Phys. B98, 29.CrossRefGoogle Scholar
295. Kugo, T. and Ojima, I. (1978), ‘Manifestly covariant canonical formulation of Yang–Mills theories physical state subsidiary conditions and physical S-matrix unitarity’, Phys. Lett. 73B, 459.CrossRefGoogle Scholar
296. Kugo, T. and Ojima, I. (1979), ‘Local covariant operator formalism of non-Abelian gauge theories and quark confinement problem’, Suppl. Prog. Theor. Phys. 66, 1.CrossRefGoogle Scholar
297. Lepowsky, J. and Wilson, R.L. (1978), ‘Construction of the affine Lie algebra’, Commun. Math. Phys. 62, 43.CrossRefGoogle Scholar
298. Lepowsky, J. and Wilson, R.L. (1984), ‘The structure of standard modules, I: universal algebras and the Rogers–Ramanujan identities’, Inv. Math. 77, 199.CrossRefGoogle Scholar
299. Lichnerowicz, A. (1955), Theories Relativistes de La Gravitation et de L' Electromagnetisme (Masson, Paris).Google Scholar
300. Logunov, A.A., Soloviev, L.D. and Tavkhelidze, A.N. (1967), ‘Dispersion sum rules and high energy scattering’, Phys. Lett. 24, 181.CrossRefGoogle Scholar
301. Lovelace, C. (1968), ‘A novel application of Regge trajectories’, Phys. Lett. 28B, 264.CrossRefGoogle Scholar
302. Lovelace, C. (1970), ‘Simple N - Reggeon vertex’, Phys. Lett. 32B, 490.CrossRefGoogle Scholar
303. Lovelace, C. (1971), ‘Pomeron form factors and dual Regge cuts’, Phys. Lett. 34B, 500.CrossRefGoogle Scholar
304. Lovelace, C. (1979), ‘Systematic search for ghost-free string models’, Nucl. Phys. B148, 253.CrossRefGoogle Scholar
305. Lovelace, C. (1984), ‘Strings in curved space’, Phys. Lett. 135B, 75.CrossRefGoogle Scholar
306. Lüscher, M., Symanzik, K. and Weisz, P. (1980), ‘Anomalies of the free loop wave equation in the WKB approximation’, Nucl. Phys. B173, 365.CrossRefGoogle Scholar
307. Luther, A. and Peschel, I. (1975), ‘Calculation of critical exponents in two dimension from quantum field theory in one dimension’, Phys. Rev. B12, 3908.CrossRefGoogle Scholar
308. Maharana, J. and Veneziano, G. (1986), ‘Gauge Ward identities of the compactified bosonic string’, Phys. Lett. 169B, 177.CrossRefGoogle Scholar
309. Mandelstam, S. (1968), ‘Dynamics based on rising Regge trajectories’, Phys. Rev. 166, 1539.CrossRefGoogle Scholar
310. Mandelstam, S. (1970), ‘Dynamical applications of the Veneziano formula’, in Lectures on elementary particles and quantum field theory, eds. S., Deser, M., Grisaru and H., Pendleton (MIT Press, Cambridge), p. 165.Google Scholar
311. Mandelstam, S. (1973), ‘Interacting-string picture of dual-resonance models’, Nucl. Phys. B64, 205.CrossRefGoogle Scholar
312. Mandelstam, S. (1973), ‘Manifestly dual formulation of the Ramond model’, Phys. Lett. 46B, 447.CrossRefGoogle Scholar
313. Mandelstam, S. (1974), ‘Interacting-string picture of the Neveu– Schwarz–Ramond model’, Nucl. Phys. B69, 77.CrossRefGoogle Scholar
314. Mandelstam, S. (1974), ‘Dual-resonance models’, Phys. Reports C13, 259.CrossRefGoogle Scholar
315. Mandelstam, S. (1975), ‘Soliton operators for the quantized sine-Gordon equation’, Phys. Rev. Dll, 3026.Google Scholar
316. Mandelstam, S. (1983), ‘Light-cone superspace and the ultraviolet finiteness of the N=4 model’, Nucl. Phys. B213, 149.CrossRefGoogle Scholar
317. Mansouri, F. and Nambu, Y. (1972), ‘Gauge conditions in dual resonance models’, Phys. Lett. 39B, 375.CrossRefGoogle Scholar
318. Marcus, N. and Sagnotti, A. (1982), ‘Tree-level constraints on gauge groups for type I superstrings’, Phys. Lett. 119B, 97.CrossRefGoogle Scholar
319. Marnelius, R. (1983), ‘Canonical quantization of Polyakov's string in arbitrary dimensions’, Nucl. Phys. B211, 14.CrossRefGoogle Scholar
320. Marnelius, R. (1983), ‘Polyakov's spinning string from a canonical point of view’, Nucl. Phys. B221, 409.CrossRefGoogle Scholar
321. Marnelius, R. (1986), ‘The bosonic string in D > 26 with and without Liouville fields’, Phys. Lett. 172B, 337.CrossRefGoogle Scholar
322. Martellini, M. (1986), ‘Some remarks on the Liouville approach to two-dimensional quantum gravity’, Ann. Phys. 167, 437.CrossRefGoogle Scholar
323. Martinec, E. (1983), ‘Superspace geometry of fermionic strings’, Phys. Rev. D28, 2604.Google Scholar
324. Meetz, K. (1969), ‘Realization of chiral symmetry in a curved isospin space’, J. Math. Phys. 10, 589.CrossRefGoogle Scholar
325. Minami, M. (1972), ‘Plateau's problem and the Virasoro conditions in the theory of duality’, Prog. Theor. Phys. 48, 1308.CrossRefGoogle Scholar
326. Montonen, C. (1974), ‘Multiloop amplitudes in additive dual resonance models’, Nuovo Cim. 19A, 69.CrossRefGoogle Scholar
327. Moody, R.V. (1967), ‘Lie algebras associated with generalized Cartan matrices’, Bull. Am. Math. Soc. 73, 217.CrossRefGoogle Scholar
328. Moody, R.V. (1968), ‘A new class of Lie algebras’, J. Algebra 10, 211.CrossRefGoogle Scholar
329. Moore, G. and Nelson, P. (1984), ‘Anomalies in nonlinear sigma models’, Phys. Rev. Lett. 53, 1510.CrossRefGoogle Scholar
330. Moore, G. and Nelson, P. (1986), ‘Measure for moduli’, Nucl. Phys. B266, 58.CrossRefGoogle Scholar
331. Moore, G., Nelson, P. and Polchinski, J. (1986), ‘Strings and supermoduli’, Phys. Lett. 169B, 47.CrossRefGoogle Scholar
332. Morozov, A.Ya., Perelomov, A.M. and Shifman, M.A., (1984), ‘Exact Gell-Mann–Low function of supersymmetric Kähler sigma models’, Nucl. Phys. B248, 279.CrossRefGoogle Scholar
333. Myung, Y.S. and Cho, B.H. (1986), ‘Entropy production in a hot heterotic string’, Mod. Phys. Lett. Al, 37.CrossRefGoogle Scholar
334. Myung, Y.S., Cho, B.H., Kim, Y. and Park, Y-J. (1986), ‘Entropy production of superstrings in the very early universe’, Phys. Rev. D33, 2944.Google Scholar
335. Nahm, W., Rittenberg, V. and Scheunert, M. (1976), ‘The classification of graded Lie algebras’, Phys. Lett. 61B, 383.CrossRefGoogle Scholar
336. Nahm, W. (1976), ‘Mass spectra of dual strings’, Nucl. Phys. B114, 174.CrossRefGoogle Scholar
337. Nahm, W. (1977), ‘Spin in the spectrum of states of dual models’, Nucl. Phys. B120, 125.CrossRefGoogle Scholar
338. Nahm, W. (1978), ‘Supersymmetries and their representations’, Nucl. Phys. B135, 149.CrossRefGoogle Scholar
339. Nakanishi, N. (1971), ‘Crossing-symmetric decomposition of the five-point and six-point Veneziano formulas into tree-graph integrals’, Prog. Theor. Phys. 45, 436.CrossRefGoogle Scholar
340. Nam, S. (1986), ‘The Kac formula for the N = 1 and the N = 2 super-conformal algebras’, Phys. Lett. 172B, 323.CrossRefGoogle Scholar
341. Nambu, Y. (1970), ‘Quark model and the factorization of the Veneziano amplitude’, in Symmetries and quark models, ed. R., Chand (Gordon and Breach), p. 269.Google Scholar
342. Nambu, Y. (1970), ‘Duality and hydrodynamics’, Lectures at the Copenhagen symposium.Google Scholar
343. Narain, K.S. (1986), ‘New heterotic string theories in uncompactified dimensions > 10’, Phys. Lett. 169B, 41.CrossRefGoogle Scholar
344. Ne'eman, Y. (1986), ‘Strings reinterpreted as topological elements of space-time’, Phys. Lett. 173B, 126.CrossRefGoogle Scholar
345. Ne'eman, Y. and Šijaçki, D. (1986), ‘Spinors for superstrings in a generic curved space’, Phys. Lett. 174B, 165.CrossRefGoogle Scholar
346. Ne'eman, Y. and Šijaçki, D. (1986), ‘Superstrings in a generic super-symmetric curved space’, Phys. Lett. 174B, 171.CrossRefGoogle Scholar
347. Nemeschansky, D. and Yankielowicz, S. (1985), ‘Critical dimension of string theories in curved space’, Phys. Rev. Lett. 54, 620.CrossRefGoogle ScholarPubMed
348. Nepomechie, R.I. (1982), ‘Duality and the Polyakov N-point Green's function’, Phys. Rev. D25, 2706.Google Scholar
349. Nepomechie, R.I. (1986), ‘Non-Abelian symmetries from higher dimensions in string theories’, Phys. Rev. D33, 3670.Google Scholar
350. Nepomechie, R.I. (1986), ‘String models with twisted currents’, Phys. Rev. D34, 1129.Google Scholar
351. Neveu, A. and Schwarz, J.H. (1971), ‘Factorizable dual model of pions’, Nucl. Phys. B31, 86.CrossRefGoogle Scholar
352. Neveu, A., Schwarz, J.H. and Thorn, C.B. (1971), ‘Reformulation of the dual pion model’, Phys. Lett. 35B, 529.CrossRefGoogle Scholar
353. Neveu, A. and Schwarz, J.H. (1971), ‘Quark model of dual pions’, Phys. Rev. D4, 1109.Google Scholar
354. Neveu, A. and Thorn, C.B. (1971), ‘Chirality in dual- resonance models’, Phys. Rev. Lett. 27, 1758.CrossRefGoogle Scholar
355. Neveu, A. and Scherk, J. (1972), ‘Connection between Yang-Mills fields and dual models’, Nucl. Phys. B36, 155.CrossRefGoogle Scholar
356. Nielsen, H.B. (1969), ‘An almost physical interpretation of the dual N point function’, Nordita report, (unpublished).Google Scholar
357. Nielsen, H.B. (1970), ‘An almost physical interpretation of the integrand of the n-point Veneziano model’, submitted to the 15th International Conference on High Energy Physics, (Kiev).Google Scholar
358. Nielsen, H.B. and Olesen, P. (1970), ‘A parton view on dual amplitudes’, Phys. Lett. 32B, 203.CrossRefGoogle Scholar
359. Nielsen, H.B. and Olesen, P. (1973), ‘Local field theory of the dual string’, Nucl. Phys. B57, 367.CrossRefGoogle Scholar
360. Olesen, P. (1986), ‘On the exponentially increasing level density in string models and the tachyon singularity’, Nucl. Phys. B267, 539.CrossRefGoogle Scholar
361. Olesen, P. (1986), ‘On a possible stabilization of the tachyonic strings’, Phys. Lett. 168B, 220.CrossRefGoogle Scholar
362. Olive, D. and Scherk, J. (1973), ‘No-ghost theorem for the Pomeron sector of the dual model’, Phys. Lett. 44B, 296.CrossRefGoogle Scholar
363. Olive, D. and Scherk, J. (1973), ‘Towards satisfactory scattering amplitudes for dual fermions’, Nucl. Phys. B64, 334.CrossRefGoogle Scholar
364. Olive, D. (1974), ‘Dual Models’, in Proceedings of the XVII International Conference on High Energy Physics (Science Research Council, Rutherford Laboratory, Chilton, Didcot, U.K.), p. 1–269.Google Scholar
365. Paton, J.E. and Chan, H.M. (1969), ‘Generalized Veneziano model with isospin’, Nucl. Phys. B10, 516.CrossRefGoogle Scholar
366. Patrascioiu, A. (1974), ‘Quantum dynamics of a massless relativistic string (II)’, Nucl. Phys. B81, 525.CrossRefGoogle Scholar
367. Pauli, W. (1933), ‘Über die Formulierung der Naturgesetze mit funf homogenen Koordinaten’, Ann. der Phys. 18, 305, 337.CrossRefGoogle Scholar
368. Pernici, M. and Van Nieuwenhuizen, P. (1986), ‘A covariant action for the SU(2) spinning string as a hyperkähler or quaternionic nonlinear sigma model’, Phys. Lett. 169B, 381.CrossRefGoogle Scholar
369. Polyakov, A.M. (1981), ‘Quantum geometry of bosonic strings’, Phys. Lett. 103B, 207.CrossRefGoogle Scholar
370. Polyakov, A.M. (1981), ‘Quantum geometry of fermionic strings’, Phys. Lett. 103B, 211.CrossRefGoogle Scholar
371. Ramond, P. (1971), ‘An interpretation of dual theories’, Nuovo Cim. 4A, 544.CrossRefGoogle Scholar
372. Ramond, P. (1971), ‘Dual theory for free fermions’, Phys. Rev. D3, 2415.Google Scholar
373. Ramond, P. and Schwarz, J.H. (1976), ‘Classification of dual model gauge algebras’, Phys. Lett. 64B, 75.CrossRefGoogle Scholar
374. Rayski, J. (1965), ‘Unified field theory and modern physics’, Acta Physica Polonica 27, 89.Google Scholar
375. Rebbi, C. (1974), ‘Dual models and relativistic quantum strings’, Phys. Reports C12, 1.CrossRefGoogle Scholar
376. Rebbi, C. (1975), ‘On the commutation properties of normal-mode op erators and vertices in the theory of the relativistic quantum string’, Nuovo Cim. 26A, 105.CrossRefGoogle Scholar
377. Redlich, A.N. and Schnitzer, H.J. (1986), ‘The Polyakov string in O(N) or SU(N) group space’, Phys. Lett. 167B, 315.CrossRefGoogle Scholar
378. Redlich, A.N. (1986), ‘When is the central charge of the Virasoro algebra in string theories in curved space-time not a numerical constant?’, Phys. Rev. D33, 1094.Google Scholar
379. Rosenzweig, C. (1971), ‘Exrefd vertices in the model of Neveu and Schwarz’, Nuovo Cim. Lett. 2, 924.CrossRefGoogle Scholar
380. Rosner, J.L. (1969), ‘Graphical form of duality’, Phys. Rev. Lett. 22, 689.CrossRefGoogle Scholar
381. Roy, S.M. amd Singh, V. (1986), ‘Quantization of Nambu–Goto strings with new boundary conditions’, Phys. Rev. D33, 3792.Google Scholar
382. Sakita, B. and Virasoro, M.A. (1970), ‘Dynamical model of dual amplitudes’, Phys. Rev. Lett. 24, 1146.CrossRefGoogle Scholar
383. Salam, A. and Strathdee, J. (1974), ‘Super-gauge transformations’, Nucl. Phys. B76, 477.CrossRefGoogle Scholar
384. Salam, A. and Strathdee, J. (1982), ‘On Kaluza–Klein theory’, Ann. Phys. 141, 316.CrossRefGoogle Scholar
385. Salomonson, P. and Skagerstam, B.S. (1986), ‘On superdense superstring gases: A heretic string model approach’, Nucl. Phys. B268, 349.CrossRefGoogle Scholar
386. Sasaki, R. and Yamanaka, I. (1985), ‘Vertex operators for a bosonic string’, Phys. Lett. 165B, 283.CrossRefGoogle Scholar
