Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-16T01:36:56.044Z Has data issue: false hasContentIssue false

Treatment

from Part III - Modern Era, Mid-Twentieth Century to the Present

Published online by Cambridge University Press:  13 December 2022

Louis R. Caplan
Affiliation:
Beth Israel Deaconess Medical Centre
Aishwarya Aggarwal
Affiliation:
John F. Kennedy Medical Center
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Stories of Stroke
Key Individuals and the Evolution of Ideas
, pp. 411 - 412
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Wright, I, Millikan, CH. Cerebrovascular Diseases: Transactions of the First Conference Held January 24–26, 1954 at Princeton, New Jersey. New York: Grune & Stratton, 1954.Google Scholar
Wright, I, Millikan, CH. Cerebrovascular Diseases: Second Conference. New York: Grune & Stratton, 1958.Google Scholar
NINDS Ad Hoc Committee. A classification and outline of cerebrovascular diseases. Neurology 1958;8:188216.Google Scholar
Fisher, CM. Anticoagulant therapy in cerebral thrombosis and cerebral embolism: A national cooperative study, interim report. Neurology 1961;11:119131.Google ScholarGoogle Scholar
Fisher, CM. Anticoagulant study. In Memoirs of a Neurologist. Rutland, VT: Sharp, 2006, vol. 3, pp. 173235.Google Scholar
Millikan, C. Reassessment of anticoagulant therapy in various types of occlusive cerebrovascular disease. Stroke 1971;2:201208.Google Scholar
The story of aspirin is the topic of Chapter 47 and other antiplatelets are considered in Chapter 48.Google Scholar
Vane, JR. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat. New Biol. 1971;231:232235.CrossRefGoogle ScholarPubMed
Fields, WS, Lemak, NA, Frankowski, RF, Hardy, RJ. Controlled trial of aspirin in cerebral ischemia. Stroke 1977;8:301314.Google Scholar
Canadian Cooperative Study Group. A randomized trial of aspirin and sulfinpyrazone in threatened stroke. N. Engl. J. Med. 1978;299:5359.CrossRefGoogle Scholar
Barnett, Henry J. M.. Wikipedia. Available at https://en.wikipedia.org/wiki/Henry_J._M._Barnett.Google Scholar
Spence, JD, Hachinsky, V. Henry J. M. Barnett (1922–2016). Stroke 2017;48(1):24.Google Scholar
Van Horn, G, Grotta, JC. William S. Fields, MD, Texas medical center pioneer. Ann. Neurol. 2004;56(2):314. https://doi.org/10.1002/ana.20167.CrossRefGoogle Scholar
Fields, WS, Lemak, NA. A History of Stroke. New York: Oxford University Press, 1989.Google Scholar
Patrono, C, Ciabattoni, G, Patrignani, P, et al. Clinical pharmacology of platelet cyclooxygenase inhibition. Circulation 1985;72:11771184.CrossRefGoogle ScholarPubMed
Wallentin, LC. Aspirin (75 mg/day) after an episode of unstable coronary artery disease: Long-term effects on the risk for myocardial infarction, occurrence of severe angina and the need for revascularization. Research Group on Instability in Coronary Artery Disease in Southeast Sweden. JACC 1991;18:15871593.Google Scholar
SALT Collaborative Group. The Swedish Aspirin Low-Dose Trial. Lancet 1991;338:13451349.Google Scholar
A comparison of two doses of aspirin (30 mg vs. 283 mg a day) in patients after a transient ischemic attack or minor ischemic stroke: The Dutch TIA Trial Study Group. N. Engl. J. Med. 1991;325:1261–1266.CrossRefGoogle Scholar
Farrell, B, Godwin, J, Richards, S, Warlow, C. The United Kingdom Transient Ischaemic Attack (UK-TIA) aspirin trial: Final results. J. Neurol. Neurosurg. Psychiatry 1991;54:10441054.CrossRefGoogle ScholarPubMed
Diener, HC, Cunha, L, Forbes, C, et al. European Stroke Prevention Study. 2. Dipyridamole and acetylsalicylic acid in the secondary prevention of stroke. J. Neurol. Sci. 1996 Nov;143(1–2):113.CrossRefGoogle ScholarPubMed
Hart, RG, Harrison, MJG. Aspirin wars: The optimal dose of aspirin to prevent stroke. Stroke 1996;27:585587.Google Scholar
Peto, R, Pike, MC, Armitage, P, et al. Design and analysis of randomised clinical trials requiring prolonged observation of each patient. Br. J. Cancer 1977;35:139.Google Scholar
Peto, R. Editorial: Aspirin and myocardial infarction. Lancet 1980;1:11721173.Google Scholar
Antiplatelet Trialists’ Collaboration. Secondary prevention of vascular disease by prolonged antiplatelet treatment. BMJ 1988;296:320331.Google Scholar
Antiplatelet Trialists’ Collaboration. Collaborative overview of randomised trials of antiplatelet therapy – 1. Prevention of death, myocardial infarction and stroke by prolonged antiplatelet therapy in various categories of patients. BMJ 1994;308:81106.Google ScholarGoogle Scholar
ISIS-2 (Second international Study of Infarct Survival) Collaborative Group. Randomized trial of intravenous streptokinase, oral aspirin, both, or neither among 17,187 cases of suspected acute myocardial infarction: ISIS-2. J. Am. Coll. Cardiol. 1988 Dec;12(6 suppl A):3A–13A.Google Scholar
The International Stroke Trial (IST): A randomised trial of aspirin, subcutaneous heparin, both, or neither among 19435 patients with acute ischaemic stroke. International Stroke Trial Collaborative Group. Lancet 1997;349:1569–1581.CrossRefGoogle Scholar
CAST: Randomised placebo-controlled trial of early aspirin use in 20,000 patients with acute ischaemic stroke. CAST (Chinese Acute Stroke Trial) Collaborative Group. Lancet 1997 Jun 7;349(9066):1641–1649.Google Scholar
Sackett, DL, Haynes, RB, Tugwell, P. Clinical Epidemiology: A Basic Science for Clinical Medicine. Boston: Little, Brown, 1985.Google Scholar
Cochrane, A. Effectiveness and Efficiency: Random Reflections on Health Services. The Nuffield Provincial Hospital Trust, 1972.Google Scholar
Qiu, J. Charles Warlow: A career of “successive flukes.” Lancet 2008 Jun;7(6):478.Google Scholar
Djulbegovic, B, Guyatt, GH. Progress in evidence-based medicine: A quarter century on. Lancet 2017;390:415423.Google Scholar
GRADE Working Group. The Grades of Recommendation. Assessment, Development and Evaluation Working Group. 2004.Google Scholar
The Stroke Prevention in Atrial Fibrillation Investigators. The stroke prevention in atrial fibrillation study: Final results. Circulation 1991;84:527539.Google Scholar
Mohr, JP, Thompson, JLP, Lazar, RM, et al. for the Warfarin-Aspirin Recurrent Stroke Study Group. A comparison of warfarin and aspirin for the prevention of recurrent ischemic stroke. N. Engl. J. Med. 2001;345:14441451.Google Scholar
Chimowitz, MI, Lynn, MJ, Howlett-Smith, H, et al. Comparison of warfarin and aspirin for symptomatic intracranial arterial stenosis. N. Engl. J. Med. 2005;352:13051316.CrossRefGoogle ScholarPubMed
The newer anticoagulants are discussed in Chapter 46.Google Scholar
European Investigators published the results of the European Cooperative Acute Stroke Study (ECASS). Hacke, W, Kaste, M, Fieschi, C, et al. Intravenous thrombolysis with recombinant tissue plasminogen activator for acute hemispheric stroke. The European Cooperative Acute Stroke Study (ECASS). JAMA 1995;274:10171025.Google ScholarGoogle Scholar
The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. Tissue plasminogen activator for acute ischemic stroke. N. Engl. J. Med. 1995;333:15811587.Google Scholar
Furlan, AJ, Higashida, RT, Wechsler, L, et al. PROACT II. Intra-arterial Pro-urokinase for acute ischemic stroke: A randomized controlled trial. JAMA 1999;282;20032011.CrossRefGoogle ScholarPubMed
The EC-IC Bypass Study Group. Failure of the extracranial-intracranial arterial bypass to reduce the risk of ischemic stroke. N. Engl. J. Med. 1985;313:11911200.CrossRefGoogle Scholar
The Asymptomatic Carotid Atherosclerosis Study Group. Study design for randomized prospective trial of carotid endarterectomy for asymptomatic atherosclerosis. Stroke 1989;20:844849.CrossRefGoogle Scholar
NASCET Collaborators. Beneficial effect of carotid endarterectomy in symptomatic patients with high-grade carotid stenosis. N. Engl. J. Med. 1991;325:445453.Google ScholarGoogle Scholar
Brott, TG, Hobson, RW II, Howard, G, et al. CREST Investigators. Stenting vs endarterectomy for treatment of carotid-artery stenosis. N. Engl. J. Med. 2010;363:1123.Google ScholarGoogle Scholar
Halliday, A, Mansfield, A, Marro, J, et al. Prevention of disabling and fatal strokes by successful carotid endarterectomy in patients without recent neurological symptoms: Randomised controlled trial. Lancet 2004;363:14911502. Carotid artery surgery is discussed in Chapter 54 and carotid artery stenting in Chapter 55.Google Scholar
Vahedi, K, Hofmeijer, J, Juettler, E, et al. Early decompressive surgery in malignant middle cerebral artery infarction: A pooled analysis of three randomised controlled trials. Lancet Neurol. 2007;6:215222.Google Scholar
Chimowitz, M, Lynn, MJ, Derdeyn, CP, et al. for the SAMMPRIS Trial Investigators. Stenting versus aggressive medical therapy for intracranial arterial stenosis. N. Engl. J. Med. 2011;365:9931003.CrossRefGoogle ScholarPubMed
Turan, TN, Nizam, A, Lynn, MJ, et al. Relationship between risk factor control and vascular events in the SAMMPRIS trial. Neurology 2017;88(4):379385.Google Scholar
Mohr, JP, Parides, MK, Stapf, C, et al. Medical management with or without interventional therapy for unruptured brain arteriovenous malformations (ARUBA): A multicentre, non-blinded, randomised trial. Lancet 2014;383 (9917):614621.Google Scholar
Trials that evaluated the safety and effectiveness of endovascular management of acute ischemic stroke are discussed in Chapter 56.Google Scholar

Notes and References

Couch, NP. About heparin, or … whatever happened to Jay McLean? J. Vasc. Surg. 1989 Jul;10(1):18.Google ScholarPubMed
Marcum, JA. Discovery of heparin: Contributions of William Henry Howell and Jay McLean. Physiology 1992 Oct;7(5):237242.CrossRefGoogle Scholar
Mclean, J. The discovery of heparin. Circulation 1959 Jan;19(1):7578.Google Scholar
McLean, J. The thromboplastic action of cephalin. Am. J. Physiol.-Leg. Content 1916 Aug 1;41(2):250257.CrossRefGoogle Scholar
Charles, AF, Scott, DA. Studies on heparin I. The preparation of heparin. J. Biol. Chem. 1933 Oct 1;102(2):425429.Google Scholar
Lever, R, Mulloy, B, Page, C. Heparin: A Century of Progress. Berlin: Springer Healthcare, 2012, pp. 418.Google Scholar
Oduah, EI, Linhardt, RJ, Sharfstein, ST. Heparin: Past, present, and future. Pharmaceuticals (Basel) 2016 Jul 4;9(3):38.Google Scholar
Caplan, L, Saver, J. Treatment. In Caplan, L (ed.), Caplan’s Stroke: A Clinical Approach, 5th ed. Cambridge: Cambridge University Press, 2016, pp. 170177.Google Scholar
Saxena, R, Lewis, S, Berge, E, Sandercock, PA, Koudstaal, PJ. Risk of early death and recurrent stroke and effects of heparin in 3169 patients with acute ischemic stroke and atrial fibrillation in the International Stroke Trial. Stroke 2001;32:23332337.Google Scholar
Resnick, SB, Resnick, SH, Weintraub, JL, Kothary, N. Heparin in interventional radiology: A therapy in evolution. Semin. Interv. Radiol. 2005 Jun;22(2):95107.Google Scholar

Notes and References

Link, KP. The discovery of dicumarol and its sequels. Circulation 1959 Jan 1;19(1):97107.Google Scholar
Fields, WS, Lemak, NA. A History of Stroke: Its Recognition and Treatment. New York: Oxford University Press, 1989.Google Scholar
Wardrop, D, Keeling, D. The story of the discovery of heparin and warfarin. Br. J. Haematol. 2008 Jun 1;141(6):757763.Google Scholar
Burris, RH. Karl Paul Link. In Biographical Memoirs, vol. 65. National Academies Press, 1994. Available at www.nap.edu/read/4548/chapter/9.Google Scholar
Meek, T. This month in 1939: How dead cattle led to the discovery of warfarin. PMLive. June 27, 2013. Available at www.pmlive.com/pharma_news/how_dead_cattle_led_to_the_discovery_of_warfarin_485464.Google Scholar
Wessler, S, Gitel, S. Warfarin: From bedside to bench. N. Engl. J. Med. 1984;311:645652.Google ScholarPubMed
Deykin, D. Warfarin therapy. N. Engl. J. Med. 1970;283:691694.CrossRefGoogle ScholarPubMed
Barritt, DW, Jordan, MB. Anticoagulant drugs in the treatment of pulmonary embolism: A controlled trial. Lancet 1960;275:13091312.CrossRefGoogle Scholar
Ergermayer, P. Value of anticoagulants in the treatment of pulmonary embolism: A discussion paper. J. Roy. Soc. Med. 1981;74:675681.Google Scholar
Wright, IS, Foley, WT. Use of anticoagulants in the treatment of heart disease with special reference to coronary thrombosis, rheumatic heart disease with thromboembolic complications and subacute bacterial endocarditis. Am. J. Med. 1947;3:718739.Google Scholar
Cosgriff, SW. Prophylaxis of recurrent embolism of intracardiac origin: Protracted anticoagulant therapy on an ambulatory basis. JAMA 1950;143:870872.Google Scholar
Szekely, P. Systemic embolism and anticoagulant prophylaxis in rheumatic heart disease. Br. Med. J. 1964:1:1209.CrossRefGoogle ScholarPubMed
McDevitt, E. Treatment of cerebral embolism. Mod. Treat. 1965;2:52.Google ScholarPubMed
Fleming, HA, Bailey, SM. Mitral valve disease, systemic embolism and anticoagulants. Postgrad. Med. J. 1971; 47:599604.Google Scholar
Report of the working party on anticoagulant therapy in coronary thrombosis to the Medical Research Council: Assessment of short-term anticoagulant administration after cardiac infarction. Br. Med. J. 1969;1:335.Google Scholar
Kucharski, A. Medical management of political patients: The case of Dwight D. Eisenhower. Perspect. Biol. Med. 1978;22:115126.Google Scholar
Fisher, CM. Anticoagulant therapy in cerebral thrombosis and cerebral embolism. A National Cooperative Study, interim report. Neurology 1961;11:119131.Google Scholar
Baker, RN, Broward, JA, Fang, HC, Fisher, CM, Groch, SN, Heyman, A. Anticoagulant therapy in cerebral infarction. Neurology 1962;12:823835.Google Scholar
Millikan, CH, Siekert, RG, Shick, R. Studies in cerebrovascular disease, III: The use of anticoagulant drugs in the treatment of insufficiency or thrombosis within the basilar arterial system. Proc. Staff Meet. Mayo Clin. 1955;30:111126.Google Scholar
Millikan, CH, Siekert, RG, Whisnant, JP. Anticoagulant therapy in cerebrovascular disease: Current status. JAMA 1958;166:587592.CrossRefGoogle ScholarPubMed
Whisnant, JP. Discussion. In Millikan, C, Siekert, R, Whisnant, JP (eds.), Cerebral Vascular Diseases: Third Princeton Conference on Cerebrovascular Diseases. Orlando, FL: Grune & Stratton, 1961, pp. 156157.Google Scholar
The Boston Area Anticoagulation Trial for Atrial Fibrillation Investigators. The effect of low-dose warfarin on the risk of stroke in patients with nonrheumatic atrial fibrillation. N. Engl. J. Med. 1990;323:15051511.CrossRefGoogle Scholar
EAFT (European Atrial Fibrillation Trial) Study Group. Secondary prevention in non-rheumatic atrial fibrillation after transient ischaemic attack or minor stroke. Lancet 1993;342:12551262.Google Scholar
The Stroke Prevention in Atrial Fibrillation Investigators. The stroke prevention in atrial fibrillation study: Final results. Circulation 1991;84:527539.Google Scholar
Stroke Prevention in Atrial Fibrillation Investigators. Warfarin versus aspirin for prevention of thromboembolism in atrial fibrillation: Stroke Prevention in Atrial Fibrillation II Study. Lancet 1994;343:687691.Google Scholar
Albers, GW. Atrial fibrillation and stroke: Three new studies, three remaining questions. Arch. Intern. Med. 1994;154:14431448.CrossRefGoogle ScholarPubMed
Hart, RG, Benavente, O, McBride, R, et al. Antithrombotic therapy to prevent stroke in patients with atrial fibrillation: A meta-analysis. Ann. Intern. Med. 1999;131:492501.CrossRefGoogle ScholarPubMed
Mohr, JP, Thompson, JLP, Lazar, RM, et al. for the Warfarin–Aspirin Recurrent Stroke Study Group. A comparison of warfarin and aspirin for the prevention of recurrent ischemic stroke. N. Engl. J. Med. 2001;345:14441451.CrossRefGoogle ScholarPubMed
Chimowitz, MI, Lynn, MJ, Howlett-Smith, H, et al. Comparison of warfarin and aspirin for symptomatic intracranial arterial stenosis. N. Engl. J. Med. 2005;352:13051316.Google Scholar
Koroshetz, W. Warfarin, aspirin, and intracranial vascular disease. N. Engl. J. Med. 2005;352:13681370.CrossRefGoogle ScholarPubMed
Bousser, MG, Ross Russell, R. Cerebral Venous Thrombosis. Philadelphia: WB Saunders, 1997.Google Scholar
Ameri, A, Bousser, MG. Cerebral venous thrombosis. Neurol. Clin. 1992;10:87111.Google Scholar

Notes and References

The development of warfarin and its evolution is discussed at length in Chapter 45.Google Scholar
Rost, S, Fregin, A, Ivaskevicius, V, et al. Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2. Nature 2004;427:537541.Google ScholarGoogle Scholar
Akins, PT, Feldman, HA, Zoble, RG, et al. Secondary stroke prevention with ximelagatran versus warfarin in patients with atrial fibrillation. Pooled analysis of SPORTIF III and V Clinical Trials. Stroke 2007;38:874880.Google Scholar
Connolly, SJ, Ezekowitz, MD, Yusuf, S, et al. and the RE-LY Steering Committee and Investigators. Dabigatran versus warfarin in patients with atrial fibrillation. N. Engl. J. Med. 2009;361:11391151.Google Scholar
Patel, MR, Mahaffey, KW, Garg, J, Pan, G, Singer, DE, Hacke, W, et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N. Engl. J. Med. 2011;365:883891.CrossRefGoogle ScholarPubMed
Granger, CB, Alexander, JH, McMurray, JJ, Lopes, RD, Hylek, EM, Hanna, M, et al. Apixaban versus warfarin in patients with atrial fibrillation. N. Engl. J. Med. 2011;365:981992.Google Scholar
Giugliano, RP, Ruff, CT, Braunwald, E, Murphy, SA, Wiviott, SD, Halperin, JL, et al. Edoxaban versus warfarin in patients with atrial fibrillation. N. Engl. J. Med. 2013;369:20932104.CrossRefGoogle ScholarPubMed
Eikelboom, JW, Connolly, SJ, Brueckmann, M, et al. for the RE-ALIGN Investigators. Dabigatran versus warfarin in patients with mechanical heart valves. N. Engl. J. Med. 2013;369:12061214.Google Scholar

Notes and References

Stone, E. XXXII. An account of the success of the bark of the willow in the cure of agues. In a letter to the Right Honourable George Earl of Macclesfield, President of R. S. from the Rev. Mr. Edward Stone, of Chipping-Norton in Oxfordshire. Philos. Trans. 1763 Jan 1;53:195200.Google Scholar
Jack, DB. One hundred years of aspirin. Lancet Lond. Engl. 1997 Aug 9;350(9075):437439.Google Scholar
Pearce, JMS. The controversial story of aspirin. World Neurology. December 2, 2014. Available at https://worldneurologyonline.com/article/controversial-story-aspirin/.Google Scholar
Buchanan, WW, Kean, WF. The treatment of acute rheumatism by salicin, by T. J. Maclagan – The Lancet, 1876. J. Rheumatol. 2002 Jun 1;29(6):13211323.Google Scholar
Snead, MW, Aikawa, JK. T. J. Maclagan and the treatment of rheumatic fever with salicin. AMA Arch. Intern. Med. 1958 May 1;101(5):9971004.CrossRefGoogle Scholar
Malverde, J. How aspirin turned hero: Heroin, Bayer and Heinrich Dreser. Democratic Underground. Available at www.democraticunderground.com/11701737.Google Scholar
Lichterman, BL. Aspirin: The story of a wonder drug. BMJ 2004 Dec 11;329(7479):1408.Google Scholar
Miner, J, Hoffhines, A. The discovery of aspirin’s antithrombotic effects. Tex. Heart Inst. J. 2007;34(2):179186.Google Scholar
Craven, LL. Coronary thrombosis can be prevented. J. Insurance Med. 1950;5:4748.Google Scholar
Craven, LL. Experiences with aspirin (acetylsalicylic acid) in the nonspecific prophylaxis of coronary thrombosis. Miss. Valley Med. J. 1953;75:3844.Google ScholarPubMed
Craven, LL. Prevention of coronary and cerebral thrombosis. Miss. Valley Med. J. 1956;78:213215.Google Scholar
Weiss, HJ, Aledort, LM, Kochwa, S. The effect of salicylates on the hemostatic properties of platelets in man. J. Clin. Invest. 1968;47:21692180.Google Scholar
Vane, JR. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat. New Biol. 1971;231:232235.Google Scholar
ISIS-2 (Second International Study of Infarct Survival) Collaborative Group. Randomised trial of intravenous streptokinase, oral aspirin, both, or neither among 17,187 cases of suspected acute myocardial infarction: ISIS-2. Lancet 1988;2:349360.Google Scholar
Antithrombotic Trialists’ Collaboration. Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. BMJ 2002;324:7186.Google Scholar
Bell, AD, Roussin, A, Cartier, R, Chan, WS, Douketis, JD, Gupta, A, Kraw, ME, Lindsay, TF, Love, MP, Pannu, N, Rabasa-Lhoret, R, Shuaib, A, Teal, P, Théroux, P, Turpie, AG, Welsh, RC, Tanguay, JF. The use of antiplatelet therapy in the outpatient setting: Canadian Cardiovascular Society Guidelines Executive Summary. Can. J. Cardiol. 2011;27:208221.Google Scholar
Graham, I, Atar, D, Borch-Johnson, K, et al. for the ESC Committee for Practice Guidelines. European guidelines on cardiovascular disease prevention in clinical practice: Executive summary. Atherosclerosis 2007;194:145.Google Scholar
US Preventive Services Task Force. Aspirin for the prevention of cardiovascular disease: U.S. Preventive Services Task Force recommendation statement. Ann. Intern. Med. 2009;150:396404.Google Scholar
Vandvik, PO, Lincoff, AM, Core, JM, et al. for American College of Chest Physicians. Primary and secondary prevention of cardiovascular disease: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed.: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 2012;141:e637Se668S.Google Scholar
Mundall, J, Quintero, P, von Kaulla, K, et al. Transient monocular blindness and increased platelet aggregability treated with aspirin: A case report. Neurology 1971;21:402.Google Scholar
Harrison, MJG, Marshall, J, Meadows, JC, et al. Effect of aspirin in amaurosis fugax. Lancet 1971;2:743744.CrossRefGoogle ScholarPubMed
Fields, WS, Lemak, N, Frankowski, R, Hardy, RJ. Controlled trial of aspirin in cerebral ischemia. Stroke 1977;8:301306.CrossRefGoogle ScholarPubMed
Canadian Cooperative Study Group. A randomized trial of aspirin and sulfinpyrazone in threatened stroke. N. Engl. J. Med. 1978;299:5359.Google Scholar
UK-TIA Study Group. The UK-TIA Aspirin Trial: The interim results. BMJ 1988;296:316320.Google Scholar
The SALT Collaborative Group. Swedish Aspirin Low-Dose Trial (SALT) of 75 mg aspirin as secondary prophylaxis after cerebrovascular ischemic events. Lancet 1991;338:13451349.Google Scholar
The Dutch TIA Trial Study Group. A comparison of two doses of aspirin (30 mg vs 283 mg a day) in patients after a transient ischemic attack or minor stroke. N. Engl. J. Med. 1991;325:12611266.CrossRefGoogle Scholar
Antiplatelet Trialists’ Collaboration. Collaborative overview of randomised trials of antiplatelet therapy. 1. Prevention of death, myocardial infarction, and stroke by prolonged antiplatelet therapy in various categories of patients. BMJ 1994;308:81106.CrossRefGoogle Scholar
Antithrombotic Trialists’ Collaboration. Collaborative meta-analysis of randomized trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. BMJ 2002;524:7186.Google Scholar

Notes and References

Coller, BS. Historical perspective and future directions in platelet research. J. Thromb. Haemost. 2011;9(suppl 1):374395.CrossRefGoogle ScholarPubMed
Bizzozero, G. Su di un nuovo elemento morfologico del sangue dei mammiferi e della sua importanza nella trombosi e nella coagulazione. L’Osservatore 1881;17:785787.Google ScholarGoogle Scholar
Osler, W. On certain problems in the physiology of the blood corpuscles. Med. News 1886;48:421425. The stroke contributions of Sir William Osler and his medical textbooks are discussed further in Chapter 14.Google Scholar
Gustav Victor Rudolf Born. Wikipedia. Available at https://en.wikipedia.org/wiki/Gustav_Victor_Rudolf_Born.Google Scholar
Born, GV. Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature 1962;194:927929.Google ScholarGoogle Scholar
Brownlee, C. Biography of Barry S. Coller. Proc. Natl. Acad. Sci. U.S.A 2004 Sep 7;101(36):1311113113.Google Scholar
The history and evolution of the antiplatelet introduction of aspirin by Bayer is discussed in detail in Chapter 46.Google Scholar
Personal communication from Wolfgang Eisert, who directed dipyridamole research at Boehringer-Ingelheim.Google Scholar
Eisert, W, Gruber, P. Pharmaceutical compositions containing dipyridamole or mopidamol and acetylsalicylic acid or the physiologically acceptable salts thereof, processes for preparing them and their use in treating clot formation. US Patent 6015577A. https://patents.google.com/patent/US6015577A/en.Google Scholar
Sullivan, J, Harken, D, Gorlin, R. Pharmacologic control of thromboembolic complications of aortic valve replacement. N. Engl. J. Med. 1971;284:13911394.Google Scholar
Fields, WS, Yatsu, F, Conomy, J, et al. Persantine-aspirin trial in cerebral ischemia: The American-Canadian Cooperative Study group. Stroke 1983;14:97103.Google ScholarGoogle Scholar
ESPS Group. European Stroke Prevention Study (ESPS): Principal endpoints. Lancet 1987; 2:13511354.Google ScholarGoogle Scholar
The ESPRIT Study group. Aspirin plus dipyridamole versus aspirin alone after cerebral ischaemia of arterial origin (ESPRIT): Randomized controlled trial. Lancet 2006;367:16651673.Google Scholar
Verro, P, Gorelick, PB, Nguyen, D. Aspirin plus dipyridamole versus aspirin for prevention of vascular events after stroke or TIA: A meta-analysis. Stroke 2008;39(4):13581363.Google Scholar
Ikeda, Y, Kikuchi, M, Murakami, H. Comparison of the inhibitory effects of cilostazole, acetylsalicylic acid, and ticlopidine on platelet function ex vivo: Randomized, double-blind cross-over study. Drug Res. 1987;37:563566.Google ScholarGoogle Scholar
Gotoh, F, Tohgi, H, Hirai, S, et al. Cilostazole stroke prevention study: A placebo-controlled double-blind trial for secondary prevention of cerebral infarction. J. Stroke Cerebrovasc. Dis. 2000;9:147157.Google Scholar
Kwon, SU, Cho, Y-J, Koo, J-S, et al. Cilostazole prevents the progression of the symptomatic intracranial stenosis: The multicenter double-blind placebo-controlled trial of cilostazole in symptomatic intracranial arterial stenosis. Stroke 2005;36:782786.Google Scholar
Quinn, MJ, Fitzgerald, DJ. Ticlopidine and clopidogrel. Circulation 1999;100:16671672.Google ScholarGoogle Scholar
Hass, WK, Easton, JD, Adams, HP Jr, Pryse-Phillips, W, Molony, BA, Anderson, S, et al. A randomized trial comparing ticlopidine hydrochloride with aspirin for the prevention of stroke in high-risk patients. Ticlopidine Aspirin Stroke study group. N. Engl. J. Med. 1989;321:501507.Google ScholarGoogle Scholar
Maffrand, JP. The story of clopidogrel and its predecessor, ticlopidine: Could these major antiplatelet and antithrombotic drugs be discovered and developed today? C. R. Chim. 2012;15(8):737743.Google Scholar
A randomised, blinded, trial of clopidogrel versus aspirin in patients at risk of ischaemic events (CAPRIE). CAPRIE steering committee. Lancet 1996;348:1329–1339.Google Scholar
Diener, HC, Bogousslavsky, J, Brass, LM, Cimminiello, C, Csiba, L, Kaste, M, et al. Aspirin and clopidogrel compared with clopidogrel alone after recent ischaemic stroke or transient ischaemic attack in high-risk patients (MATCH): Randomised, double-blind, placebo-controlled trial. Lancet 2004;364:331337.Google ScholarGoogle Scholar
Bhatt, DL, Fox, KA, Hacke, W, Berger, PB, Black, HR, Boden, WE, et al. Clopidogrel and aspirin versus aspirin alone for the prevention of atherothrombotic events. N. Engl. J. Med. 2006;354:17061717.Google Scholar
Wang, Y, Wang, Y, Zhao, X, et al. and Johnston SC for the CHANCE Investigators. Clopidogrel with aspirin in acute minor stroke or transient ischemic attack. N. Engl. J. Med. 2013;369:113.Google Scholar
Johnston, SC, Easton, JD, Farrant, M, et al. for the Clinical Research Collaboration, Neurological Emergencies Treatment Trials Network, and the POINT Investigators. Clopidogrel and aspirin in acute ischemic stroke and high-risk TIA. N. Engl. J. Med. 2018;379:215225.Google Scholar
Johnston, SC, Amarenco, P, Albers, GW, et al. for the SOCRATES Steering Committee and Investigators. Ticagrelor versus aspirin in acute stroke or transient ischemic attack. N. Engl. J. Med. 2016;375:3543.CrossRefGoogle ScholarPubMed
Johnston, SC, Amarenco, P, Denison, H, et al. for the THALES Investigators. Ticagrelor and aspirin or aspirin alone in acute ischemic stroke or TIA. N. Engl. J. Med. 2020;383:207217.Google Scholar
Coller, BS. Anti-GPIIb/IIIa drugs: Current strategies and future directions. Thromb. Haemost. 2001;86(1):427443.Google Scholar
Lefkovits, J, Plow, EF, Topol, EJ. Platelet glycoprotein IIb/IIIa receptors in cardiovascular medicine. N. Engl. J. Med. 1995;332:15531559.CrossRefGoogle ScholarPubMed
Adams, HP Jr, Effron, MB, Torner, J, Davalos, A, Frayne, J, Teal, P, et al. Emergency administration of abciximab for treatment of patients with acute ischemic stroke: Results of an international phase III trial: Abciximab in emergency treatment of stroke trial (AbESTT-II). Stroke 2008;39:8799.Google Scholar
Topol, EJ, Easton, D, Harrington, RA, Amarenco, P, Califf, RM, Graffagnino, C, et al. Randomized, double-blind, placebo-controlled, international trial of the oral IIb/IIIa antagonist lotrafiban in coronary and cerebrovascular disease. Circulation 2003;108:399406.Google Scholar

Notes and References

Caplan, LR. Vertebrobasilar Ischemia and Hemorrhage: Clinical Findings, Diagnosis, and Management of Posterior Circulation Disease. Cambridge: Cambridge University Press, 2014, pp. 215216.Google Scholar
O’Rourke, MF. Frederic Akbar Mahomed. Hypertension 1992;19:212217.Google ScholarGoogle Scholar
Samuel Siegfried Karl von Basch (1837–1905). Nature 1937;140:393–394.Google Scholar
Bruenn, HG. Clinical notes on the illness and death of president Franklin D. Roosevelt. Ann. Intern. Med. 1970;72:579591.Google Scholar
Smithwick, R. H. Hypertensive cardiovascular disease: Effect of thoracolumbar splanchnicectomy on mortality and survival rates. JAMA 1951;147:16111615.Google Scholar
Saklayen, MG, Deshpande, N. Timeline of history of hypertension treatment. Front. Cardiovasc. Med. 2016;3:3. doi: 10.3389/fcvm.2016.00003.Google ScholarGoogle Scholar
Guyton, AC. Blood pressure control: Special role of kidneys and body fluid. Science 1991;252:18131816.Google Scholar
Freis, ED, Wanko, A, Wilson, IM, Parrish, AE. Treatment of essential hypertension with chlorothiazide (diuril); its use alone and combined with other antihypertensive agents. JAMA 1958;166:137140.Google Scholar
Black, James W.. Lindau Nobel Laureate Meetings. Available at www.mediatheque.lindau-nobel.org/laureates/black.Google Scholar
Castle, WB. George Richards Minot. Biographical Memoirs of the National Academy of Sciences 1974;45:337383.Google Scholar
Obituary. Joslin, Elliott P.. Br. Med. J. 1962;1:729.Google Scholar
Joslin, EP. The prevention of diabetes mellitus. JAMA 1921;76(2):7984.Google Scholar
Rosenfeld, L. Insulin: Discovery and controversy. Clin. Chem. 2002;48:22702288.Google ScholarGoogle Scholar
White, JR Jr. A brief history of the development of diabetes medications. Diabetes Spectr. 2014;27(2):8286.Google Scholar
Reaven, G. Syndrome X, a short history. Ochsner J. 2001;3(3):124125.Google ScholarGoogle ScholarGoogle Scholar
Kannel, WB, Dawber, TR, Friedman, GD, Glennon, WE, McNamara, PM. Risk factors in coronary heart disease: An evaluation of several serum lipids as predictors of coronary heart disease; the Framingham Study. Ann. Intern. Med. 1964;61:888899.Google Scholar
Golding, SS, Allen, NB. Cholesterol and atherosclerotic cardiovascular disease: A lifelong problem. J. Am. Heart Assoc. 2019;8(11):e012924.Google Scholar
Duncan, MS, Vasan, RS, Xanthakis, V. Trajectories of blood lipid concentrations over the adult life course and risk of cardiovascular disease and all‐cause mortality: Observations from the Framingham Study over 35 years. J. Am. Heart Assoc. 2019;8:e011433.Google Scholar
Goldstein, Joseph L., biographical. The Nobel Prize. Available at www.nobelprize.org/prizes/medicine/1985/goldstein/biographical/.Google Scholar
Goldstein, JL, Brown, MS. The LDL receptor. Arterioscler. Thromb. Vasc. Biol. 2009;29(4):431438.Google Scholar
Brown, Michael S., biographical. The Nobel Prize. Available at www.nobelprize.org/prizes/medicine/1985/brown/biographical/.Google Scholar
Endo, A. A historical perspective on the discovery of statins. Proc. Japan Academy Ser. B Phys. Biol. Sci. 2010;86(5):484493.Google ScholarGoogle ScholarGoogle Scholar
Amarenco, P, Goldstein, LB, Szarek, M, et al. Effects of intense low-density lipoprotein cholesterol reduction in patients with stroke or transient ischemic attack: The Stroke Prevention by Aggressive Reduction in Cholesterol Levels (SPARCL) trial. Stroke 2007;38:31983204.Google ScholarGoogle Scholar
Karatasakis, A, Danek, B, Karacsonyi, J, et al. Effect of PCSK9 inhibitors on clinical outcomes in patients with hypercholesterolemia: A meta-analysis of 35 randomized controlled trials. J. Am. Heart Assoc. 2017;6(12):e006910. doi: 10.1161/JAHA.117.006910.Google ScholarGoogle Scholar
Banach, M, Duell, PB, Gotto, AM Jr, et al. Association of bempedoic acid administration with atherogenic lipid levels in phase 3 randomized clinical trials of patients with hypercholesterolemia. JAMA Cardiol. 2020 Jul 1. doi: 10.1001/jamacardio.2020.2314 (Epub ahead of print).Google Scholar

Notes and References

Breathnach, CS, Moynihan, JB. Intensive care 1650: The revival of Anne Greene (c. 1628–59). J. Med. Biogr. 2009;17:3538.Google Scholar
Drake, CG, Barr, HW, Coles, JC, Gergely, NF. The use of extracorporeal circulation and profound hypothermia in the treatment of ruptured intracranial aneurysm. J. Neurosurg. 1964;21:575581.Google ScholarGoogle Scholar
Bernard, SA, Gray, TW, Buist, MD, et al. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N. Engl. J. Med. 2002;346:557563.Google ScholarGoogle Scholar
van der Worp, HB, de Haan, P, Morrema, E, Kalkman, CJ. Methodological quality of animal studies on neuroprotection in focal cerebral ischaemia. J. Neurol. 2005;252:11081114.Google Scholar
Spielmeyer, W. Zur pathogenese örtlich elektiver grehirnveränderungen. Zeitschrift für die gesamte Neurologie und Psychiatrie 1925;99:756776.Google Scholar
Pulsinelli, WA, Brierley, JB, Plum, F. Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann. Neurol. 1982;11:491498.Google Scholar
Diemer, NH, Jorgensen, MB, Johansen, FF, Sheardown, M, Honore, T. Protection against ischemic hippocampal CA1 damage in the rat with a new non-NMDA antagonist, NBQX. Acta Neurol. Scand. 1992;86:4549.Google ScholarGoogle Scholar
Ito, U, Spatz, M, Walker, JT Jr, Klatzo, I. Experimental cerebral ischemia in Mongolian gerbils. I. Light microscopic observations. Acta Neuropathol. 1975;32:209223.Google ScholarGoogle Scholar
Petito, CK, Feldmann, E, Pulsinelli, WA, Plum, F. Delayed hippocampal damage in humans following cardiorespiratory arrest. Neurology 1987;37:12811286.Google Scholar
Paulson, OB, Hossman, K-A, Ingvar, M, Sokoloff, L. In memoriam: Bo K. Siesjö, 1930–2013. J. Cereb. Blood Flow Metab. 2014;34(1):1.Google ScholarGoogle Scholar
Posner, JB. Fred Plum, MD (1924–2010). Arch. Neurol. 2010;67(11):14091410.Google Scholar
Branston, NM, Symon, L, Crockard, HA, Pasztor, E. Relationship between the cortical evoked potential and local cortical blood flow following acute middle cerebral artery occlusion in the baboon. Exp. Neurol. 1974;45:195208.Google ScholarGoogle Scholar
Symon, LN, Branston, M, Strong, AJ, Hope, TD. The concepts of thresholds of ischaemia in relation to brain structure and function. J. Clin. Pathol. Suppl. (R. Coll. Pathol.) 1977;11:149154.Google Scholar
Baron, JC. Mapping the ischaemic penumbra with PET: Implications for acute stroke treatment. Cerebrovasc. Dis. 1999;9:193201.Google ScholarGoogle ScholarGoogle Scholar
Ginsberg, MD, Busto, R. Rodent models of cerebral ischemia. Stroke 1989;20:16271642.Google ScholarGoogle Scholar
Brown, AW, Brierley, JB. The earliest alterations in rat neurones and astrocytes after anoxia-ischaemia. Acta Neuropathol. 1973;23:922.Google ScholarGoogle Scholar
Abe, K, Aoki, M, Kawagoe, J, et al. Ischemic delayed neuronal death: A mitochondrial hypothesis. Stroke 1995;26:14781489.Google Scholar
Dirnagl, U, Simon, RP, Hallenbeck, JM. Ischemic tolerance and endogenous neuroprotection. Trends Neurosci. 2003;26:248254.Google ScholarGoogle Scholar
Chamorro, A, Lo, EH, Renù, A, van Leyden, K, Lyden, P. The future of neuroprotection in stroke. J. Neurol. Neurosurg. Psychiatry 2021;92(2):129135.Google Scholar
Krams, MK, Lees, R, Hacke, W, Grieve, AP, Orgogozo, JM, Ford, GA, and ASTIN study investigators. Acute Stroke Therapy by Inhibition of Neutrophils (ASTIN): An adaptive dose-response study of UK-279,276 in acute ischemic stroke. Stroke 2003;34:25432548.Google Scholar
Hall, CN, Reynell, C, Gesslein, B, et al. Capillary pericytes regulate cerebral blood flow in health and disease. Nature 2014;508:5560.Google Scholar
Rothman, SM, Olney, JW. Glutamate and the pathophysiology of hypoxic-ischemic brain damage. Ann. Neurol. 1986;19:105111.Google Scholar
Choi, DW, Rothman, SM. The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Annu. Rev. Neurosci. 1990;13:171182.Google Scholar
Simon, RP, Swan, JH, Griffiths, T, Meldrum, BS. Blockade of N-methyl-D-aspartate receptors may protect against ischemic damage in the brain. Science 1984;226:850852.Google Scholar
Gill, R, Foster, AC, Woodruff, GN. Systemic administration of MK-801 protects against ischemia-induced hippocampal neurodegeneration in the gerbil. J. Neurosci. 1987;7:33433349.Google Scholar
Buchan, A, Pulsinelli, WA. Hypothermia but not the N-methyl-D-aspartate antagonist, MK-801, attenuates neuronal damage in gerbils subjected to transient global ischemia. J. Neurosci. 1990;10:311316.CrossRefGoogle Scholar
Nellgard, B, Wieloch, T. Cerebral protection by AMPA- and NMDA-receptor antagonists administered after severe insulin-induced hypoglycemia. Exp. Brain Res. 1992;92:259266.Google Scholar
Takizawa, S, Hogan, M, Hakim, AM. The effects of a competitive NMDA receptor antagonist (CGS-19755) on cerebral blood flow and pH in focal ischemia. J. Cereb. Blood Flow Metab. 1991;11:786793.Google ScholarGoogle Scholar
Sheardown, MJ, Suzdak, PD, Nordholm, L. AMPA, but not NMDA, receptor antagonism is neuroprotective in gerbil global ischaemia, even when delayed 24 h. Eur. J. Pharmacol. 1993;236:347353.Google ScholarGoogle Scholar
Siesjo, BK, Agardh, CD, Bengtsson, F. Free radicals and brain damage. Cerebrovasc. Brain Metab. Rev. 1989;1:165211.Google Scholar
Lees, KR, Zivin, JA, Ashwood, T, et al. for the Stroke-Acute Ischemic NXY Treatment (SAINT I) Trial Investigators. NXY-059 for acute ischemic stroke. N. Engl. J. Med. 2006;354:588600.Google Scholar
Shuaib, A, Lees, KR, Lyden, P et al., and Saint Il Trial Investigators. NXY-059 for the treatment of acute ischemic stroke. N. Engl. J. Med. 2007;357:562571.Google Scholar
Belayev, L, Liu, Y, Zhao, W, Busto, R, Ginsberg, MD. Human albumin therapy of acute ischemic stroke: Marked neuroprotective efficacy at moderate doses and with a broad therapeutic window. Stroke 2001;32:553560.Google Scholar
Martin, RH, Yeatts, SD, Hill, MD, et al. and ALIAS Parts 1 and 2 and Nett Investigators. ALIAS (Albumin in Acute Ischemic Stroke) trials: Analysis of the combined data from parts 1 and 2. Stroke 2016;47:23552359.Google Scholar
Shuaib, A, Bornstein, NM, Diener, HC, et al. and Sentis trial investigators. Partial aortic occlusion for cerebral perfusion augmentation: Safety and efficacy of NeuroFlo in Acute Ischemic Stroke trial. Stroke 2011;42:16801690.Google Scholar
Fisher, M, Feuerstein, G, Howells, DW, et al. STAIR Group. Update of the stroke therapy academic industry roundtable preclinical recommendations. Stroke 2009;40(6):22442250.Google Scholar
Hill, MD, Goyal, M, Menon, BK, et al. and Escape-Na Investigators. Efficacy and safety of nerinetide for the treatment of acute ischaemic stroke (ESCAPE-NA1): A multicentre, double-blind, randomised controlled trial. Lancet 2020;395:878887.Google Scholar
Hill, MD, Martin, RH, Mikulis, D, et al. and ENACT trial investigators. Safety and efficacy of NA-1 in patients with iatrogenic stroke after endovascular aneurysm repair (ENACT): A phase 2, randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2012;11:942950.Google Scholar
Karnatovskaia, LV, Wartenberg, KE, Freeman, WD. Therapeutic hypothermia for neuroprotection: History, mechanisms, risks, and clinical applications. Neurohospitalist 2014;4:153163.Google Scholar
Bigelow, WG, Lindsay, WK, Greenwood, WF. Hypothermia, its possible role in cardiac surgery: An investigation of factors governing survival in dogs at low body temperatures. Ann. Surg. 1950;132:849866.Google Scholar
van der Worp, HB, Sena, ES, Donnan, GA, Howells, DW, Macleod, MR. Hypothermia in animal models of acute ischaemic stroke: A systematic review and meta-analysis. Brain 2007;130:30633074.Google Scholar
De Georgia, MA, Krieger, DW, Abou-Chebl, A, et al. Cooling for Acute Ischemic Brain Damage (COOL AID): A feasibility trial of endovascular cooling. Neurology 2004;63:312317.Google Scholar
Hemmen, TM, Raman, R, Guluma, KZ, et al. and ICTuS-L Investigators. Intravenous thrombolysis plus hypothermia for acute treatment of ischemic stroke (ICTuS-L): Final results. Stroke 2010;41:22652270.Google Scholar
Horn, CM, Sun, CH, Nogueira, RG, et al. Endovascular Reperfusion and Cooling in Cerebral Acute Ischemia (ReCCLAIM I). J. Neurointerv. Surg. 2014;6:9195.Google Scholar
Lyden, P, Hemmen, T, Grotta, J, et al. and collaborators. Results of the ICTuS 2 Trial (Intravascular Cooling in the Treatment of Stroke 2). Stroke 2016;47:28882895.Google Scholar
van der Worp, HB, Macleod, MR, Bath, PMW, et al. and the EuroHYP-1 Investigators. Therapeutic hypothermia for acute ischaemic stroke: Results of a European multicentre, randomised, phase III clinical trial. Eur. Stroke J. 2019;4:254262.Google Scholar
Lougheed, WM, Kahn, DS. Circumvention of anoxia during arrest of cerebral circulation for intracranial surgery. J. Neurosurg. 1955;12:226239.Google Scholar
Schwartz, AE, Stone, JG, Finck, AD, et al. Isolated cerebral hypothermia by single carotid artery perfusion of extracorporeally cooled blood in baboons. Neurosurgery 1996;39:577581; discussion 81–82.Google Scholar

Notes and References

The early history of thrombolysis, streptokinase, and tPA is discussed in Maroo, A, Topol, EJ. The early history and development of thrombolysis in acute myocardial infarction. J. Thromb. Haemostasis 2004;2:18671870.Google ScholarGoogle ScholarGoogle ScholarGoogle Scholar
Zivin, JA, Simmons, JG. tPA for Stroke: The Story of a Controversial Drug. New York: Oxford University Press, 2011.Google Scholar
Bryan, TPJ. The rise and fall of the clot buster: A review on the history of streptokinase. Pharm. J. 2014. Available at www.pharmaceutical-journal.com/news-and-analysis/features/the-rise-and-fall-of-the-clot-buster-a-review-on-the-history-of-streptokinase/20065679.article.Google Scholar
Sherry, S. The origin of thrombolytic therapy. J. Am. Coll. Cardiol. 1989 Oct 1;14(4):10851092.Google Scholar
DeWood, MA, Spores, J, Notske, R, et al. Prevalence of total coronary occlusion during the early hours of transmural myocardial infarction. N. Engl. J. Med. 1980;303:897902.Google Scholar
Meyer, JS, Gilroy, J, Barnhart, MI, Johnson, JF. Therapeutic thrombolysis in cerebral thromboembolism. Neurology 1963;13:927937.Google ScholarGoogle ScholarGoogle Scholar
Donnan, GA, Davis, SM, Chambers, BR, et al. Streptokinase for acute ischemic stroke with relationship to time of administration: Australian Streptokinase (ASK) Trial Study Group. JAMA 1996;276(12):961966.Google Scholar
Multicenter Acute Stroke Trial-Europe Study Group: Hommel, M, Cornu, C, Boutitie, F, Boissel, JP. Thrombolytic therapy with streptokinase in acute ischemic stroke. N. Engl. J. Med. 1996;335(3):145150.Google Scholar
Fletcher, AP, Alkjersig, N, Lewis, M, Tulevski, V, Davies, A, Brooks, JE, Hardin, WB, Landau, WM, Raichle, ME. A pilot study of urokinase therapy in cerebral infarction. Stroke 1976;7:135142.Google Scholar
Collen, D, Lijnen, HR. Tissue-type plasminogen activator: A historical perspective and personal account. J. Thromb. Haemostasis 2004;2(4):541546.Google Scholar
Van de Werf, F, Ludbrook, PA, Bergmann, SR, et al. Coronary thrombolysis with tissue-type plasminogen activator in patients with evolving myocardial infarction. N. Engl. J. Med. 1984;310:609613.Google ScholarGoogle Scholar
The early investigations of thrombolytic therapy are reviewed in del Zoppo, GJ, Poeck, K, Pessin, MS, et al. Recombinant tissue plasminogen activator in acute thrombotic and embolic stroke. Ann. Neurol. 1992;32:7886.Google ScholarGoogle ScholarGoogle Scholar
Brott, T, Haley, EC, Levy, DE, et al. Urgent therapy for stroke: Pilot study of tissue plasminogen activator administered within 90 minutes. Stroke 1992;23:632640.Google ScholarGoogle Scholar
Levy, DE, Brott, TG, Haley, EC, et al. Factors related to intracranial hematoma formation in patients receiving t-PA for acute, ischemic stroke. Stroke 1994;25:291297.Google Scholar
The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study group. Tissue plasminogen activator for acute ischemic stroke. N. Engl. J. Med. 1995;333:15811587.Google Scholar
Kwatkowski, TG, Libman, RB, Frankel, M, et al. Effects of tissue plasminogen activator for acute ischemic stroke at one year. N. Engl. J. Med. 1999;340(23):17811787.Google Scholar
Brott, T, Adams, HP Jr, Olinger, CP, et al. Measurements of acute cerebral infarction: A clinical examination scale. Stroke 1989;20(7):864870.Google ScholarGoogle Scholar
The European Investigators published the results of the European Cooperative Acute Stroke Study (ECASS). Hacke, W, Kaste, M, Fieschi, C, et al. Intravenous thrombolysis with recombinant tissue plasminogen activator for acute hemispheric stroke. The European Cooperative Acute Stroke Study (ECASS). JAMA 1995;274:10171025.Google ScholarGoogle ScholarGoogle Scholar
Toni, D, Lorenzano, S, Puca, E, Prencipe, M. The SITS-MOST registry. Neurol. Sci. 2006;27(suppl 3):S260S262.Google ScholarGoogle Scholar
Caplan, LR, Mohr, JP, Kistler, JP, Koroshetz, W. Thrombolysis: Not a panacea for ischemic stroke. N. Engl. J. Med. 1997;337:13091310, 1313.Google ScholarGoogle Scholar
Bhatia, R, Hill, MD, Shobha, N, Menon, B, Bal, S, Kochar, P, Watson, T, Goyal, M, Demchuk, AM. Low rates of acute recanalization with intravenous recombinant tissue plasminogen activator in ischemic stroke: Real-world experience and a call for action. Stroke 2010;41:22542258.Google Scholar
Thomalla, G, Simonsen, CZ, Boutitie, F, et al. WAKE-UP Investigators. MRI-guided thrombolysis for stroke with unknown time of onset. N. Engl. J. Med. 2018;379(7):611622.Google ScholarGoogle Scholar
Nogueira, RG, Jadhay, AP, Hausen, DG, et al. for the DAWN Trial Investigators. Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct. N. Engl. J. Med. 2018;378:1121.Google ScholarGoogle Scholar
Van de Werf, F, Cannon, CP, Luyten, A, et al. Safety assessment of single bolus administration of TNK-tPA in acute myocardial infarction: The ASSENT-1 trial. Am. Heart J. 1999;137:786791.Google ScholarGoogle Scholar
Huang, X, MacIsaac, R, Thompson, JL, Levin, B, Buchsbaum, R, Haley, EC, et al. Tenecteplase versus alteplase in stroke thrombolysis: An individual patient data meta-analysis of randomized controlled trials. Int. J. Stroke 2016 11:534543.Google ScholarGoogle ScholarGoogle Scholar
Hacke, W, Zeumer, H, Ferbert, A, Bruckman, H. Intra-arterial thrombolytic therapy improves outcome in patients with acute vertebrobasilar occlusive disease. Stroke 1998;29:12161222.Google Scholar
del Zoppo, GJ, Higashida, RT, Furlan, AJ, et al. PROACT: A phase II randomized trial of recombinant pro-urokinase by direct arterial delivery in acute middle cerebral artery stroke. PROACT Investigators. Prolyse in Acute Cerebral Thromboembolism. Stroke 1998;29:411.Google Scholar
Furlan, AJ, Higashida, RT, Wechsler, L, et al. PROACT II. Intra-arterial pro-urokinase for acute ischemic stroke: A randomized controlled trial. JAMA 1999;282;20032011.Google Scholar
Furlan, AJ, Higashida, R, Katzan, I, Abou-Chebl, A, Russman, A. Intra-arterial thrombolysis in acute ischemic stroke. In Lyden, PD (ed.), Thrombolytic Therapy for Acute Stroke, 2nd ed. Totowa, NJ: Humana Press, 2005, pp. 159184.Google Scholar
Lindberg, PJ, Mattle, HP. Therapy of basilar artery occlusion: A systematic analysis comparing intra-aerterial and intravenous thrombolysis. Stroke 2006;37:922928.Google ScholarGoogle Scholar

Notes and References

Ribes, MF. Des recherches faites sur la phlebite. In Revue Médicale Francaise et Etrangere et Journal de Clinique de l’Hotel-Dieu et de la Charité de Paris. 1825, vol. 3, pp. 541.Google Scholar
Plarr’s Lives of the Fellows. Frederick Ross Stansfield. The Royal College of Surgeons of England. Available at https://livesonline.rcseng.ac.uk/client/en_GB/lives/search/detailnonmodal/ent:$002f$002fSD_ASSET$002f0$002fSD_ASSET:379868/one.Google Scholar
Stansfield, FR. Puerperal cerebral thrombophlebitis treated by heparin. Br. Med. J. 1942;1(4239):436438.Google Scholar
Ronald Arthur Jones. Royal College of Physicians. Available at https://history.rcplondon.ac.uk/inspiring-physicians/ronald-arthur-jones.Google Scholar
Crafoord, C. Preliminary report on post-operative treatment with heparin as a preventive of thrombosis. Acta Chir. Scand. 1937(79):407426.Google Scholar
Van Creveld, S, De Bruyne, JI, Stronk, MG. [Thrombosis of the superior sinus longitudinalis in an infant treated with heparin and intravenous fluid supply]. Ned. Tijdschr. Geneeskd. 1949;93(15):11441148.Google Scholar
Holub, K. [Intracranial venous thrombosis and thrombophlebitis]. Wien Klin. Wochenschr. 1953;65(26):540541.Google Scholar
Cairns, DR, Melton, G. Thrombosis of cerebral veins in the puerperium. Br. Med. J. 1942;1(4239):439.Google Scholar
Ehrenmitgliedschaft Prof. Dr. Karl Max Einhäupl. Charite – Universitätsmedizin Berlin. Available at https://alumni.charite.de/start_unterseiten/prof_dr_k_m_einhaeupl_ehrenmitglied/.Google Scholar
Einhäupl, KM, Villringer, A, Meister, W, Mehraein, S, Garner, C, Pellkofer, M, et al. Heparin treatment in sinus venous thrombosis. Lancet 1991;338(8767):597600.Google Scholar
Stam, J, Lensing, AWA, Vermeulen, M, Tijssen, JGP. Heparin treatment for cerebral venous and sinus thrombosis. Lancet 1991;338(8775):1154.Google Scholar
Vermeulen, M, Stam, J, Hijdra, A, van Gijn, J. In memoriam Prof. Dr. H. van Crevel. August 26, 2002. Available at www.ntvg.nl/artikelen/memoriam-profdrhvan-crevel/volledig.Google Scholar
Based on an interview with Prof. dr. Jan Stam.Google Scholar
de Bruijn, SF, Stam, J. Randomized, placebo-controlled trial of anticoagulant treatment with low-molecular-weight heparin for cerebral sinus thrombosis. Stroke 1999;30(3):484488.Google Scholar
Coutinho, JM, Stam, J. How to treat cerebral venous and sinus thrombosis. J. Thromb. Haemost. 2010;8(5):877883.Google Scholar
Stam, J, De Bruijn, SF, DeVeber, G. Anticoagulation for cerebral sinus thrombosis. Cochrane Database Syst Rev. 2002(4):Cd002005.Google ScholarGoogle ScholarGoogle Scholar
Bousser, MG. Cerebral venous thrombosis: Nothing, heparin, or local thrombolysis? Stroke 1999;30(3):481483.Google Scholar
Bousser, MG, Eschwege, E, Haguenau, M. Aspirin and stroke prevention. Lancet 1988;1(8578):179.Google Scholar
Cabut, S. Marie-Germaine Bousser, reine de la neurologie. Le Monde, January 3, 2013. Available at www.lemonde.fr/sciences/article/2013/01/03/marie-germaine-bousser-reine-de-la-neurologie_1812632_1650684.html.Google Scholar
The Brain Prize: Marie-Germaine Bousser. Lundbeckfonden. Available at https://lundbeckfonden.com/marie-germaine-bousser. The education and career of Dr. Bousser is also included in Chapter 21.Google Scholar
Ferro, JM, Canhão, P, Stam, J, Bousser, MG, Barinagarrementeria, F. Prognosis of cerebral vein and dural sinus thrombosis: Results of the International Study on Cerebral Vein and Dural Sinus Thrombosis (ISCVT). Stroke 2004;35(3):664670.Google Scholar
Einhäupl, K, Stam, J, Bousser, MG, De Bruijn, SF, Ferro, JM, Martinelli, I, et al. EFNS guideline on the treatment of cerebral venous and sinus thrombosis in adult patients. Eur. J. Neurol. 2010;17(10):12291235.Google Scholar
The Columbus Investigators. Low-molecular-weight heparin in the treatment of patients with venous thromboembolism. N. Engl. J. Med. 1997;337(10):657662.Google ScholarGoogle Scholar
Coutinho, JM, Seelig, R, Bousser, MG, Canhão, P, Ferro, JM, Stam, J. Treatment variations in cerebral venous thrombosis: An international survey. Cerebrovasc. Dis. 2011;32(3):298300.Google Scholar
Vines, FS, Davis, DO. Clinical-radiological correlation in cerebral venous occlusive disease. Radiology 1971;98(1):922.Google Scholar
Di Rocco, C, Iannelli, A, Leone, G, Moschini, M, Valori, VM. Heparin-urokinase treatment in aseptic dural sinus thrombosis. Arch. Neurol. 1981;38(7):431435.Google Scholar
Scott, JA, Pascuzzi, RM, Hall, PV, Becker, GJ. Treatment of dural sinus thrombosis with local urokinase infusion: Case report. J. Neurosurg. 1988;68(2):284287.Google Scholar
Kim, SY, Suh, JH. Direct endovascular thrombolytic therapy for dural sinus thrombosis: Infusion of alteplase. AJNR Am. J. Neuroradiol. 1997;18(4):639645.Google Scholar
Caso, V, Billeci, AM, Leys, D. Interventional neuroradiology in the treatment of cerebral venous thrombosis. Front. Neurol. Neurosci. 2008;23:144160.Google Scholar
Coutinho, JM, van den Berg, R, Zuurbier, SM, Majoie, CB, Stam, J. Mechanical thrombectomy cannot be considered as first-line treatment for cerebral venous thrombosis. J. Neurointerv. Surg. 2013;5(6):621622.Google Scholar
Stam, J, Majoie, CB, van Delden, OM, van Lienden, KP, Reekers, JA. Endovascular thrombectomy and thrombolysis for severe cerebral sinus thrombosis: A prospective study. Stroke 2008;39(5):14871490.Google Scholar
Coutinho, JM, Zuurbier, SM, Bousser, MG, Ji, X, Canhão, P, Roos, YB, et al. Effect of endovascular treatment with medical management vs standard care on severe cerebral venous thrombosis: The TO-ACT randomized clinical trial. JAMA Neurol. 2020;77(8):966973.Google Scholar
Canhão, P, Ferro, JM, Lindgren, AG, Bousser, MG, Stam, J, Barinagarrementeria, F. Causes and predictors of death in cerebral venous thrombosis. Stroke 2005;36(8):17201725.Google Scholar
Ferro, JM, Bousser, M-G, Canhão, P, Coutinho, JM, Crassard, I, Dentali, F, et al. European Stroke Organization guideline for the diagnosis and treatment of cerebral venous thrombosis – Endorsed by the European Academy of Neurology. European J. Neurol. 2017;24(10):12031213.Google Scholar
Milandre, L, Gueriot, C, Girard, N, Ali Cherif, A, Khalil, R. [Cerebral venous thrombosis in adults. Diagnostic and therapeutic aspects in 20 cases]. Ann. Med. Interne (Paris) 1989;139(8):544554.Google Scholar
Riva, N, Carrier, M, Gatt, A, Ageno, W. Anticoagulation in splanchnic and cerebral vein thrombosis: An international vignette-based survey. Res. Pract. Thromb. Haemost. 2020;4(7):11921202.Google Scholar
Ferro, JM, Coutinho, JM, Dentali, F, Kobayashi, A, Alasheev, A, Canhão, P, et al. Safety and efficacy of dabigatran etexilate vs dose-adjusted warfarin in patients with cerebral venous thrombosis: A randomized clinical trial. JAMA Neurol. 2019;76(12):14571465.Google Scholar
Lurkin, A, Derex, L, Fambrini, A, Bertoletti, L, Epinat, M, Mismetti, P, et al. Direct oral anticoagulants for the treatment of cerebral venous thrombosis. Cerebrovasc. Dis. 2019;48(1–2):3237.Google Scholar

Notes and References

Lanska, DJ. The historical origins of stroke rehabilitation. In Stein, J, Harvey, RL, Macko, RF, Winstein, CJ, Zorowitz, RD (eds.), Stroke Recovery and Rehabilitation. New York: Demos Medical Publishing, 2009, pp. 330.Google Scholar
Rusk, HA. A World to Care For: The Autobiography of Howard A. Rusk, M.D. Random House, 1972.Google Scholar
Taub, E. Foreword for neuroplasticity and neurorehabilitation. Front. Hum. Neurosci. 2014 Jul 24;8. Available at www.ncbi.nlm.nih.gov/pmc/articles/PMC4109562/.Google Scholar
Doidge, N. The Brain That Changes Itself: Stories of Personal Triumph from the Frontiers of Brain Science. Penguin UK, 2008.Google Scholar
Over the Horizon. The Brain That Changes Itself – Full documentary. YouTube. May 26, 2013. Available at www.youtube.com/watch?v=bFCOm1P_cQQ.Google Scholar
Taub, E, Uswatte, G. Constraint-induced movement therapy: Bridging from the primate laboratory to the stroke rehabilitation laboratory. J. Rehabil. Med. 2003 May;(41 Suppl):3440.Google Scholar
Kwakkel, G, Veerbeek, JM, van Wegen, EEH, Wolf, SL. Constraint-induced movement therapy after stroke. Lancet Neurol. 2015 Feb;14(2):224234.Google ScholarGoogle ScholarGoogle Scholar
Unnecessary Fuss. Wikipedia. Available at https://en.wikipedia.org/wiki/Unnecessary_Fuss.Google Scholar
Claflin, ES, Krishnan, C, Khot, SP. Emerging treatments for motor rehabilitation after stroke. Neurohospitalist 2015 Apr;5(2):7788.Google Scholar
Boonzaier, J, van Tilborg, GAF, Neggers, SFW, Dijkhuizen, RM. Noninvasive brain stimulation to enhance functional recovery after stroke: Studies in animal models. Neurorehabil. Neural Repair 2018 Nov;32(11):927940.Google Scholar
Gallese, V, Fadiga, L, Fogassi, L, Rizzolatti, G. Action recognition in the premotor cortex. Brain 1996;119(2):593609.Google Scholar
Ramachandran, VS, Altschuler, EL. The use of visual feedback, in particular mirror visual feedback, in restoring brain function. Brain 2009 Jul 1;132(7):16931710.Google Scholar
Tosi, G, Romano, D, Maravita, A. Mirror box training in hemiplegic stroke patients affects body representation. Front. Hum. Neurosci. 2018 Jan 4;11. Available at www.ncbi.nlm.nih.gov/pmc/articles/PMC5758498/.Google Scholar
Norton, A, Zipse, L, Marchina, S, Schlaug, G. Melodic intonation therapy: Shared insights on how it is done and why it might help. Ann. N Y Acad. Sci. 2009 Jul;1169:431436.Google Scholar
Tamplin, J, Baker, FA, Jones, B, Way, A, Lee, S. “Stroke a Chord”: The effect of singing in a community choir on mood and social engagement for people living with aphasia following a stroke. NeuroRehabilitation 2013;32. Available at https://pubmed.ncbi.nlm.nih.gov/23867418/.Google Scholar
Cramer, SC, Caplan, LR. Recovery, rehabilitation and repair. In Caplan, L (ed.), Caplan’s Stroke: A Clinical Approach, 5th ed. New York: Cambridge University Press, 2016, pp. 608626.Google Scholar
Kondziolka, D, Steinberg, GK, Wechsler, L, Meltzer, CC, Elder, E, Gebel, J, et al. Neurotransplantation for patients with subcortical motor stroke: A phase 2 randomized trial. J. Neurosurg. 2005;103:3845.Google ScholarGoogle ScholarGoogle Scholar

Notes and References

Fisher, CM. Occlusion of the internal carotid artery. AMA Arch. Neurol. Psychiatry 1951;65:346377.Google Scholar
Pearce, JMS. Historical note on carotid disease and ligation. Eur. Neurol. 2014;72:2629.Google Scholar
Cooper, A. Account of the first successful operation performed on the common carotid artery for aneurysm in the year 1808, with post-mortem examination in 1821. Guy’s Hosp. Rep. 1836;1:5359.Google Scholar
Chiari, H. Uber das Verhalten des Tielungswinkels der Carotis communis bei der Endarteritis chronica deformans. Verhandl. deutschpath. Gesellsch. 1905;9:326330. Chapter 15 includes more information about Hans Chiari and his work.Google Scholar
The work of Moniz and the later evolution of cerebral angiography is discussed in detail in Chapter 31.Google Scholar
Seldinger, SI. Catheter replacement of the needle in percutaneous arteriography. Acta Radiol. 1953;39:368376.Google Scholar
Chao, WH, Kwan, ST, Lyman, RS, et al. Thrombosis of the left internal carotid artery. Arch. Surg. 1938:37:100111.Google Scholar
Conley, J, Pack, G. Surgical procedure for lessening the hazard of carotid bulb excision. Surgery 1952;31:845858.Google Scholar
Fisher, CM. Occlusion of the carotid arteries: Further experiences. AMA Arch. Neurol. Psychiatry 1954;72;187204.Google ScholarGoogle Scholar
Carrea, R, Molins, M, Murphy, G. Surgical treatment of spontaneous thrombosis of the internal carotid artery in the neck: Carotid carotideal anastomosis. Acta Neurol. Latinoamer. 1955;1:7178.Google Scholar
Eastcott, H, Pickering, G, Rob, C. Reconstruction of internal carotid artery in a patient with intermittent attacks of hemiplegia. Lancet 1954;267(2):994996.Google ScholarGoogle Scholar
Dos Santos, JC. From embolectomy to endarterectomy or the fall of a myth. J. Cardiovasc. Surg. 1976;17:113128.Google Scholar
Strully, KJ, Hurwitt, ES, Blankenberg, HW. Thromboendarterectomy for thrombosis of the internal carotid artery in the neck. J. Neurosurg. 1953;10:474482.Google Scholar
DeBakey, M. Successful carotid endarterectomy for cerebrovascular insufficiency: Nineteen-year follow-up. JAMA 1975;233:10831085.Google Scholar
Cooley, D, Al-Naaman, Y, Carton, C. Surgical treatment of arteriosclerotic occlusion of common carotid artery. J. Neurosurg. 1956;13:500506.Google Scholar
Bahnson, H, Spencer, F, Quattlebaum, JJ. Surgical treatment of occlusive disease of the carotid artery. Ann. Surg. 1959;149:711720.Google Scholar
Fields, WS, Maslenikov, V, Meyer, JS, et al. Joint Study of Extracranial Artery Occlusion: V. Progress report of prognosis following surgery or non- surgery treatment for transient ischemic attacks and cervical carotid artery lesions. JAMA 1970;211:19932003.Google Scholar
National Center for Health Statistics. Detailed Diagnosis and Procedures, National Hospital Discharge Survey. Vital and Health Statistics. Series 13. Washington, DC: Government Printing Office, 1992–1997.Google Scholar
Barnett, HJM, Plum, F, Walton, JN. An expression of concern. Stroke 1984;15(6):942943.Google Scholar
Spence, JD, Hachinski, V. In memoriam. Henry J. M. Barnett, 1922–2016. Stroke 2017;48(1):24.Google Scholar
North American Symptomatic Carotid Endarterectomy Trial Collaborators. Beneficial effect of carotid endarterectomy in symptomatic patients with high-grade carotid stenosis. N. Engl. J. Med. 1991;325:445453.Google ScholarGoogle Scholar
European Carotid Surgery Trialists’ Collaborative Group. Randomised trial of endarterectomy for recently symptomatic carotid stenosis: Final results of the MRC European Carotid Surgery Trial (ECST). Lancet 1998;351(9113):13711387.Google Scholar
Charles Picton Warlow. Prabook. Available at https://prabook.com/web/charles_picton.warlow/315427.Google Scholar
DeRango, P, Brown, MM, Didier, L, et al. Management of carotid stenosis in women: Consensus document. Neurology 2013;80(24):22582268.Google Scholar
Executive Committee for the Asymptomatic Carotid Atherosclerosis Study. Endarterectomy for asymptomatic carotid artery stenosis. JAMA 1995;273:14211428.Google Scholar
Halliday, A, Mansfield, A, Marro, J, et al. Prevention of disabling and fatal strokes by successful carotid endarterectomy in patients without recent neurological symptoms: Randomised controlled trial. Lancet 2004;363(9420):14911502.Google Scholar
Benavente, O, Moher, D, Pham, B. Carotid endarterectomy for asymptomatic carotid stenosis: A meta-analysis. BMJ 1998;317:14771480.Google Scholar
Caplan, LR, Brott, TG. Of horse races, trials, meta-analyses, and carotid artery stenosis (Editorial). Arch. Neurol. 2011;68:157159.Google Scholar
Brott, TG, Hobson, RW II, Howard, G, et al. CREST Investigators. Stenting vs endarterectomy for treatment of carotid-artery stenosis. N. Engl. J. Med. 2010;363:1123.Google Scholar
Bangalore, S, Kumar, S, Wetterslev, J, et al. Carotid artery stenting vs carotid endarterectomy: Meta-analysis and diversity-adjusted trial sequential analysis of randomized trials. Arch. Neurol. 2011;68(2):172184.Google Scholar

Notes and References

Vitek, JJ, Raymon, BC, Oh, SJ. Innominate artery angioplasty. AJNR 1984;5:113114.Google Scholar
Roubin, GS, Yadav, S, Iyer, SS, Vitek, J. Carotid stent-supported angioplasty: A neurovascular intervention to prevent stroke. Am. J. Cardiol. 1996 Aug 14;78(3A):812.Google Scholar
Brooks, WH, McClure, RR, Jones, MR, et al. Carotid angioplasty and stenting versus carotid endarterectomy: Randomized trial in a community hospital. J. Am. Coll. Cardiol. 2001;38:15891595.Google Scholar
Yadav, JS, Wholey, MH, Kuntz, RE, et al. Protected carotid-artery stenting versus endarterectomy in high-risk patients. N. Engl. J. Med. 2004;351:14931501.Google Scholar
Roubin, GS, New, G, Iyer, SS, Vitek, JJ, et al. Immediate and late clinical outcomes of carotid artery stenting in patients with symptomatic and asymptomatic carotid artery stenosis: A 5-year prospective analysis. Circulation 2001;103(4):532537.Google Scholar
Ederle, J, Bonati, LH, Dobson, J, et al. CAVATAS Investigators. Endovascular treatment with angioplasty or stenting versus endarterectomy in patients with carotid artery stenosis in the Carotid and Vertebral Artery Transluminal Angioplasty Study (CAVATAS): Long-term follow-up of a randomised trial. Lancet Neurol. 2009;8(10):898907.Google Scholar
Brott, TG, Hobson, RW II, Howard, G, Roubin, GS, et al. CREST Investigators. Stenting versus endarterectomy for treatment of carotid-artery stenosis. N. Engl. J. Med. 2010;363(1):1123.Google Scholar
Caplan, LR, Brott, TG. Of horse races, trials, meta-analyses, and carotid artery stenosis (Editorial). Arch. Neurol. 2011;68:157159.Google Scholar
Sirignano, P, Stabile, E, Mansour, W, et al. 1-month results from a prospective experience on CAS using CGuard stent system: The IRONGUARD 2 study. JACC Cardiovasc. Interv. 2020;13(18):21702177.Google Scholar
Lal, BK, Meschia, JF, Brott, TG. Clinical need, design, and goals for the Carotid Revascularization and Medical Management for Asymptomatic Carotid Stenosis trial. Semin. Vasc. Surg. 2017;30(1):27. Epub April 27, 2017.Google Scholar
Interventional treatment of aneurysms is discussed in Chapter 57, interventional treatment of AVMs in Chapter 59, and clot extraction in Chapter 56.Google Scholar
Higashida, RT, Myers, PM, IIIConnors, JJ, et al. Intracranial angioplasty and stenting for cerebral atherosclerosis: A position statement of the American Society of Interventional and Therapeutic Neuroradiology, Society of Interventional Radiology, and the American Society of Neuroradiology. AJNR Am. J. Neuroradiol. 2005;26:23232327.Google Scholar
Connors, JJ III, Wojak, JC. Percutaneous transluminal angioplasty for intracranial atherosclerotic lesions: Evolution of technique and short-term results. J. Neurosurgery 1999;91:415423.Google Scholar
Feldman, RL, Trigg, L, Gaudier, J, Galat, J. Use of coroanry Palmaz-Schatz stent in the percutaneous treatment of an intracranial carotid artery stenosis. Cathet. Cardiovasc. Diagn. 1996;38:316319.Google Scholar
Leung, TW, Wabnitz, AM, Miao, Z, Chimowitz, M. Agioplasty and stenting. In Kim, J, Caplan, LR, Wong, KS (eds.), Intracranial Atherosclerosis: Pathophysiology, Diagnosis and Treatment. Front. Neurol. Neurosci. Basel: Karger, 2016, vol. 40, pp. 152163.Google Scholar
Chimowitz, MI, Lynn, MJ, Derdeyn, CP, et al. for the SAMMPRIS Trial Investigators. Stenting versus aggressive medical therapy for intracranial arterial stenosis. N. Engl. J. Med. 2011;365(11):9931003.Google Scholar
Chimowitz, MI, Kokkinos, J, Strong, J, et al. The Warfarin-Aspirin Symptomatic Intracranial Disease Study. Neurology 1995;45:14881493.Google ScholarGoogle Scholar
Derdeyn, CP, Chimowitz, MI, Lynn, MJ, et al. for the for the SAMMPRIS Trial Investigators. Aggressive medical treatment with or without stenting in high risk patients with intracranial arterial stenosis (SAMMPRIS): The final trial results. Lancet 2014;383:333341.Google Scholar
Zaidat, OO, Fitzsimmons, BF, Woodward, BK, for the VISSIT Trial Investigators. Effect of a balloon expandable intracranial stent vs medical therapy on risk of stroke in patients with symptomatic intracranial stenosis: The VISSIT randomized clinical trial. JAMA 2015;313:12401248.Google Scholar
Alexander, M.J., Zauner, A, Chaloupka, JC, et al. WEAVE Trial: Final results in 152 on-label patients. Stroke 2019;50(4):889894.Google Scholar

Notes and References

Sussman, BJ, Fitch, TS. Thrombolysis with fibrinolysin in cerebral arterial occlusion. J. Am. Med. Assoc. 1958;167:17051709.Google Scholar
Zeumer, H, Hacke, W, Ringelstein, EB. Local intraarterial thrombolysis in vertebrobasilar thromboembolic disease. AJNR Am. J. Neuroradiol. 1983;4:401404.Google Scholar
Zeumer, H, Hündgen, R, Ferbert, A, Ringelstein, EB. Local intraarterial fibrinolytic therapy in inaccessible internal carotid occlusion. Neuroradiology 1984;26:315317.Google Scholar
Mori, E, Tabuchi, M, Yoshida, T, Yamadori, A. Intracarotid urokinase with thromboembolic occlusion of the middle cerebral artery. Stroke 1988;19:802812.Google Scholar
Hacke, W, Zeumer, H, Ferbert, A, Brückmann, H, del Zoppo, GJ. Intra-arterial thrombolytic therapy improves outcome in patients with acute vertebrobasilar occlusive disease. Stroke 1988;19:12161222.Google Scholar
del Zoppo, GJd, Higashida, RT, Furlan, AJ. PROACT: A phase II randomized trial of recombinant pro-urokinase by direct arterial delivery in acute middle cerebral artery stroke. Stroke 1998;29:411.Google Scholar
Furlan, A, Higashida, R, Wechsler, L, Gent, M, Rowley, H, Kase, C, et al. Intra-arterial prourokinase for acute ischemic stroke. The PROACT II study: A randomized controlled trial. Prolyse in acute cerebral thromboembolism. JAMA 1999;282:20032011.Google Scholar
Ogawa, A, Mori, E, Minematsu, K, et al. Randomized trial of intraarterial infusion of urokinase within 6 hours of middle cerebral artery stroke: The Middle Cerebral Artery Embolism Local Fibrinolytic Intervention Trial (MELT) Japan. Stroke 2007;38:26332639.Google Scholar
Lewandowski, CA, Frankel, M, Tomsick, TA, et al. Combined intravenous and intra-arterial r-tPA versus intra-arterial therapy of acute ischemic stroke: Emergency Management of Stroke (EMS) bridging trial. Stroke 1999;30:25982605.Google ScholarGoogle ScholarGoogle Scholar
Broderick, JP, Palesch, YY, Demchuk, AM, et al. Endovascular therapy after intravenous t-PA versus t-PA alone for stroke. N. Engl. J. Med. 2013;368:893903.Google ScholarGoogle ScholarGoogle Scholar
Nogueira, RG, Schwamm, LH, Hirsch, JA. Endovascular approaches to acute stroke, part 1: Drugs, devices, and data. AJNR Am. J. Neuroradiol. 2009;30:649661.Google Scholar
Smith, WS, Sung, G, Saver, J, Budzik, R, Duckwiler, G, Liebeskind, DS, et al. Mechanical thrombectomy for acute ischemic stroke: Final results of the Multi MERCI trial. Stroke 2008;39:12051212.Google Scholar
The Penumbra Pivotal Stroke Trial: Safety and effectiveness of a new generation of mechanical devices for clot removal in intracranial large vessel occlusive disease. Stroke 2009;40:2761–2768.Google Scholar
Castaño, C, Dorado, L, Guerrero, C, et al. Mechanical thrombectomy with the Solitaire AB device in large artery occlusions of the anterior circulation: A pilot study. Stroke 2010;41:18361840.Google Scholar
Roth, C, Papanagiotou, P, Behnke, S, et al. Stent-assisted mechanical recanalization for treatment of acute intracerebral artery occlusions. Stroke 2010;41:25592567.Google Scholar
Saver, JL, Jahan, R, Levy, EI, et al. Solitaire flow restoration device versus the Merci retriever in patients with acute ischaemic stroke (SWIFT): A randomised, parallel-group, non-inferiority trial. Lancet 2012;380:12411249.Google ScholarGoogle Scholar
Examples include Goyal, M, Demchuk, AM, Menon, BK, et al. Randomized assessment of rapid endovascular treatment of ischemic stroke. N. Engl. J. Med. 2015;372:10191030.Google ScholarGoogle ScholarGoogle Scholar
Berkhemer, OA, Fransen, PS, Beumer, D, et al. for the MR CLEAN Investigators. A randomized trial of intraarterial treatment for acute ischemic stroke. N. Engl. J. Med. 2015;372:1120.Google Scholar
Goyal, M, Demchuk, AM, Menon, BK, et al. Randomized assessment of rapid endovascular treatment of ischemic stroke. N. Engl. J. Med. 2015;372:10191030.Google Scholar
Saver, JL, Goyal, M, Bonafe, A, et al. Stent-retriever thrombectomy after intravenous t-PA vs. T-PA alone in stroke. N. Engl. J. Med. 2015;372:22852295.Google Scholar
Jovin, TG, Chamorro, A, Cobo, E, et al. Thrombectomy within 8 hours after symptom onset in ischemic stroke. N. Engl. J. Med. 2015;372:22962306.Google Scholar
Campbell, BC, Mitchell, PJ, Kleinig, TJ, et al. Endovascular therapy for ischemic stroke with perfusion-imaging selection. N. Engl. J. Med. 2015;372:10091018.Google Scholar
Bracard, S, Ducrocq, X, Mas, JL, et al. Mechanical thrombectomy after intravenous alteplase versus alteplase alone after stroke (THRACE): A randomised controlled trial. Lancet Neurol. 2016;15:11381147.Google Scholar
Muir, KW, Ford, GA, Messow, CM, et al. Endovascular therapy for acute ischaemic stroke: The Pragmatic Ischaemic Stroke Thrombectomy Evaluation (PISTE) randomised, controlled trial. J. Neurol. Neurosurg. Psychiatry 2017;88:3844.Google Scholar
Goyal, M, Menon, BK, van Zwam, WH, et al. Endovascular thrombectomy after large-vessel ischaemic stroke: A meta-analysis of individual patient data from five randomised trials. Lancet 2016;387:17231731.Google Scholar
Martins, SO, Mont’Alverne, F, Rebello, LC, et al. Thrombectomy for stroke in the public health care system of Brazil. N. Engl. J. Med. 2020;382:23162326.Google Scholar
Nogueira, RG, Jadhav, AP, Haussen, DC, et al. Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct. N. Engl. J. Med. 2017;378:1121.Google Scholar
Albers, GW, Marks, MP, Kemp, S, et al. Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N. Engl. J. Med. 2018;378:708718.Google Scholar
Jovin, T, Nogueira, RG, Lansberg, M, et al. Thrombectomy for anterior circulation stroke beyond 6 hours from time last known well: The AURORA (analysis of pooled data from randomized studies of thrombectomy more than 6 hours after last known well) collaboration. Lancet 2021, in press.Google Scholar
Lapergue, B, Blanc, R, Gory, B, et al. Effect of endovascular contact aspiration vs stent retriever on revascularization in patients with acute ischemic stroke and large vessel occlusion: The ASTER randomized clinical trial. JAMA 2017;318:443452.Google ScholarGoogle Scholar
Schönenberger, S, Hendén, PL, Simonsen, CZ, et al. Association of general anesthesia vs procedural sedation with functional outcome among patients with acute ischemic stroke undergoing thrombectomy: A systematic review and meta-analysis. JAMA 2019;322:12831293.Google Scholar
Mendez, B, Requena, M, Aires, A, et al. Direct transfer to angio-suite to reduce workflow times and increase favorable clinical outcome. Stroke 2018;49:27232727.Google Scholar
Liu, X, Dai, Q, Ye, R, et al. Endovascular treatment versus standard medical treatment for vertebrobasilar artery occlusion (BEST): An open-label, randomised controlled trial. Lancet Neurol. 2020;19:115122.Google ScholarGoogle Scholar
Yang, P, Zhang, Y, Zhang, L, et al. Endovascular thrombectomy with or without intravenous alteplase in acute stroke. N. Engl. J. Med. 2020;382:19811993.Google Scholar

