Skip to main content Accessibility help
×
Hostname: page-component-7bb8b95d7b-cx56b Total loading time: 0 Render date: 2024-09-13T13:03:28.193Z Has data issue: false hasContentIssue false

5 - Light-Source Diffraction Studies of Planetary Materials under Dynamic Loading

Published online by Cambridge University Press:  03 August 2023

Yingwei Fei
Affiliation:
Carnegie Institution of Washington, Washington DC
Michael J. Walter
Affiliation:
Carnegie Institution of Washington, Washington DC
Get access

Summary

Fundamental data on planetary materials under extreme conditions are required to establish physics-based models of planetary interiors and impact events. Dynamic compression experiments provide a means of studying material properties under the conditions of planetary interiors. Experimental shock wave studies also present a unique capability to study impact phenomena in real time, providing insight into hypervelocity collisions relevant to planetary formation and evolution. Recent experimental developments have extended the types of measurements that are possible during the nanosecond to microsecond duration of shock experiments – opening entirely new lines of inquiry. New facilities that couple dynamic compression platforms with high-flux X-ray sources have allowed for in situ X-ray diffraction under dynamic loading. Such experiments can address a range of longstanding questions, including the following: What crystallographic phases are stable under what conditions? What is their thermoelastic behavior? When do they melt or vaporize? And what phases will form on release? Answers to these questions and others will provide input for next-generation models of the structure, dynamics, and evolution of planetary interiors as well and natural impact processes.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akins, J. A., Ahrens, T. J. (2002). Dynamic compression of SiO2: a new interpretation. Geophysical Research Letters, 29(10), 31-131-4.CrossRefGoogle Scholar
Albertazzi, B., Ozaki, N., Zhakhovsky, V., et al. (2017). Dynamic fracture of tantalum under extreme tensile stress. Science Advances, 3(6), e1602705.CrossRefGoogle ScholarPubMed
Asimow, P. D. (2015). Dynamic compression, in Schubert, G., ed., Treatise on Geophysics, Elsevier, pp. 393416.CrossRefGoogle Scholar
Barker, L. M., Hollenbach, R. E. (1972). Laser interferometer for measuring high velocities of any reflecting surface. Journal of Applied Physics, 43(11), 46694675.Google Scholar
Benedetti, L. R. (1999). Dissociation of CH4 at high pressures and temperatures: diamond formation in giant planet interiors? Science, 286(5437), 100102.Google Scholar
Blaj, G., Dragone, A., Kenney, C. J., et al. (2019). Performance of ePix10K, a high dynamic range, gain auto-ranging pixel detector for FELs. AIP Conference Proceedings, 2054(1), 060062.CrossRefGoogle Scholar
Bostedt, C., Boutet, S., Fritz, D. M., et al. (2016). Linac coherent light source: the first five years. Reviews of Modern Physics, 88(1), 015007.Google Scholar
Broege, D., Fochs, S., Brent, G., et al. (2019). The Dynamic Compression Sector laser: a 100-J UV laser for dynamic compression research. Review of Scientific Instruments, 90(5), 053001.CrossRefGoogle Scholar
Brown, J. M., McQueen, R. G. (1986). Phase transitions, Grüneisen parameter, and elasticity for shocked iron between 77 GPa and 400 GPa. Journal of Geophysical Research: Solid Earth, 91(B7), 74857494.CrossRefGoogle Scholar
Chaplot, S. L., Sikka, S. K. (2000). Molecular-dynamics simulation of shock-stress-induced amorphization of α-quartz. Physical Review B, 61(17), 1120511208.CrossRefGoogle Scholar
Daviau, K., Lee, K. K. M. (2017). Zinc-blende to rocksalt transition in SiC in a laser-heated diamond-anvil cell. Physical Review B, 95(13), 134108.CrossRefGoogle Scholar
Denoeud, A., Benuzzi-Mounaix, A., Ravasio, A., et al. (2014). Metallization of warm dense SiO 2 studied by XANES spectroscopy. Physical Review Letters, 113(11), 116404.CrossRefGoogle ScholarPubMed
Elkins-Tanton, L. T. (2012). Magma oceans in the inner solar system. Annual Review of Earth and Planetary Sciences, 40(1), 113139.Google Scholar
Fat’yanov, O. V., Asimow, P. D., Ahrens, T. J. (2018). Thermodynamically complete equation of state of MgO from true radiative shock temperature measurements on samples preheated to 1850 K. Physical Review B, 97(2), 024106.Google Scholar
Fei, Y., Van Orman, J., Li, J., et al. (2004). Experimentally determined postspinel transformation boundary in Mg 2 SiO 4 using MgO as an internal pressure standard and its geophysical implications. Journal of Geophysical Research: Solid Earth, 109(B2). doi:10.1029/2003JB002562CrossRefGoogle Scholar
Finkelstein, G. J., Dera, P. K., Jahn, S., et al. (2014). Phase transitions and equation of state of forsterite to 90 GPa from single-crystal X-ray diffraction and molecular modeling. American Mineralogist, 99(1), 3543.CrossRefGoogle Scholar
Gillet, P., El Goresy, A. (2013). Shock events in the solar system: the message from minerals in terrestrial planets and asteroids. Annual Review of Earth and Planetary Sciences, 41(1), 257285.CrossRefGoogle Scholar
Gillet, P., El Goresy, A., Beck, P., Chen, M. (2007). High-pressure mineral assemblages in shocked meteorites and shocked terrestrial rocks: mechanisms of phase transformations and constraints to pressure and temperature histories, Geological Society of America Special Papers, 421, 5782.Google Scholar
Gleason, A. E., Bolme, C. A., Galtier, E., et al. (2017a). Compression freezing kinetics of water to ice VII. Physical Review Letters, 119(2), 025701.CrossRefGoogle ScholarPubMed
Gleason, A. E., Bolme, C. A., Lee, H. J., et al. (2015). Ultrafast visualization of crystallization and grain growth in shock-compressed SiO2. Nature Communications, 6(1), 8191.CrossRefGoogle ScholarPubMed
Gleason, A. E., Bolme, C. A., Lee, H. J., et al. (2017b). Time-resolved diffraction of shock-released SiO2 and diaplectic glass formation. Nature Communications, 8(1), 1481.CrossRefGoogle ScholarPubMed
Grady, D. E., Murri, W. J., Fowles, G. R. (1974). Quartz to stishovite: wave propagation in the mixed phase region. Journal of Geophysical Research, 79(2), 332338.Google Scholar
Gupta, Y. M., Turneaure, S. J., Perkins, K., et al. (2012). Real-time, high-resolution X-ray diffraction measurements on shocked crystals at a synchrotron facility. Review of Scientific Instruments, 83(12), 123905.Google Scholar
Hanner, M. S. (1999). The silicate material in comets, in Altwegg, K., Ehrenfreund, P., Geiss, J., Huebner, W. F., eds., Composition and Origin of Cometary Materials. Springer Netherlands, pp. 99108.Google Scholar
Harada, Y., Goossens, S., Matsumoto, K., et al. (2014). Strong tidal heating in an ultralow-viscosity zone at the core–mantle boundary of the Moon. Nature Geoscience, 7(8), 569572.Google Scholar
Harmand, M., Ravasio, A., Mazevet, S., et al. (2015). X-ray absorption spectroscopy of iron at multimegabar pressures in laser shock experiments. Physical Review B, 92(2), 024108.CrossRefGoogle Scholar
Ito, E., Takahashi, E. (1989). Postspinel transformations in the system Mg 2 SiO 4 -Fe 2 SiO 4 and some geophysical implications. Journal of Geophysical Research: Solid Earth, 94(B8), 1063710646.Google Scholar
Jackson, I., Ahrens, T. J. (1979). Shock wave compression of single-crystal forsterite. Journal of Geophysical Research, 84(B6), 3039.Google Scholar
Jeanloz, R. (1979). Properties of iron at high pressures and the state of the core. Journal of Geophysical Research, 84(B11), 6059.CrossRefGoogle Scholar
Jeanloz, R., Celliers, P. M., Collins, G. W., et al. (2007). Achieving high-density states through shock-wave loading of precompressed samples. Proceedings of the National Academy of Sciences, 104(22), 91729177.Google Scholar
Johnson, Q., Mitchell, A., Keeler, R. N., Evans, L. (1970). X-ray diffraction during shock-wave compression. Physical Review Letters, 25(16), 10991101.CrossRefGoogle Scholar