387. Sasaki, R. and Yamanaka, I. (1986), ‘Primary fields in a unitary representation of Virasoro algebras’, Prog. Theor. Phys. 75, 706.CrossRefGoogle Scholar
388. Scherk, J. (1971), ‘Zero-slope limit of the dual resonance model’, Nucl. Phys. B31, 222.CrossRefGoogle Scholar
389. Scherk, J. and Schwarz, J.H. (1974), ‘Dual models for non-hadrons’, Nucl. Phys. B81, 118.CrossRefGoogle Scholar
390. Scherk, J. and Schwarz, J.H. (1974), ‘Dual models and the geometry of space-time’, Phys. Lett. 52B, 347.CrossRefGoogle Scholar
391. Scherk, J. and Schwarz, J.H. (1975), ‘Dual model approach to a renormalizable theory of gravitation’, honorable mention in the 1975 essay competition of the Gravity Research Foundation.Google Scholar
392. Scherk, J. (1975), ‘An introduction to the theory of dual models and strings’, Rev. Mod. Phys. 47, 123.CrossRefGoogle Scholar
393. Scherk, J. and Schwarz, J.H. (1975), ‘Dual field theory of quarks and gluons’, Phys. Lett. 57B, 463.CrossRefGoogle Scholar
394. Scheunert, M.Nahm, W. and Rittenberg, V. (1976), ‘Classification of all simple graded Lie algebras whose Lie algebra is reductive. I.’, J. Math. Phys. 17, 1626.CrossRefGoogle Scholar
395. Schild, A. (1977), ‘Classical null strings’, Phys. Rev. D16, 1722.Google Scholar
396. Schwarz, J.H. (1971), ‘Dual quark-gluon model of hadrons’, Phys. Lett. 37B, 315.CrossRefGoogle Scholar
397. Schwarz, J.H. (1972), ‘Dual-pion model satisfying current-algebra constraints’, Phys. Rev. D5, 886.Google Scholar
398. Schwarz, J.H. (1972), ‘Physical states and Pomeron poles in the dual pion model’, Nucl. Phys. B46, 61.CrossRefGoogle Scholar
399. Schwarz, J.H. and Wu, C.C. (1973), ‘Evaluation of dual fermion amplitudes’, Phys. Lett. 47B, 453.CrossRefGoogle Scholar
400. Schwarz, J.H. (1973), ‘Dual resonance theory’, Phys. Reports C8, 269.CrossRefGoogle Scholar
401. Schwarz, J.H. (1973), ‘Off-mass-shell dual amplitudes without ghosts’, Nucl. Phys. B65, 131.CrossRefGoogle Scholar
402. Schwarz, J.H. (1974), ‘Dual quark-gluon theory with dynamical color’, Nucl. Phys. B68, 221.CrossRefGoogle Scholar
403. Schwarz, J.H. and Wu, C.C. (1974), ‘Off-mass-shell dual amplitudes (II)’, Nucl. Phys. B72, 397.CrossRefGoogle Scholar
404. Schwarz, J.H. and Wu, C.C. (1974), ‘Functions occurring in dual fermion amplitudes’, Nucl. Phys. B73, 77.CrossRefGoogle Scholar
405. Schwarz, J.H. (1974), ‘Off-mass-shell dual amplitudes (III)’, Nucl. Phys. B76, 93.CrossRefGoogle Scholar
406. Schwarz, J.H. (1978), ‘Spinning string theory from a modern perspective’, in Proc. Orbis Scientiae 1978, New Frontiers in High-Energy Physics, eds. A., Perlmutter and L.F., Scott (Plenum Press), p. 431.Google Scholar
407. Schwarz, J.H. (1982), ‘Superstring theory’, Phys. Reports 89, 223.CrossRefGoogle Scholar
408. Schwarz, J.H. (1982), ‘Gauge groups for type I superstrings’, in Proc. of the Johns Hopkins Workshop on Current Problems in Particle Theory 6, Florence, 1982, p. 233.Google Scholar
409. Schwarz, J.H., ed. (1985), Superstrings: The First Fifteen Years of Superstring Theory, in 2 volumes (World Scientific, Singapore).CrossRefGoogle Scholar
410. Schwarz, J.H. (1985), ‘Introduction to superstrings’, in Superstrings and Supergravity, A.T., Davis and D.G., Sutherland, eds. (Edinburgh), p. 301.Google Scholar
