Skip to main content Accessibility help
Hostname: page-component-cd4964975-8cclj Total loading time: 0 Render date: 2023-03-29T04:24:17.166Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

8 - Negative refraction using plasmonic structures that are atomically flat

Published online by Cambridge University Press:  01 June 2011

Peter B. Catrysse
Stanford University, Stanford, CA 94305, USA
Hocheol Shin
Stanford University, Stanford, CA 94305, USA
Shanhui Fan
Stanford University, Stanford, CA 94305, USA
Alexei A. Maradudin
University of California, Irvine
Get access



All-angle negative refraction of electromagnetic waves [1, 2] has generated great interest because it provides the foundation for a wide range of new electromagnetic effects and applications, including subwavelength image formation [2] and a negative Doppler shift [1], as well as novel guiding, localization and nonlinear phenomena [3, 4]. There has been tremendous progress in achieving negative refraction in recent years using either dielectric photonic crystals [5–9] or metallic meta-materials [10–17]. For either approach, however, there is an underlying physical length scale that sets a fundamental limit [18]. Below such a length scale, the concept of an effective index no longer holds. For photonic crystals, it is the periodicity, which is smaller than but comparable to the operating wavelength of light [8]. For metallic meta-materials, it is the size of each individual resonant element. In the microwave wavelength range, constructing resonant elements that are far smaller than the operating wavelength is relatively straightforward. As one pushes towards shorter optical wavelengths, however, it becomes progressively more difficult to construct resonant elements at a deep subwavelength scale [15]. Moreover, in the optical wavelength range, the plasmonic effects of metals become prominent. The strong magnetic response of metallic structures, as observed in microwave and infrared wavelength ranges, may be fundamentally affected. It is therefore very desirable to accomplish all-angle negative refraction using structures that are flat at an atomic scale.

Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


[1] Veselago, V. G., “Electrodynamics of substances with simultaneously negative values of ∈ and µ,” Sov. Phys. Uspekhi 10, 509–514 (1968).CrossRefGoogle Scholar
[2] Pendry, J. B., “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).CrossRefGoogle ScholarPubMed
[3] D'Aguanno, G., Mattiucci, N., Scalora, M., and Bloemer, M. J., “Bright and dark gap solitons in a negative index Fabry-Perot etalon,” Phys. Rev. Lett. 93, 213902(1-4) (2004).CrossRefGoogle Scholar
[4] Shadrivov, I. V., Sukhorukov, A. A., and Kivshar, Y. S., “Complete band gaps in one-dimensional left-handed periodic structures,” Phys. Rev. Lett. 95, 193903(1-4) (2005).CrossRefGoogle ScholarPubMed
[5] Notomi, M., “Theory of light propagation in strongly modulated photonic crystals: refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62, 10696–10705 (2000).CrossRefGoogle Scholar
[6] Luo, C., Johnson, S. G., Joannopoulos, J. D., and Pendry, J. B., “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 201104(1-4) (2002).CrossRefGoogle Scholar
[7] Cubukcu, E., Aydin, K., Ozbay, E., Foteinopoulou, S., and Soukoulis, C. M., “Subwavelength resolution in a two-dimensional photonic-crystal-based superlens,” Phys. Rev. Lett. 91, 207401(1-4) (2003).CrossRefGoogle Scholar
[8] Luo, C., Johnson, S. G., Joannopoulos, J. D., and Pendry, J. B., “Subwavelength imaging in photonic crystals,” Phys. Rev. B 68, 04511(1-8)(2003).CrossRefGoogle Scholar
[9] Berrier, A., Mulot, M., Swillo, M., Qiu, M., Thylén, L., Talneau, A., and Anand, S., “Negative refraction at infrared wavelengths in a two-dimensional photonic crystal,” Phys. Rev. Lett. 93, 073901(1-4)(2004).CrossRefGoogle Scholar
[10] Pendry, J. B., Holden, A. J., Stewart, W. J., and Youngs, I., “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996)CrossRefGoogle ScholarPubMed
[11] Pendry, J. B., Holden, A. J., Robbins, D. J., and Stewart, W. J., “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Th. Tech. 47, 2075–2084 (1999).CrossRefGoogle Scholar
[12] Smith, D. R., Padilla, W. J., Vier, D. C., Nemat-Nasser, S. C., and Schultz, S., “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).CrossRefGoogle ScholarPubMed
[13] Shelby, R. A., Smith, D. R., and Schultz, S., “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).CrossRefGoogle ScholarPubMed
[14] Koschny, T., Kafesaki, M., Economou, E. N., and Soukoulis, C. M., “Effective medium theory of left-handed materials,” Phys. Rev. Lett. 93, 107403(1-4) (2004).CrossRefGoogle ScholarPubMed
[15] Linden, S., Enkrich, C., Wegener, M., Zhou, J., Koschny, T., and Soukoulis, C. M., “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351–1353 (2004).CrossRefGoogle ScholarPubMed
[16] Pendry, J. B., “A chiral route to negative refraction,” Science 306, 1353–1355 (2004).CrossRefGoogle ScholarPubMed
[17] Yen, T. J., Padilla, W. J., Fang, N., Vier, D. C., Smith, D. R., Pendry, J. B., Basov, D. N., and Zhang, X., “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004).CrossRefGoogle ScholarPubMed
[18] Smith, D. R., Schurig, D., Rosenbluth, M., Schultz, S., Ramakrishna, S. A., and Pendry, J. B., “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett. 82, 1506–1508 (2003).CrossRefGoogle Scholar
[19] Fang, N., Lee, H., Sun, C., and Zhang, X., “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).CrossRefGoogle ScholarPubMed
[20] Chen, Y.-F., Fischer, P., and Wise, F. W., “Negative refraction at optical frequencies in nonmagnetic two-component molecular media,” Phys. Rev. Lett. 95, 067401(1-4) (2005).CrossRefGoogle ScholarPubMed
[21] Podolskiy, V. A. and Narimanov, E. E., “Strongly anisotropic waveguide as a nonmagnetic left-handed system,” Phys. Rev. B 71, 201101(1-4) (2005).CrossRefGoogle Scholar
[22] Economou, E. N., “Surface plasmons in thin films,” Phys. Rev. 182, 539–554 (1969).CrossRefGoogle Scholar
[23] Rakic, A. D., Djurisic, A. B., Elazar, J. M., and Majewski, M. L., “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998).CrossRefGoogle ScholarPubMed
[24] Born, M. and Wolf, E., Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (New York: Cambridge University Press, 1999).CrossRefGoogle Scholar
[25] Raether, H., Surface Plasmons on Smooth and Rough Surfaces and on Gratings (New York: Springer-Verlag, 1988).CrossRefGoogle Scholar
[26] Shin, H., Yanik, M. F., Fan, S., Zia, R., and Brongersma, M. L., “Omnidirectional resonance in a metal-dielectric-metal geometry,” Appl. Phys. Lett. 84, 4421–4423 (2004).CrossRefGoogle Scholar
[27] Tournous, P. and Laude, V., “Negative group velocities in metal-film optical waveguides,” Opt. Commun. 137, 41–45 (1997).CrossRefGoogle Scholar
[28] Berenger, J. P., “A perfectly matched layer for the absorption of electromagnetic-waves,” J. Comp. Phys. 114, 185–200 (1994).CrossRefGoogle Scholar
[29] Chen, L., He, S., and Shen, L., “Finite-size effects of a left-handed material slab on the image quality,” Phys. Rev. Lett. 92, 107404(1-4) (2004).CrossRefGoogle ScholarPubMed
[30] Ziolkowski, R. W. and Heyman, E., “Wave propagation in media having negative permittivity and permeability,” Phys. Rev. E 64, 056701(1-15) (2001).CrossRefGoogle ScholarPubMed
[31] Cummer, S. A., “Simulated causal subwavelength focusing by a negative refractive index slab,” Appl. Phys. Lett. 82, 1503–1505 (2003).CrossRefGoogle Scholar
[32] Karalis, A., Lidorikis, E., Ibanescu, M., Joannopoulos, J. D., and Soljacić, M., “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901(1-4) (2005).CrossRefGoogle ScholarPubMed
[33] Ramakrishna, S. A. and Pendry, J. B.Removal of absorption and increase in resolution in a near-field lens via optical gain,” Phys. Rev. B 67, 201101(1-4) (2003).CrossRefGoogle Scholar
[34] Palik, E. D. and Ghosh, G., Handbook of Optical Constants of Solids (Orlando, FL: Academic Press, 1985).Google Scholar
[35] Pendry, J. B. and Ramakrishna, S. A., “Near-field lenses in two dimensions,” J. Phys. 14, 8463–8479 (2002).Google Scholar
[36] Barnes, W. L., Dereux, A., and Ebbesen, T. W., “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).CrossRefGoogle ScholarPubMed
[37] Shin, H. and Fan, S. H., “All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure,” Phys. Rev. Lett. 96, 073907(1-4) (2006).CrossRefGoogle ScholarPubMed
[38] Shin, H. and Fan, S. H., “All-angle negative refraction and evanescent wave amplification using one-dimensional metallodielectric photonic crystals,” Appl. Phys. Lett. 89, 151101(1-3)(2006).CrossRefGoogle Scholar
[39] Bloemer, M. J. and Scalora, M.Transmissive properties of Ag/MgF2 photonic band gaps,” Appl. Phys. Lett. 72, 1676–1678 (1998).CrossRefGoogle Scholar
[40] Lezec, H. J., Dionne, J. A., and Atwater, H. A., “Negative refraction at visible frequencies,” Science 316, 430–432 (2007).CrossRefGoogle ScholarPubMed
[41] Bloemer, M., D'Aguanno, G., Mattiucci, N., Scalora, M., and Akozbek, N., “Broadband super-resolving lens with high transparency in the visible range,” Appl. Phys. Lett. 90, 174113(1-3) (2007).CrossRefGoogle Scholar
[42] Alú, A. and Engheta, N.Optical nanotransmission lines: synthesis of planar lefthanded metamaterials in the infrared and visible regimes,” J. Opt. Soc. Am. B 23, 571–583 (2006).CrossRefGoogle Scholar
[43] Catrysse, P. B. and Fan, S. H., “Understanding the dispersion of coaxial plasmonic structures through a connection with the planar metal-insulator-metal geometry,” Appl. Phys. Lett. 94, 231111(1-3) (2009).CrossRefGoogle Scholar
[44] Rodríguez-Fortuño, F. J., García-Meca, C., Ortuño, R., Martí, J., and Martínez, A., “Coaxial plasmonic waveguide array as a negative-index metamaterial,” Opt. Lett. 34, 3325–3327 (2009).CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats