Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-20T06:27:38.055Z Has data issue: false hasContentIssue false

2 030 000 years: Protosun

from Part 1 - Genesis of the Sun and Solar Nebula

Published online by Cambridge University Press:  10 November 2009

Get access

Summary

Over tens of thousands of years, the gases inside the globule continued to fall away from the inside edge of the cocoon, pulled inexorably towards that dense core at the centre. By now, the core of the globule was taking on a definite shape – a gargantuan ball, about the size of the present-day Solar System out to Pluto. Its surface was still too cold to glow optically. But, at last, its central regions had warmed up significantly – to about 10 000 Celsius – and the molecules there had split into atoms of hydrogen.

This marked an important point in the development of the Sun. At this temperature, the cloud core was now hot enough for the radiation it emitted to carry a significant punch. Radiation is composed of tiny packets of energy called photons, each of which can be likened to a subatomic particle. If there are enough of these photons emitted every second they can hit like a hail of bullets, a barrage of electromagnetic force known as radiation pressure. Before this point the core of the globule had been emitting too few photons to exert a noticeable force. Now, though, as the growing waves of radiation streamed away from the warming core they slammed into the outermost regions of the globule where the gases were less dense, and slightly hindered their inbound journey. Thus the contraction of the core slowed, but it did not stop, so overwhelming was the inward pull of gravity. The very centre of the core was also dense enough now that it was beginning to become opaque to the heat radiation generated inside it.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×