411. Schwarz, J.H. (1986), ‘Faddeev–Popov ghosts and BRS symmetry in string theories’, Suppl. Prog. Theor. Phys. 86, 70.CrossRefGoogle Scholar
412. Sciuto, S. (1969), ‘The general vertex function in dual resonance models’, Nuovo Cim. Lett. 2, 411.CrossRefGoogle Scholar
413. Segal, G. (1981), ‘Unitary representations of some infinite dimensional groups’, Commun. Math. Phys. 80, 301.CrossRefGoogle Scholar
414. Sen, A. (1985), ‘Heterotic string in an arbitrary background field’, Phys. Rev. D32, 2102.Google Scholar
415. Sen, A. (1985), ‘Equations of motion for the heterotic string theory from the conformal invariance of the sigma model’, Phys. Rev. Lett. 55, 1846.CrossRefGoogle ScholarPubMed
416. Sen, A. (1986), ‘Local gauge and Lorentz invariance of heterotic string theory’, Phys. Lett. 166B, 300.CrossRefGoogle Scholar
417. Shapiro, J.A. (1969), ‘Narrow-resonance model with Regge behavior for ππ scattering’, Phys. Rev. 179, 1345.CrossRefGoogle Scholar
418. Shapiro, J.A. (1970), ‘Electrostatic analogue for the Virasoro model’, Phys. Lett. 33B, 361.CrossRefGoogle Scholar
419. Shapiro, J.A. (1972), ‘Loop graph in the dual-tube model’, Phys. Rev. D5, 1945.Google Scholar
420. Siegel, W. (1983), ‘Hidden local supersymmetry in the supersymmetric particle action’, Phys. Lett. 128B, 397.CrossRefGoogle Scholar
421. Siegel, W. (1984), ‘Covariantly second-quantized string II’, Phys. Lett. 149B, 157; (1985), ‘Covariantly second-quantized string II’, Phys. Lett. 151B, 391.Google Scholar
422. Siegel, W. (1984), ‘Covariantly second-quantized string III’, Phys. Lett. 149B, 162;CrossRefGoogle Scholar
(1985), ‘Covariantly second-quantized string III’, Phys. Lett. 151B, 396.
423. Siegel, W. (1985), ‘Spacetime-supersymmetric quantum mechanics’, Class. Quant. Grav. 2, L95.CrossRefGoogle Scholar
424. Siegel, W. (1985), ‘Classical superstring mechanics’, Nucl. Phys. B263, 93.Google Scholar
425. Sierra, G. (1986), ‘New local bosonic symmetries of the particle, superparticle and string actions’, Class. Quant. Grav. 3, L67.CrossRefGoogle Scholar
426. Skyrme, T.H.R. (1961), ‘Particle states of a quantized meson field’, Proc. Roy. Soc. A262, 237.CrossRefGoogle Scholar
427. Slansky, R. (1981), ‘Group theory for unified model building’, Phys. Reports 79, 1.CrossRefGoogle Scholar
428. Streater, R.F. and Wilde, I.F. (1970), ‘Fermion states of a boson field’, Nucl. Phys. B24, 561.CrossRefGoogle Scholar
429. Sugawara, H. (1968), ‘A field theory of currents’, Phys. Rev. 170, 1659.CrossRefGoogle Scholar
430. Sugawara, H. (1986), ‘String in curved space: Use of spinor representation of a noncompact group’, Phys. Rev. Lett. 56, 103.CrossRefGoogle ScholarPubMed
431. Sundborg, B. (1985), ‘Thermodynamics of superstrings at high energy densities’, Nucl. Phys. B254, 583.CrossRefGoogle Scholar
432. Susskind, L. (1970), ‘Dual-symmetric theory of hadrons. – I’, Nuovo Cim. 69A, 457.CrossRefGoogle Scholar
433. Susskind, L. (1970), ‘Structure of hadrons implied by duality’, Phys. Rev. Dl, 1182.Google Scholar
434. Teitelboim, C. (1986), ‘Gauge invariance for extended objects’, Phys. Lett. 167B, 63.CrossRefGoogle Scholar