Kalashnikov, N. G., Pavlovskii, M. N., Simakov, G. V., Trunin, R. F. (1973). Dynamic compressibility of the minerals of calcite group. Izv. Akad. Nauk SSSR. Fiz. Zemli, 2, 2329.Google Scholar
Khaliullin, R. Z., Eshet, H., Kühne, T. D., Behler, J., Parrinello, M. (2011). Nucleation mechanism for the direct graphite-to-diamond phase transition. Nature Materials, 10(9), 693697.Google Scholar
Kidokoro, Y., Umemoto, K., Hirose, K., Ohishi, Y. (2017). Phase transition in SiC from zinc-blende to rock-salt structure and implications for carbon-rich extrasolar planets. American Mineralogist, 102(11), 22302234.CrossRefGoogle Scholar
Kondo, K., Sawaoka, A., Ahrens, T. J. (1981). Electrical measurements on fused quartz under shock compression. Journal of Applied Physics, 52(8), 50845089.Google Scholar
Kraus, D., Ravasio, A., Gauthier, M., et al. (2016). Nanosecond formation of diamond and lonsdaleite by shock compression of graphite. Nature Communications, 7(1), 10970.CrossRefGoogle ScholarPubMed
Kraus, D., Vorberger, J., Pak, A., et al. (2017). Formation of diamonds in laser-compressed hydrocarbons at planetary interior conditions. Nature Astronomy, 1(9), 606611.Google Scholar
Langenhorst, F. (2002). Shock metamorphism of some minerals: basic introduction and microstructural observations. Bulletin of the Czech Geological Survey, 77, 265282.Google Scholar
Langenhorst, F., Deutsch, A. (2012). Shock metamorphism of minerals. Elements, 8(1), 3136.Google Scholar
Lazicki, A., McGonegle, D., Rygg, J. R., et al. (2021). Metastability of diamond ramp-compressed to 2 terapascals. Nature, 589(7843), 532535.CrossRefGoogle ScholarPubMed
Livermore: Lawrence Livermore Laboratory. (1977). Compendium of shock wave data (No. Report UCRL-50108).Google Scholar
Luo, S. N., Jensen, B. J., Hooks, D. E., et al. (2012). Gas gun shock experiments with single-pulse X-ray phase contrast imaging and diffraction at the Advanced Photon Source. Review of Scientific Instruments, 83(7), 073903.CrossRefGoogle ScholarPubMed
Luo, S.-N., Mosenfelder, J. L., Asimow, P. D., Ahrens, T. J. (2002). Direct shock wave loading of stishovite to 235 GPa: implications for perovskite stability relative to an oxide assemblage at lower mantle conditions. Geophysical Research Letters, 29(14), 36-136-4.Google Scholar
Mason, B. (1963). Olivine composition in chondrites. Geochimica et Cosmochimica Acta, 27, 10111023.CrossRefGoogle Scholar
McNeil, B. W. J., Thompson, N. R. (2010). X-ray free-electron lasers. Nature Photonics, 4(12), 814821.CrossRefGoogle Scholar
McQueen, R. G. (1962). Laboratory techniques for very high pressures and the behavior of metals under dynamic loading (No. LADC-5561, CONF-331-4, 4013771).Google Scholar
McQueen, R. G., Fritz, J. N. (1982). Some techniques and results from high‐pressure shock‐wave experiments utilizing the radiation from shocked transparent materials. AIP Conference Proceedings, 78(1), 193207.Google Scholar
McQueen, R. G., Fritz, J. N., Marsh, S. P. (1963). On the equation of state of stishovite. Journal of Geophysical Research, 68(8), 23192322.CrossRefGoogle Scholar
Milathianaki, D., Boutet, S., Williams, G. J., et al. (2013). Femtosecond visualization of lattice dynamics in shock-compressed matter. Science, 342(6155), 220223.Google Scholar
Millot, M., Zhang, S., Fratanduono, D. E., et al. (2020). Recreating giants impacts in the laboratory: shock compression of Bridgmanite to 14 Mbar. Geophysical Research Letters, 47(4), e2019GL085476.CrossRefGoogle Scholar
Miozzi, F., Morard, G., Antonangeli, D., et al. (2018). Equation of state of SiC at extreme conditions: new insight into the interior of carbon-rich exoplanets. Journal of Geophysical Research: Planets, 123(9), 22952309.Google Scholar
Morard, G., Hernandez, J.-A., Guarguaglini, M., et al. (2020). In situ X-ray diffraction of silicate liquids and glasses under dynamic and static compression to megabar pressures. Proceedings of the National Academy of Sciences, 117(22), 1198111986.Google Scholar