Notes and References

Moulin, D. Ebers Papyrus. Arch. Chir. Neerl. 1961;12:4963.Google Scholar
Milinis, K, Thapar, A, O’Neill, K, Davies, AH. History of aneurysmal spontaneous subarachnoid hemorrhage. Stroke 2017;48:e280e283.Google Scholar
Magnus, V. Aneurysm of the internal carotid artery. JAMA 1927;88:17211713.Google Scholar
Morgagni, J. Sedibus et causis morborum per anatomen indagatis. Venetis, ex typog. Remodiniana. New York: Hafner, 1960, p. 1. The career of Morgagnis is the topic of Chapter 7, and Morgagni’s description of an intracranial aneurysm is described also in Chapter 17.Google Scholar
Pool, JL. The development of modern intracranial aneurysm surgery. Neurosurgery 1977;1:233237.Google Scholar
Hunter, J, Ottley, D, Bell, T, Home, E, Babington, GG, Owen, R. The Works of John Hunter, FRS with Notes. London: Longman, Rees, Orme, Brown, Green, and Longman, 1837.Google Scholar
Cooper, B. Lectures on the Principles and Practices of Surgery, 2nd ed. Philadelphia: Blanchard & Lee, 1852.Google ScholarGoogle ScholarGoogle Scholar
Powell, MP. Sir Victor Horsley at the birth of neurosurgery. Brain 2016;139(2):631634.Google ScholarGoogle Scholar
Cohen-Gadol, AA, Spencer, DD, Harvey, W. Cushing and cerebrovascular surgery: Part I, aneurysms. J. Neurosurg. 2004;101:547552. doi:10.317/jns.2004.101.3.0547. Sir Charles Symonds’s account of the inadvertent discovery of an intracranial aneurysm by Cushing is recounted in detail in Chapter 18.Google Scholar
Mount, LA. Results of treatment of intracranial aneurysms using the Selverstone clamp. J. Neurosurg. 1959;16:611618.Google Scholar
Dott, N. Intracranial aneurysms: Cerebral arterioradiography: Surgical treatment. Edinb. Med. J. 1933;40(12):T219T240.Google ScholarGoogle Scholar
Cushing, HI. The control of bleeding in operations for brain tumors: With the description of silver “clips” for the occlusion of vessels inaccessible to the ligature. Ann. Surg. 1911;54:119.Google Scholar
Dandy, W. Intracranial aneurysms of the internal carotid artery cured by operation. Ann. Surg. 1938;107:654659.Google Scholar
Fox, WL. Dandy of Johns Hopkins. Baltimore, MD: Williams and Wilkins, 1984.Google ScholarGoogle ScholarGoogle Scholar
Dandy, WE. Intracranial Arterial Aneurysms. Ithaca, NY: Comstock, 1944.Google Scholar
Logue, V. Surgery in spontaneous subarachnoid haemorrhage: Operative treatment of aneurysms on the anterior cerebral and anterior communicating artery. Brit. Med. J. 1956 4965:473479.Google Scholar
Moniz’s introduction of brain angiography and the evolution of angiography is the topic of Chapter 31.Google Scholar
Fox, JL (ed.). Intracranial Aneurysms. New York: Springer-Verlag, 1983, vols. 1–7.Google ScholarGoogle Scholar
Mayfield, FH, Kees, G Jr. A brief history of the development of the Mayfield clip. Technical note. J. Neurosurg. 1971;35:97100.Google Scholar
Del Maestro, RF: Origin of the Drake fenestrated aneurysm clip. J. Neurosurg. 2000;92:10561064.Google Scholar
Kassell, NF. George Charles Drake MD 1920–1998, an Obituary. J. Neurosurg. 1999;90:797801.Google Scholar
Link, TE, Bisson, E, Horgan, MA, Tanner, BI. Raymond, MP. Donaghy: A pioneer in microneurosurgery. J. Neurosurg. 2010;112(6):11761181.Google Scholar
Stienen, MN, Serra, C, Stieglitz, LH, Krayenbühl, N, Bozinov, O, Regli, L. UniversitätsSpital Zürich: 80 years of neurosurgical care in Switzerland. Acta Neurochir. (Wien) 2018;160(1):322.Google ScholarGoogle ScholarGoogle Scholar
Lussenhop, AJ, Velaquez, AC. Artificial embolization of cerebral arteries: Report of use in a case of arteriovenous malformation. JAMA 1960;172:11531155.Google ScholarGoogle Scholar
Rothenberg, SF, Penka, EJ, Conway, LW. Angiotactic surgery: Preliminary studies. J. Neurol. Neurosurg. Psychiatry 1962;19:877883.Google Scholar
Frei, EH, Driller, J, Neufeld, HN, Barr, I, Bieiden, L, Askeray, HN. The POD and its application. Med. Res. Eng. 1966;5:1118.Google Scholar
Yodh, SB, Pierce, NT, Weggel, RJ, Montgomery, DB. A new magnet system for intravascular navigation. Med. Biol. Eng. 1968;6:143147.Google Scholar
Teitelbaum, GP, Larsen, DW, Zelman, V, Lysachev, AG, Likhterman, LB. A tribute to Dr. Fedor A. Serbinenko, founder of endovascular neurosurgery. Neurosurgery 2000;46(2):462469.Google Scholar
Serbinenko, FA. Balloon catheterization and occlusion of major cerebral vessels. J. Neurosurg. 1974;41:125145.Google Scholar
Higashida, RT, Halbach, VV, Barnwell, SL, Dowd, C, Dormandy, B, Bell, J, Hieshima, GB. Treatment of intracranial aneurysms with preservation of the parent vessel: Result of percutaneous balloon embolization in 84 patients. AJNR Am. J. Neuroradiol. 1990;11:633640.Google Scholar
Guglielmi, Guido. Whonamedit? Available at www.whonamedit.com/doctor.cfm/3137.html.Google Scholar
Guglielmi, G. Endovascular treatment of intracranial aneurysms. Neuroimag. Clin. N. Am. 1992;2:269278.Google ScholarGoogle Scholar
Fiorella, D, Albuquerque, FC, Deshmukh, VR, McDougall, CG. Usefulness of the Neuroform stent for the treatment of cerebral aneurysms: Results at initial (3–6-mo) follow-up. Neurosurgery 2005;56:11911201, discussion 1201–1202.Google ScholarGoogle Scholar
D’Urso, PI, Lanzino, G, Cloft, HJ, Kallmes, DF. Flow diversion for intracranial aneurysms: A review. Stroke 2011;42:23632368.Google ScholarGoogle Scholar

References

Xi, G, Keep, RF, Hoff, JT. Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol. 2006;5:5363.Google Scholar
Xi, G, Keep, RF, Hoff, JT. Erythrocytes and delayed brain edema formation following intracerebral hemorrhage in rats. J. Neurosurg. 1998;89:991996.Google ScholarGoogle ScholarGoogle Scholar
Poungvarin, N, Bhoopat, W, Viriyavejakul, A, et al. Effects of dexamethasone in primary supratentorial intracerebral hemorrhage. N. Engl. J. Med. 1987;316:12291233.Google Scholar
Aronowski, J, Zhao, X. Molecular pathophysiology of cerebral hemorrhage: Secondary brain injury. Stroke 2011;42:17811786.Google Scholar
Hemphill, JC, Greenberg, SM, Anderson, CS, et al. Guidelines for the management of spontaneous intracerebral hemorrhage: A guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2015;46:20322060.Google Scholar
Shoamanesh, A, Lindsay, MP, Castellucci, LA, et al. Canadian stroke best practice recommendations: Management of spontaneous intracerebral hemorrhage, 7th edition update 2020. Int. J. Stroke 2021;16:321341.Google Scholar
Wagner, KR, Sharp, FR, Ardizzone, TD, Lu, A, Clark, JF. Heme and iron metabolism: Role in cerebral haemorrhage. J. Cereb. Blood Flow Metab. 2003;23:629652.Google Scholar
Selim, M, Foster, LD, Moy, CS, et al. Deferoxamine mesylate in patients with intracerebral hemorrhage (i-DEF): A multicentre, randomized, placebo- controlled, double-blind phase 2 trial. Lancet Neurol. 2019;18:428438.Google Scholar
James, CDT. Sir William Macewen. Proc. Roy. Soc. Med. 1974;67:237242.Google ScholarGoogle Scholar
McKissock, W, Richardson, A, Taylor, J. Primary intracerebral haemorrhage: A controlled trial of surgical and conservative treatment in 180 unselected cases. Lancet 1961;2:221226.Google Scholar
McKissock, W. Rostral leucotomy. Lancet 1951;258:9194. Wylie McKissock (obituary). The Times, May 11, 1994.Google Scholar
de Oliveira Manoel, AL. Surgery for spontaneous intracerebral hemorrhage. Critical Care 2020;24:45. https://doi.org./10.1186/s13054-020-2749-2.Google Scholar
Auer, LM, Deinsberger, W, Niederkorn, K, et al. Endoscopic surgery versus medical treatment for spontaneous intracerebral hematoma: A randomized study. J. Neurosurg. 1989;70:530535.Google Scholar
Juvela, S, Heiskanen, O, Poranen, A, et al. The treatment of spontaneous intracerebral hemorrhage: A prospective randomized trial of surgical and conservative treatment. J. Neurosurg. 1989;70:755758.Google Scholar
Batjer, HH, Reisch, JS, Allen, BC, Plaizier, LJ, Su, CJ. Failure of surgery to improve outcome in hypertensive putaminal hemorrhage: A prospective randomized trial. Arch. Neurol. 1990;47:11031106.Google Scholar
Morgenstern, LB, Frankowski, RF, Shedden, P, Pasteur, W, Grotta, JC. Surgical treatment for intracerebral hemorrhage (STICH): A single-center, randomized clinical trial. Neurology 1998;51:13591363.Google Scholar
Zuccarello, M, Brott, T, Derex, L, et al. Early surgical treatment for supratentorial intracerebral hemorrhage: A randomized feasibility study. Stroke 1999;30:18331839.Google Scholar
Morgenstern, LB, Demchuk, AM, Kim, DH, Frankowski, RF, Grotta, JC. Rebleeding leads to poor outcome in ultra-early craniotomy for intracerebral hemorrhage. Neurology 2001;56:12941299.Google Scholar
Teernstra, OPM, Evers, SMAA, Lodder, J, et al. Stereotactic treatment of intracerebral hematoma by means of a plasminogen activator: A multicenter randomized controlled trial (SICHPA). Stroke 2003;34:968974.Google Scholar
Hattori, N, Katayama, Y, Maya, Y, Gatherer, A. Impact of stereotactic hematoma evacuation on activities of daily living during the chronic period following spontaneous putaminal hemorrhage: A randomized study. J. Neurosurg. 2004;101:417420.Google Scholar
Mendelow, AD, Gregson, BA, Fernandes, HM, et al. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial intracerebral haematomas in the International Surgical Trial in Intracerebral Haemorrhage (STICH): A randomised trial. Lancet 2005;365:387397.Google Scholar
Pantazis, G, Tsitsopoulos, P, Mihas, C et al. Early surgical treatment vs conservative management for spontaneous supratentorial intracerebral hematomas: A prospective randomized study. Surg. Neurol. 2006;66:492501.Google Scholar
Kim, YZ, Kim, KH. Even in patients with a small hemorrhagic volume, stereotactic-guided evacuation of spontaneous intracerebral hemorrhage improves functional outcome. J. Korean Neurosurg. Soc. 2009;46:109115.Google Scholar
Wang, W-Z, Jiang, B, Liu, H-M, et al. Minimally invasive craniopuncture therapy vs. conservative treatment for spontaneous intracerebral hemorrhage: Results from a randomized clinical trial in China. Int. J. Stroke 2009;4:1116.Google Scholar
Mendelow, AD, Gregson, BA, Rowan, EN, et al. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial lobar intracerebral haematomas (STICH II): A randomised trial. Lancet 2013;382:397408.Google Scholar
Vespa, P, Hanley, D, Betz, J, et al. ICES (intraoperative stereotactic computed tomography-guided endoscopic surgery) for brain hemorrhage: A multicenter randomized controlled trial. Stroke 2016;47:27492755.Google Scholar
Hanley, DF, Thompson, RE, Rosenblum, M, et al. Efficacy and safety of minimally invasive surgery with thrombolysis in intracerebral haemorrhage evacuation (MISTIE III): A randomised, controlled, open-label, blinded endpoint phase 3 trial. Lancet 2019;393:10211032.Google Scholar
Hanley, DF, Thompson, RE, Muschelli, J, et al. Safety and efficacy of minimally invasive surgery plus alteplase in intracerebral haemorrhage evacuation (MISTIE): A randomised, controlled, open-label, phase 2 trial. Lancet Neurol. 2016;15:12281237.Google Scholar
Kase, CS, Hanley, DF. Intracerebral hemorrhage: Advances in emergency care. Neurol. Clin. 2021;39:405418.Google Scholar
Herbstein, DJ, Schaumburg, HH. Hypertensive intracerebral hemorrhage: An investigation of the initial hemorrhage and rebleeding using chromium Cr 51-labelled erythrocytes. Arch. Neurol. 1974;30:412414.Google Scholar
Mizukami, M, Araki, G, Mihara, H, Tomita, T, Fuginaga, R. Arteriographically visualized extravasation in hypertensive intracerebral hemorrhage; report of seven cases. Stroke 1972;3:527537.Google Scholar
Broderick, JP, Brott, TG, Tomsick, T, Barsan, W, Spilker, J. Ultra-early evaluation of intracerebral hemorrhage. J. Neurosurg. 1990;72:195199.Google Scholar
Kazui, S, Naritomi, H, Yamamoto, H, Sawada, T, Yamaguchi, T. Enlargement of spontaneous intracerebral hemorrhage: Incidence and time course. Stroke 1996;27:17831787.Google ScholarGoogle Scholar
Anderson, CS, Huang, Y, Wang, JG, et al., INTERACT Investigators. Intensive blood pressure reduction in acute cerebral haemorrhage trial (INTERACT): A randomised pilot trial. Lancet Neurol. 2008;7(5):391399.Google ScholarGoogle Scholar
Qureshi, AI, Palesch, YY, Barsan, WG, et al., ATACH-2 Trial Investigators and the Neurological Emergency Treatment Trials Network. Intensive blood-pressure lowering in patients with acute cerebral hemorrhage. N. Engl. J. Med. 2016;375:10331043.Google ScholarGoogle Scholar
Hoffman, M, Monroe, DM. A cell-based model of hemostasis. Thromb. Haemost. 2001;85:958965.Google Scholar
Mayer, SA, Brun, NC, Begtrup, K, et al. Recombinant activated factor VII for acute intracerebral hemorrhage. N. Engl. J. Med. 2005;352:777785.Google ScholarGoogle Scholar
Demchuk, AM, Dowlatshahi, D, Rodriquez-Luna, D, et al. Prediction of haematoma growth and outcome in patients with intracerebral haemorrhage using the CT-angiography spot sign (PREDICT): A prospective observational study. Lancet Neurol. 2012;11:307314.Google Scholar
Gladstone, DJ, Aviv, RI, Demchuk, AM, et al. Effect of recombinant activated coagulation factor VII on hemorrhage expansion among patients with spot sign-positive acute intracerebral hemorrhage: The SPOTLIGHT and STOP-IT randomized clinical trials. JAMA Neurol. 2019;76:14931501.Google Scholar
Sprigg, N, Flaherty, K, Appleton, JP, et al. Tranexamic acid for hyperacute primary IntraCerebral Haemorrhage (TICH-2): An international randomized, placebo-controlled, phase 3 superiority trial. Lancet 2018;391:21072115.Google Scholar
Meretoja, A, Yassi, N, Wu, TY, et al. Tranexamic acid in patients with intracerebral haemorrhage (STOP-AUST): A multicentre, randomised, placebo-controlled, phase 2 trial. Lancet Neurol. 2020;19:980987.Google Scholar
Steiner, T, Weitz, JI, Veltkamp, R. Anticoagulant-associated intracranial hemorrhage in the era of reversal agents. Stroke 2017;48:14321437.Google Scholar
Frumkin, K. Rapid reversal of warfarin-associated hemorrhage in the emergency department by prothrombin complex concentrates. Ann. Emerg. Med. 2013;62:616626.Google Scholar
Aiyagari, V, Testai, FD. Correction of coagulopathy in warfarin associated cerebral hemorrhage. Curr. Opin. Crit. Care 2009;15:8792.Google Scholar
Ferreira, J, DeLosSantos, M. The clinical use of prothrombin complex concentrate. J. Emerg. Med. 2013;44:12011210.Google Scholar
Steiner, T, Poli, S, Griebe, M, et al. Fresh frozen plasma versus prothrombin complex concentrate in patients with intracranial haemorrhage related to vitamin K antagonists (INCH): A randomised trial. Lancet Neurol. 2016;15:566573.Google Scholar
Purrucker, JC, Haas, K, Rizos, T, et al. Early clinical and radiological course, management, and outcome of intracerebral hemorrhage related to new oral anticoagulants. JAMA Neurol. 2016;73:169177.Google ScholarGoogle Scholar
Baharoglu, MI, Cordonnier, C, Al-Shahi Salman, R, et al. Platelet transfusion versus standard care after acute stroke due to spontaneous cerebral haemorrhage associated with antiplatelet therapy (PATCH): A randomised, open-label, phase 3 trial. Lancet 2016;387:26052613.Google Scholar
Marinkovic, I, Strbian, D, Pedrono, E, et al. Decompressive craniectomy for intracerebral hemorrhage. Neurosurgery 2009;65:780786.Google Scholar
Ferro, JM, Crassard, I, Coutinho, JM, et al. Decompressive surgery in cerebrovenous thrombosis: A multicenter registry and a systematic review of individual patient data. Stroke 2011;42:28252831.Google Scholar
Yao, Z, Ma, L, You, C, He, M. Decompressive craniectomy for spontaneous intracerebral hemorrhage: A systematic review and meta-analysis. World Neurosurg. 2018:110:121128.Google Scholar