435. 't Hooft, G. (1974), ‘A planar diagram theory for strong interactions’, Nucl. Phys. B72, 461.Google Scholar
436. Thorn, C.B. (1970), ‘Linear dependences in the operator formalism of Fubini, Veneziano, and Gordon’, Phys. Rev. Dl, 1693.Google Scholar
437. Thorn, C.B. (1971), ‘Embryonic dual model for pions and fermions’, Phys. Rev. D4, 1112.Google Scholar
438. Thorn, C.B. (1980), ‘Dual models and strings: The critical dimension’, Phys. Reports 67, 163.CrossRefGoogle Scholar
439. Thorn, C.B. (1984), ‘Computing the Kac determinant using dual model techniques and more about the no-ghost theorem’, Nucl. Phys. B248, 551.CrossRefGoogle Scholar
440. Thorn, C.B. (1985), ‘A proof of the no-ghost theorem using the Kac determinant’, in Vertex Operators in Mathematics and Physics, Proceedings of a Conference, November 10 – 17, 1983, eds. J., Lepowsky, S., Mandelstam, I.M., Singer (Springer-Verlag, New York), p. 411.Google Scholar
441. Thorn, C.B. (1986), ‘Introduction to the theory of relativistic strings’, in Workshop on Unified String Theories, 29 July – 16 August, 1985, eds. M., Green and D., Gross (World Scientific, Singapore), p. 5.Google Scholar
442. Todorov, I.T. (1985), ‘Current algebra approach to conformal invariant two-dimensional models’, Phys. Lett. 153B, 77.CrossRefGoogle Scholar
443. Trautman, A. (1970), ‘Fibre bundles associated with space-time’, Rep. Math. Phys. 1, 29.CrossRefGoogle Scholar
444. Tseytlin, A.A. (1986), ‘Covariant string field theory and effective action’, Phys. Lett. 168B, 63.CrossRefGoogle Scholar
445. Tseytlin, A.A. (1986), ‘Effective action for a vector field in the theory of open superstrings’, Pis'ma Zh. Eksp. Teor. Fiz. 43, 209.Google Scholar
446. Tye, S.-H.H. (1985), ‘The limiting temperature of the universe and superstrings’, Phys. Lett. 158B, 388.CrossRefGoogle Scholar
447. Tye, S.-H.H. (1985), ‘New actions for superstrings’, Phys. Rev. Lett. 55, 1347.CrossRefGoogle ScholarPubMed
448. Tyutin, I.V. (1975), ‘Gauge invariance in field theory and in statistical physics in the operator formulation’, Lebedev preprint FIAN No. 39 (in Russian), unpublished.Google Scholar
449. Vafa, C. and Witten, E. (1985), ‘Bosonic string algebras’, Phys. Lett. 159B, 265.CrossRefGoogle Scholar
450. Van Nieuwenhuizen, P. (1981), ‘Supergravity’, Phys. Reports 68, 189.CrossRefGoogle Scholar
451. Van Nieuwenhuizen, P. (1986), ‘The actions of the N = 1 and N = 2 spinning strings as conformal supergravities’, Int. J. Mod. Phys. Al, 155.CrossRefGoogle Scholar
452. Veblen, O. (1933), Projektive Relativitdts Theorie (Springer, Berlin).Google Scholar
453. Veneziano, G. (1968), ‘Construction of a crossing-symmetric, Reggebehaved amplitude for linearly rising trajectories’, Nuovo Cim. 57A, 190.CrossRefGoogle Scholar
454. Veneziano, G. (1974), ‘An introduction to dual models of strong interactions and their physical motivations’, Phys. Reports C9, 199.CrossRefGoogle Scholar
455. Veneziano, G. (1986), ‘Ward identities in dual string theories’, Phys. Lett. 167B, 388.CrossRefGoogle Scholar
456. Virasoro, M.A. (1969), ‘Alternative constructions of crossing-symmetric amplitudes with Regge behavior’, Phys. Rev. 177, 2309.CrossRefGoogle Scholar
