Skip to main content Accessibility help
×
Hostname: page-component-7bb8b95d7b-5mhkq Total loading time: 0 Render date: 2024-09-13T10:30:34.136Z Has data issue: false hasContentIssue false

11 - Deformation and Plasticity of Materials under Extreme Conditions

Published online by Cambridge University Press:  03 August 2023

Yingwei Fei
Affiliation:
Carnegie Institution of Washington, Washington DC
Michael J. Walter
Affiliation:
Carnegie Institution of Washington, Washington DC
Get access

Summary

Understanding mechanical properties and their microscopic origins is fundamental for multiple fields in condensed matter research. They are controlled by defects, dislocations, diffusion, as well as microstructures, which are not trivial to study under extreme conditions. This chapter summarizes the last 25 years of advances in high-pressure devices, X-ray measurements, and data interpretation capabilities for addressing the deformation and plasticity of materials under extreme conditions, from experiments in large-volume presses or diamond anvil cells, texture and stress analysis in powder X-ray diffraction, multigrain crystallography, to self-consistent models of materials behavior. Examples of applications are then provided in the fields of geophysics and materials science along with perspectives for studies of plastic deformation under extreme conditions in the coming years.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amodeo, J., Carrez, P., Cordier, P. (2012). Modelling the effect of pressure on the critical shear stress of MgO single crystals. Philosophical Magazine, 92, 15231541.CrossRefGoogle Scholar
Amodeo, J., Dancette, S., Delannay, L. (2016). Atomistically-informed crystal plasticity in MgO polycrystals under pressure. International Journal of Plasticity, 82, 177191.CrossRefGoogle Scholar
Amodeo, J., Merkel, S., Tromas, C., et al. (2018). Dislocations and plastic deformation in MgO crystals: a review. Crystals, 8, 240.Google Scholar
Azuma, S., Nomura, R., Uesugi, K., et al. (2017). Anvil design for slip-free high pressure deformation experiments in a rotational diamond anvil cell. High Pressure Research, 38(1), 2331.Google Scholar
Badro, J., Fiquet, G., Guyot, F., et al. (2003). Iron partitioning in Earth’s mantle: toward a deep lower mantle discontinuity. Science, 300, 789791.Google Scholar
Blank, V., Konyaev, Y. S., Kuznetsov, A. I., Estrin, E. (1984). Diamond chamber for examining the effects of shear deformation on the structure and properties of solids at pressures up to 43 GPa. Instruments and Experimental Techniques, 27, 12401242.Google Scholar
Boioli, F., Carrez, P., Cordier, P., et al. (2017). Pure climb creep mechanism drives flow in Earth’s lower mantle. Science Advances, 3(3), e1601958.Google Scholar
Boulard, E., Denoual, C., Dewaele, A., King, A., Godec, Y. L., Guignot, N. (2020) Following the phase transitions of iron in 3D with X-ray tomography and diffraction under extreme conditions. Acta Materialia, 192, 3039Google Scholar
Burnley, P. (2013). The importance of stress percolation patterns in rocks and other polycrystalline materials. Nature Communications, 4(1), 2117.Google Scholar
Chen, B., Lutker, K., Raju, S. V., et al. (2012). Texture of nanocrystalline nickel: probing the lower size limit of dislocation activity. Science, 338(6113), 14481451.Google Scholar
Chen, H., He, D., Liu, J., et al. (2010a). High-pressure radial X-ray diffraction study of osmium to 58 GPa. European Physical Journal B, 73, 321326.Google Scholar
Chen, H., Peng, F., Mao, H.-K., et al. (2010b). Strength and elastic moduli of TiN from radial X-ray diffraction under nonhydrostatic compression up to 45 GPa. Journal of Applied Physics, 107(11), 113503.Google Scholar
Chen, S., Li, Y., Zhang, N., et al. (2019). Capture deformation twinning in Mg during shock compression with ultrafast synchrotron X-ray diffraction. Physical Review Letters, 123, 255501Google Scholar
Clausen, B., Tomé, C. N., Brown, D. W., Agnew, S. R. (2008). Reorientation and stress relaxation due to twinning: modeling and experimental characterization for Mg. Acta Materialia, 56, 24562468.Google Scholar
Conil, N., Kavner, A. (2006). Elastic behavior and strength of Al2O3 fiber/Al matrix composite and implications for equation of state measurements in the diamond anvil cell. Journal of Applied Physics, 100, 043517.Google Scholar
Cordier, P., Amodeo, J., Carrez, P. (2012). Modelling the rheology of MgO under Earth’s mantle pressure, temperature and strain rates. Nature, 481, 177180.CrossRefGoogle ScholarPubMed