Mosenfelder, J. L., Asimow, P. D., Ahrens, T. J. (2007). Thermodynamic properties of Mg2SiO4 liquid at ultra-high pressures from shock measurements to 200 GPa on forsterite and wadsleyite. Journal of Geophysical Research, 112(B6), B06208.Google Scholar
Mosenfelder, J. L., Asimow, P. D., Frost, D. J., Rubie, D. C., Ahrens, T. J. (2009). The MgSiO 3 system at high pressure: thermodynamic properties of perovskite, postperovskite, and melt from global inversion of shock and static compression data. Journal of Geophysical Research: Solid Earth, 114(B1). doi:10.1029/2008JB005900CrossRefGoogle Scholar
Mustard, J. F., Poulet, F., Gendrin, A., et al. (2005). Olivine and pyroxene diversity in the crust of Mars. Science, 307(5715), 15941597.CrossRefGoogle ScholarPubMed
Nagler, B., Arnold, B., Bouchard, G., et al. (2015). The matter in extreme conditions instrument at the Linac Coherent Light Source. Journal of Synchrotron Radiation, 22(3), 520525.CrossRefGoogle ScholarPubMed
Nettelmann, N., Wang, K., Fortney, J. J., et al. (2016). Uranus evolution models with simple thermal boundary layers. Icarus, 275, 107116.Google Scholar
Newman, M. G., Kraus, R. G., Akin, M. C., et al. (2018a). In situ observations of phase changes in shock compressed forsterite. Geophysical Research Letters, 45(16), 81298135.CrossRefGoogle Scholar
Newman, M. G., Kraus, R. G., Akin, M. C., et al. (2018b). In situ observations of phase changes in shock compressed forsterite. Geophysical Research Letters, 45(16), 81298135.Google Scholar
Panero, W. R., Benedetti, L. R., Jeanloz, R. (2003). Equation of state of stishovite and interpretation of SiO2 shock-compression data. Journal of Geophysical Research: Solid Earth, 108(B1). doi:10.1029/2001JB001663.Google Scholar
Philipp, H. T., Hromalik, M., Tate, M., Koerner, L., Gruner, S. M. (2011). Pixel array detector for X-ray free electron laser experiments. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 649(1), 6769.CrossRefGoogle Scholar
Ross, M. (1981). The ice layer in Uranus and Neptune – diamonds in the sky? Nature, 292(5822), 435436.Google Scholar
Schoelmerich, M. O., Tschentscher, T., Bhat, S., et al. (2020). Evidence of shock-compressed stishovite above 300 GPa. Scientific Reports, 10(1), 10197.Google Scholar
Schropp, A., Hoppe, R., Meier, V., et al. (2015). Imaging shock waves in diamond with both high temporal and spatial resolution at an XFEL. Scientific Reports, 5(1), 11089.Google Scholar
Seagle, C. T., Lopez, A. J. (2015). Pre-compressed targets for gas gun studies (No. SAND-2015-8118). Retrieved from www.osti.gov/servlets/purl/1504849/Google Scholar
Sekine, T., Kobayashi, T. (1997). Shock compression of 6H polytype SiC to 160 GPa. Physical Review B, 55(13), 80348037.Google Scholar
Sharp, T. G., DeCarli, P. S. (2006). Shock effects in meteorites, in Lauretta, D. S., McSween, H. Y. Jr., eds. Meteorites and the Early Solar System II. University of Arizona Press, pp. 653677.Google Scholar
Shen, Y., Jester, S. B., Qi, T., et al. (2016). Nanosecond homogeneous nucleation and crystal growth in shock-compressed SiO2. Nature Materials, 15(1), 6065.CrossRefGoogle ScholarPubMed
Soubiran, F., Militzer, B. (2018). Electrical conductivity and magnetic dynamos in magma oceans of Super-Earths. Nature Communications, 9(1), 3883.Google Scholar
Stewart, S. T., Ahrens, T. J. (2005). Shock properties of H2O ice. Journal of Geophysical Research: Planets, 110(E3). doi:10.1029/2004JE002305Google Scholar
Stixrude, L., de Koker, N., Sun, N., Mookherjee, M., Karki, B. B. (2009). Thermodynamics of silicate liquids in the deep Earth. Earth and Planetary Science Letters, 278(3–4), 226232.Google Scholar
Stöffler, D., Langenhorst, F. (1994). Shock metamorphism of quartz in nature and experiment: I. Basic observation and theory. Meteoritics, 29(2), 155181.Google Scholar
Strand, O. T., Goosman, D. R., Martinez, C., Whitworth, T. L., Kuhlow, W. W. (2006). Compact system for high-speed velocimetry using heterodyne techniques. Review of Scientific Instruments, 77(8), 083108.Google Scholar