457. Virasoro, M.A. (1969), ‘Generalization of Veneziano's formula for the five-point function’, Phys. Rev. Lett. 22, 37.CrossRefGoogle Scholar
458. Virasoro, M.A. (1970), ‘Subsidiary conditions and ghosts in dual-resonance models’, Phys. Rev. Dl, 2933.Google Scholar
459. Volovich, I.V. and Katanaev, M.O. (1986), ‘Quantum strings with a dynamic geometry’, Pis'ma Zh. Eksp. Teor. Fiz. 43, 212.Google Scholar
460. Waterson, G. (1986), ‘Bosonic construction of an N = 2 extended superconformal theory in two dimensions’, Phys. Lett. 171B, 77.CrossRefGoogle Scholar
461. Weinberg, S. (1964), ‘Derivation of gauge invariance and the equivalence principle from Lorentz invariance of the S-matrix’, Phys. Lett. 9, 357.CrossRefGoogle Scholar
462. Weinberg, S. (1964), ‘Photons and gravitons in S-matrix theory: derivation of charge conservation and equality of gravitational and inertial mass’, Phys. Rev. 135, B1049.CrossRefGoogle Scholar
463. Weinberg, S. (1965), ‘Photons and gravitons in perturbation theory: derivation of Maxwell's and Einstein's equations’, Phys. Rev. 138, B988.CrossRefGoogle Scholar
464. Weinberg, S. (1985), ‘Coupling constants and vertex functions in string theories’, Phys. Lett. 156B, 309.CrossRefGoogle Scholar
465. Wess, J. and Zumino, B. (1974), ‘Supergauge transformations in four dimensions’, Nucl. Phys. B70, 39.CrossRefGoogle Scholar
466. Wess, J. and Bagger, J. (1983), Supersymmetry and Supergravity, (Princeton Univ. Press).Google Scholar
467. Witten, E. (1983), ‘Global aspects of current algebra’, Nucl. Phys. B223, 422.CrossRefGoogle Scholar
468. Witten, E. (1983), ‘D = 10 superstring theory’, in Fourth Workshop on Grand Unification, ed. P., Langacker et al. (Birkhauser), p. 395.CrossRefGoogle Scholar
469. Witten, E. (1984), ‘Non-Abelian bosonization in two dimensions’, Commun. Math. Phys. 92, 455.CrossRefGoogle Scholar
470. Witten, E. (1986), ‘Twistor-like transform in ten dimensions’, Nucl. Phys. B266, 245.CrossRefGoogle Scholar
471. Witten, E. (1986), ‘Global anomalies in string theory’, in Symposium on Anomalies, Geometry, Topology, March 28–30, 1985, eds. W.A., Bardeen and A.R., White (World Scientific, Singapore), p. 61.Google Scholar
472. Yoneya, T. (1973), ‘Quantum gravity and the zero-slope limit of the generalized Virasoro model’, Nuovo Cim. Lett. 8, 951.CrossRefGoogle Scholar
473. Yoneya, T. (1974), ‘Connection of dual models to electrodynamics and gravidynamics’, Prog. Theor. Phys. 51, 1907.CrossRefGoogle Scholar
474. Yoneya, T. (1976), ‘Geometry, gravity and dual strings’, Prog. Theor. Phys. 56, 1310.CrossRefGoogle Scholar
475. Yoshimura, M. (1971), ‘Operational factorization and symmetry of the Shapiro–Virasoro model’, Phys. Lett. 34B, 79.CrossRefGoogle Scholar
476. Yu, L.P. (1970), ‘Multifactorizations and the four-Reggeon vertex function in the dual resonance models’, Phys. Rev. D2, 1010.Google Scholar
477. Yu, L.P. (1970), ‘General treatment of the multiple factorizations in the dual resonance models; the N-Reggeon amplitudes’, Phys. Rev. D2, 2256.Google Scholar
478. Zumino, B. (1974), ‘Relativistic strings and supergauges’ in Renormalization and Invariance in Quantum Field Theory, ed. E., Caianiello (Plenum Press), p. 367.CrossRefGoogle Scholar