Cordier, P., Goryaeva, A. (eds.) (2018). Multiscale modeling of the mantle rheology. Lille, France. https://lilloa.univ-lille.fr/handle/20.500.12210/5756.Google Scholar
Dewaele, A., Loubeyre, P., Occelli, F., Marie, O., Mezouar, M. (2018). Toroidal diamond anvil cell for detailed measurements under extreme static pressures. Nature Communications, 9, 2913.CrossRefGoogle ScholarPubMed
Dobson, D. P., Miyajima, N., Nestola, F., et al. (2013). Strong inheritance of texture between perovskite and post-perovskite in the D” layer. Nature Geoscience, 6, 575578.CrossRefGoogle Scholar
Dong, H., He, D., Duffy, T. S., Zhao, Y. (2009). Elastic moduli and strength of nanocrystalline cubic BC2N from X-ray diffraction under nonhydrostatic compression. Physical Review B, 79, 014105.Google Scholar
Duffy, T. S., Shen, G., Heinz, D. L., et al. (1999a). Lattice strains in gold and rhenium under non-hydrostatic compression to 37 GPa. Physical Review B, 60, 1506315073.CrossRefGoogle Scholar
Duffy, T. S., Shen, G., Shu, J., Mao, H. K., Hemley, R. J., Singh, A. K. (1999b). Elasticity, shear strength and equation of state of molybdenum and gold from X-ray diffraction under nonhydrostatic compression to 24 GPa. Journal of Applied Physics, 86, 67296736.Google Scholar
Farla, R., Amulele, G., Girard, J., Miyajima, N., Karato, S.-I. (2015). High-pressure and high-temperature deformation experiments on polycrystalline wadsleyite using the rotational drickamer apparatus. Physics and Chemistry of Minerals, 42, 541558.Google Scholar
Ferrand, T. P., Hilairet, N., Incel, S., et al. (2017). Dehydration-driven stress transfer triggers intermediate-depth earthquakes. Nature Communications, 8, 15247.CrossRefGoogle ScholarPubMed
Girard, J., Amulele, G., Farla, R., Mohiuddin, A., Karato, S.-I. (2016). Shear deformation of bridgmanite and magnesiowüstite aggregates at lower mantle conditions. Science, 351, 144147.CrossRefGoogle ScholarPubMed
Girard, J., Chen, J., Raterron, P. (2012). Deformation of periclase single crystals at high pressure and temperature: quantification of the effect of pressure on slip-system activities. Journal of Applied Physics, 111, 112607.Google Scholar
Girard, J., Silber, R. E., Mohiuddin, A., Chen, H., Karato, S. (2020) Development of a stress sensor for in-situ high-pressure deformation experiments using radial X-ray diffraction. Minerals, 10, 166.CrossRefGoogle Scholar
Gleason, A. E., Mao, W. L. (2013). Strength of iron at core pressures and evidence for a weak Earth’s inner core. Nature Geoscience, 6, 571574.CrossRefGoogle Scholar
He, D., Duffy, T. S. (2006). X-ray diffraction study of the static strength of tungsten to 69 GPa. Physical Review B, 73(13) 134106.CrossRefGoogle Scholar
He, D., Shieh, S., Duffy, T. (2004). Strength and equation of state of boron suboxide from radial X-ray diffraction in a diamond cell under nonhydrostatic compression. Physical Review B, 70, 184121.Google Scholar
Heidelbach, F., Stretton, I., Langenhorst, F., Mackwell, S. (2003). Fabric evolution during high shear strain deformation of magnesiowüstite (Mg0.8Fe0.2 O). Journal of Geophysical Research, 108, 2154.Google Scholar
Hemley, R. J., Mao, H. K., Shen, G., Badro, , et al. (1997). X-ray imaging of stress and strain of diamond, iron & tungsten at megabar pressures. Science, 276, 12421245.Google Scholar
Hruszkewycz, S. O., Allain, M., Holt, M. V., et al. (2016). High-resolution three-dimensional structural microscopy by single-angle Bragg ptychography. Nature Materials, 16(2), 244251.CrossRefGoogle ScholarPubMed
Hunt, S. A., Dobson, D. P. (2017). Note: modified anvil design for improved reliability in DT-cup experiments. Review of Scientific Instruments, 88, 126106.Google Scholar
Hunt, S. A., Weidner, D. J., McCormack, R. J., et al. (2014). Deformation T-cup: a new multi-anvil apparatus for controlled strain-rate deformation experiments at pressures above 18 GPa. Review of Scientific Instruments, 85, 085103.Google Scholar
Ice, G. E., Dera, P., Liu, W., Mao, H.-K. (2005). Adapting polychromatic X-ray microdiffraction techniques to high-pressure research: energy scan approach. Journal of Synchrotron Radiation, 12, 608617.Google Scholar
Immoor, J., Marquardt, H., Miyagi, L., et al. (2018). Evidence for {100}<011> slip in ferropericlase in Earth’s lower mantle from high-pressure/high-temperature experiments. Earth and Planetary Science Letters, 489, 251257.CrossRefGoogle Scholar
Immoor, J., Marquardt, H., Miyagi, L., et al. (2020). An improved setup for radial diffraction experiments at high pressures and high temperatures in a resistive graphite-heated diamond anvil cell. Review of Scientific Instruments, 91(4), 045121.Google Scholar