Notes and References

Gaupp, J. Casuistische Beitrage zur pathologischen anatomie des ruckenmarks und seiner haute. II. Hemorrhoiden der pia-mater spinalis in gebiete des lendenmarks. Beitrage zur pathologishen Anatomie und zur allgemeinen Pathologie 1888;2:510524.Google Scholar
Worster-Drought, C, Carnegie Dickson, WE. Venous angioma of the cerebrum: Report of a case with necropsy. J. Neurol. Psychopathol. 1927;8(29):1922.Google Scholar
Campbell, H, Ballance, C. A case of venous angioma of the cerebral cortex. Lancet 1922;199(5132):1011.Google Scholar
Fodstad, H, Ljunggren, B, Kristiansen, K. Vilhelm Magnus: Pioneer neurosurgeon. J. Neurosurg. 1990;73(3):317330.Google Scholar
Harvey Cushing’s initial experience with brain aneurysms is described in Chapter 18. Two detailed biographies describe the main life events and accomplishments of Harvey Cushing: Fulton, J. Harvey Cushing: A Biography – The Story of a Great Medical Pioneer. Springfield, IL: Charles C. Thomas, 1946;Google ScholarGoogle Scholar
Cushing, H, Bailey, P. Tumors Arising from the Blood-Vessels of the Brain: Angiomatous Malformations and Hemangioblastomas. Springfield, IL: Charles C. Thomas, 1928.Google Scholar
The career and accomplishments of Walter Dandy are discussed in Chapter 56 and in Fox, WL. Dandy of Johns Hopkins. Baltimore, MD: Williams and Wilkins, 1984.Google Scholar
Dandy, WE. Arteriovenous aneurysm of the brain. Arch. Surg. 1928;117(2):190243.Google Scholar
Ljunggren, B. Herbert Olivecrona: Founder of Swedish neurosurgery. J. Neurosurg. 1993;78(1):142149.Google Scholar
Olivecrona, H, Riives, J. Arteriovenous aneurysms of the brain, their diagnosis and treatment. Arch. Neurol. Psychiatry 1948;59(5):567602.Google Scholar
Norle, G. Arteriovenous aneurysms of the brain; report of ten cases of total removal of the lesion. J. Neurosurg. 1949;6(6):475494.Google Scholar
Murphy, JP. Cerebrovascular Disease. Chicago: Year Book Medical Publishers, 1954, pp. 73105.Google Scholar
Perret, G, Nishioka, H. Report on the cooperative study of intracranial aneurysms and subarachnoid hemorrhage. Section VI. Arteriovenous malformations. An analysis of 545 cases of cranio-cerebral arteriovenous malformations and fistulae reported to the cooperative study. J. Neurosurg. 1966;25(4):467490.Google Scholar
Fults, D, Kelly, DL Jr. Natural history of arteriovenous malformations of the brain: A clinical study. Neurosurgery 1984;15(5):658662.Google ScholarGoogle ScholarGoogle Scholar
Crawford, PM, West, CR, Chadwick, DW, Shaw, MD. Arteriovenous malformations of the brain: Natural history in unoperated patients. J. Neurol. Neurosurg. Psychiatry 1986;49(1):110.Google Scholar
Samson, D, Batjer, HH. Preoperative evaluation of the risk/benefit ratio for arteriovenous malformations of the brain. In Wilkins, RH, Rengachart, SS (eds.), Neurosurgery Update II. New York: McGraw-Hill, 1991, pp. 121133.Google Scholar
Kurze, Theodore, MD, interviewed by Peter J. Jannetta, MD. YouTube. Available at www.youtube.com/watch?v=AOUZG3VajBk.Google Scholar
The career of Gazi Yasargil is discussed in Chapter 56 on aneurysms. Stienen, MN, Serra, C, Stieglitz, LH, Krayenbühl, N, Bozinov, O, Regli, L. UniversitätsSpital Zürich: 80 years of neurosurgical care in Switzerland. Acta Neurochir. (Wien) 2018;160(1):322.Google ScholarGoogle ScholarGoogle Scholar
Yasargil, MG. Microsurgery Applied to Neurosurgery. Stuttgart: Georg Thieme, 1969, pp. 105119.Google Scholar
Yasargil, MG, Jain, KK, Antic, J, Laciga, R. Arteriovenous malformations of the splenium of the corpus callosum: Microsurgical treatment. Surg. Neurol. 1976;5(1):514.Google ScholarGoogle Scholar
Yasargil, MG. Microneurosurgery, vol. III B: AVM of the Brain, Clinical Consideration, General and Special Operative Techniques, Surgical Results, Nonoperated Cases, Cavernous and Venous Angiomas, Neuroanesthesia. New York: Georg Thieme Verlag Stuttgart, 1988.Google Scholar
Past honored guests: Heros, Robert C.. 2005. Congress of Neurological Surgeons. Available at www.cns.org/meetings/past-honored-guests-detail/roberto-c-heros.Google Scholar
Heros, RC. Arteriovenous malformations of the medial temporal lobe. Surgical approach and neuroradiological characterization. J. Neurosurg. 1982;56(1):4452.Google Scholar
Latchaw, RE, Hu, X, Ugurbil, K, Hall, WA, Madison, MT, Heros, RC. Functional magnetic resonance imaging as a management tool for cerebral arteriovenous malformations. Neurosurgery 1995;37(4):619625; discussion 625–626.Google Scholar
Luessenhop, AJ, Spence, WT. Artificial embolization of cerebral arteries. Report of use in a case of arteriovenous malformation. JAMA 1960;172:11531155. The use of embolic particles to treat intracranial vascular lesions is discussed in detail in Chapter 56 on treatment of aneurysms.Google Scholar
Luessenhop, AJ, Gennarelli, TA. Anatomical grading of supratentorial arteriovenous malformations for determining operability. Neurosurg. 1977;1(1):3035.Google Scholar
Spetzler, RF, Martin, NA. A proposed grading system for arteriovenous malformations. J. Neurosurg. 1986;65(4):476483.Google Scholar
Spetzler, Robert F.. Wikipedia. Available at https://en.wikipedia.org/wiki/Robert_F._Spetzler. Past honored guests: Robert F. Spetzler. 1994. Congress of Neurological Surgeons. Available at www.cns.org/meetings/past-honored-guests-detail/robert-f-spetzler.Google Scholar
Spetzler collection. Operative Neurosurgery 2019 Oct;17(4):339.Google Scholar
van Beijnum, J, van der Worp, HB, Buis, DR, et al. Treatment of brain arteriovenous malformations: A systematic review and meta-analysis. JAMA 2011;306:20112019.Google ScholarGoogle Scholar
Mohr, JP, Parides, MK, Stapf, C, Moquete, E, et al. Medical management with or without interventional therapy for unruptured brain arteriovenous malformations (ARUBA): A multicentre, non-blinded, randomised trial. Lancet 2014;383(9917):614621.Google Scholar
Dandy, WE. Venous abnormalities and angiomas of the brain. Arch. Surg. 1928;17:715793.Google Scholar
Penfield, W, Ward, A. Calcifying epileptogenic lesions; hemangioma calcificans; report of a case. Arch. Neurol. Psychiatry 1948;60(1):2036.Google Scholar
Schneider, RC, Liss, L. Cavernous hemangiomas of the cerebral hemispheres. J. Neurosurg. 1958;15(4):392399.Google Scholar
Professorships: Daniele Rigamonti. Johns Hopkins University. Available at https://professorships.jhu.edu/chair/daniele-rigamonti-md-facs/.Google Scholar
Rigamonti, D, Hadley, MN, Drayer, BP, Johnson, PC, et al. Cerebral cavernous malformations: Incidence and familial occurrence. N. Engl. J. Med. 1988;319(6):343347.Google ScholarGoogle Scholar
Steiner, L, Karlsson, B, Yen, CP, Torner, JC, et al. Radiosurgery in cavernous malformations: Anatomy of a controversy. J. Neurosurg. 2010;113(1):1621; discussion 21–22.Google Scholar
Truwit, C. Venous angiomas of the brain: History, significance, and imaging findings. Am. J. Radiol. 1992;159:12991307.Google ScholarGoogle Scholar
Travers, B. A case of aneurism by anastomosis in the orbit, cured by the ligature of the common carotid artery. Med. Chir. Trans. 1811;2(1):420421.Google Scholar
Hamby, WB, Gardner, WJ. Treatment of pulsating exophthalmos with report of two cases. JAMA Surgery 1933;27(4):676685.Google Scholar
Dandy, WE. The treatment of carotid cavernous arteriovenous aneurysms. Ann. Surg. 1935;102(5):916926.Google Scholar
Parkinson, Dwight, MD, interviewed by Jock McBeath, MD. YouTube. Available at www.youtube.com/watch?v=VpzIIbeHRmU.Google Scholar
Parkinson, D. A surgical approach to the cavernous portion of the carotid artery. Anatomical studies and case report. J. Neurosurg. 1965;23(5):474483.Google Scholar
The career and contributions of Fiódor Andreevitch Serbinenko is discussed in Chapter 56 on aneurysms. Arutiunov, AI, Serbinenko, FA, Shlykov, AA. Surgical treatment of carotid-cavernous fistulas. Prog. Brain Res. 1968;30:441444.Google Scholar
Mullan, S. Treatment of carotid-cavernous fistulas by cavernous sinus occlusion. J. Neurosurg. 1979;50(2):131144.Google Scholar
Debrun, G, Lacour, P, Caron, JP, Hurth, M, et al. Detachable balloon and calibrated-leak balloon techniques in the treatment of cerebral vascular lesions. J. Neurosurg. 1978;49(5):635649.Google Scholar
Halbach, VV, Higashida, RT, Hieshima, GB, Hardin, CW, et al. Transvenous embolization of dural fistulas involving the cavernous sinus. AJNR Am. J. Neuroradiol. 1989;10(2):377383.Google Scholar