Syono, Y., Goto, T., Sato, J., Takei, H. (1981). Shock compression measurements of single-crystal forsterite in the pressure range 15–93 GPa. Journal of Geophysical Research: Solid Earth, 86(B7), 61816186.Google Scholar
Tateyama, Y., Ogitsu, T., Kusakabe, K., Tsuneyuki, S. (1996). Constant-pressure first-principles studies on the transition states of the graphite-diamond transformation. Physical Review B, 54(21), 1499415001.Google Scholar
Thomas, C. W., Asimow, P. D. (2013). Direct shock compression experiments on premolten forsterite and progress toward a consistent high-pressure equation of state for CaO-MgO-Al2 O3 -SiO2 -FeO. Journal of Geophysical Research: Solid Earth, 118(11), 57385752.Google Scholar
Torchio, R., Occelli, F., Mathon, O., et al. (2016). Probing local and electronic structure in warm dense matter: single pulse synchrotron X-ray absorption spectroscopy on shocked Fe. Scientific Reports, 6(1), 26402.Google Scholar
Tracy, S. J., Smith, R. F., Wicks, J. K., et al. (2019). In situ observation of a phase transition in silicon carbide under shock compression using pulsed X-ray diffraction. Physical Review B, 99(21), 214106.Google Scholar
Tracy, S. J., Turneaure, S. J., Duffy, T. S. (2018). In situ X-ray diffraction of shock-compressed fused silica. Physical Review Letters, 120(13), 135702.Google Scholar
Tracy, S. J., Turneaure, S. J., Duffy, T. S. (2020). Structural response of α-quartz under plate-impact shock compression. Science Advances, 6(35), eabb3913.CrossRefGoogle ScholarPubMed
Trunin, R. F., Simakov, G. V., Podurets, M. A., Moiseyev, B. N., Popov, L. V. (1971). Dynamic compressibility of quartz and quartzite at high pressure. Izvestiya, Academy of Science, USSR, Physics of the Solid Earth, 1, 811.Google Scholar
Turneaure, S. J., Sharma, S. M., Volz, T. J., Winey, J. M., Gupta, Y. M. (2017). Transformation of shock-compressed graphite to hexagonal diamond in nanoseconds. Science Advances, 3(10), eaao3561.CrossRefGoogle ScholarPubMed
van Boekel, R., Min, M., Leinert, Ch., et al. (2004). The building blocks of planets within the ‘terrestrial’ region of protoplanetary disks. Nature, 432(7016), 479482.Google Scholar
van Thiel, M. (1977). Compendium of shock wave data. Lawrence Livermore Laboratory Report, UCRL-50108, pp. 408409.Google Scholar
Vogler, T. J., Reinhart, W. D., Chhabildas, L. C., Dandekar, D. P. (2006). Hugoniot and strength behavior of silicon carbide. Journal of Applied Physics, 99(2), 023512.Google Scholar
Volz, T. J., Turneaure, S. J., Sharma, S. M., Gupta, Y. M. (2020). Role of graphite crystal structure on the shock-induced formation of cubic and hexagonal diamond. Physical Review B, 101(22), 224109.Google Scholar
Wackerle, J. (1962). Shock‐wave compression of quartz. Journal of Applied Physics, 33(3), 922937.CrossRefGoogle Scholar
Wark, J. S., Whitlock, R. R., Hauer, A., Swain, J. E., Solone, P. J. (1987). Shock launching in silicon studied with use of pulsed x-ray diffraction. Physical Review B, 35(17), 93919394.CrossRefGoogle ScholarPubMed
Watt, J. P., Ahrens, T. J. (1983). Shock compression of single-crystal forsterite. Journal of Geophysical Research: Solid Earth, 88(B11), 95009512.Google Scholar
Wicks, J. K., Smith, R. F., Fratanduono, D. E., et al. (2018). Crystal structure and equation of state of Fe-Si alloys at super-Earth core conditions. Science Advances, 4(4), eaao5864.CrossRefGoogle ScholarPubMed
Williams, Q., Jeanloz, R., Bass, J., Svendsen, B., Ahrens, T. J. (1987). The melting curve of iron to 250 gigapascals: a constraint on the temperature at Earth’s center. Science, 236(4798), 181182.CrossRefGoogle ScholarPubMed
Yoshida, M., Onodera, A., Ueno, M., Takemura, K., Shimomura, O. (1993). Pressure-induced phase transition in SiC. Physical Review B, 48(14), 1058710590.Google Scholar
Zhang, Y., Sekine, T., He, H., Yu, Y., Liu, F., Zhang, M. (2014). Shock compression of Fe-Ni-Si system to 280 GPa: implications for the composition of the Earth’s outer core. Geophysical Research Letters, 41(13), 45544559.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×