Jeanloz, R., Wenk, H.-R. (1988). Convection and anisotropy of the inner core. Geophysical Research Letters, 15, 7275.Google Scholar
Kaercher, P., Miyagi, L., Kanitpanyacharoen, W., et al. (2016). Two-phase deformation of lower mantle mineral analogs. Earth and Planetary Science Letters, 456, 134145.CrossRefGoogle Scholar
Karato, S.-I., Forte, A., Liebermann, R., Masters, G., Stixrude, L., eds. (2000). Earth’s Deep Interior: Mineral Physics and Tomography from the Atomic to the Global Scale. Geophysical Monograph Series. American Geophysical Union.Google Scholar
Kasemer, M., Zepeda-Alarcon, E., Carson, R., Dawson, P., Wenk, H.-R. (2020). Deformation heterogeneity and intragrain lattice misorientation in high strength contrast, dual-phase bridgmanite/periclase. Acta Materialia, 189, 284298.CrossRefGoogle Scholar
Kavner, A., Duffy, T. S. (2003). Elasticity and rheology of platinum under high pressure and nonhydrostatic stress. Physical Review B, 68, 144101.Google Scholar
Kawazoe, T., Karato, S., Ando, J., Jing, Z., Otsuka, K., Hustoft, J. W. (2010). Shear deformation of polycrystalline wadsleyite up to 2100 K at 14–17 GPa using a rotational drickamer apparatus (RDA). Journal of Geophysical Research, 115, B08208.CrossRefGoogle Scholar
Kawazoe, T., Ohuchi, T., Nishihara, Y., Nishiyama, N., Fujino, K., Irifune, T. (2013). Seismic anisotropy in the mantle transition zone induced by shear deformation of wadsleyite. Physics of Earth and Planetary Interiors, 216, 9198.Google Scholar
Kerber, M. B., Zehetbauer, M. J., Schafler, E., Spieckermann, F. C., Bernstorff, S., Ungar, T. (2011). X-ray line profile analysis – an ideal tool to quantify structural parameters of nanomaterials. JOM, 63, 6170.CrossRefGoogle Scholar
Kiefer, B., Shieh, S. R., Duffy, T. S., Sekine, T. (2005). Strength, elasticity, and equation of state of the nanocrystalline cubic silicon nitride γ-Si3N4 to 68 GPa. Physical Review B, 72, 014102.Google Scholar
Kinsland, G. L., Bassett, W. A. (1977). Strength of MgO and NaCl polycrystals to confining pressures of 250 kbar at 25 C. Journal of Applied Physics, 48, 978984.Google Scholar
Kocks, U. F., Tomé, C. N., Wenk, H.-R. (1998). Texture and Anisotropy: Preferred Orientations and their Effects on Material Properties. Cambridge University Press.Google Scholar
Korte, S., Clegg, W. (2011). Discussion of the dependence of the effect of size on the yield stress in hard materials studied by microcompression of MgO. Philosophical Magazine, 91(7-9), 11501162.Google Scholar
Kumar, M. A., Hilairet, N., McCabe, R., Yu, T., Wang, Y., Beyerlein, I., Tomé, C. (2020). Role of twinning on the omega-phase transformation and stability in zirconium. Acta Materialia, 185, 211217.Google Scholar
Langrand, C., Hilairet, N., Nisr, C., et al. (2017). Reliability of multigrain indexing for orthorhombic polycrystals above 1mbar: application to MgSiO3 post-perovskite. Journal of Applied Crystallography, 50, 120130.CrossRefGoogle Scholar
Lebensohn, R. A., Tomé, C. N. (1994). A self-consistent visco-plastic model: calculation of rolling textures of anisotropic materials. Materials Science and Engineering A, 175, 7182.CrossRefGoogle Scholar
Levitas, V. I. (2004). High-pressure mechanochemistry: conceptual multiscale theory and interpretation of experiments. Physical Review B, 70, 184118.CrossRefGoogle Scholar
Li, L., Weidner, D. J., Chen, J., Vaughan, M. T., Davis, M., Durham, W. B. (2004). X-ray strain analysis at high pressure: effect of plastic deformation in MgO. Journal of Applied Physics, 95, 83578365.Google Scholar
Liermann, H.-P., Merkel, S., Miyagi, L., et al. (2009). New experimental method for in situ determination of material textures at simultaneous high-pressure and temperature by means of radial diffraction in the diamond anvil cell. Review of Scientific Instruments, 80, 104501.Google Scholar
Liermann, H. P., Singh, A. K., Somayazulu, M., Saxena, S. K. (2007). Compression behavior of NbC under nonhydrostatic conditions to 57 GPa. International Journal of Refractory Metals and Hard Materials, 25, 386391.CrossRefGoogle Scholar
Lin, F., Couper, S., Jugle, M., Miyagi, L. (2019). Competing deformation mechanisms in periclase: implications for lower mantle anisotropy. Minerals, 9, 650.CrossRefGoogle Scholar
Lin, F., Hilairet, N., Raterron, P., et al. (2017). Elasto-viscoplastic self consistent modeling of the ambient temperature plastic behavior of periclase deformed up to 5.4 GPa. Journal of Applied Physics, 122, 205902.Google Scholar
Lin, J. F., Wenk, H.-R., Voltolini, M., Speziale, S., Shu, J., Duffy, T. S. (2009). Deformation of lower-mantle ferropericlase (Mg,Fe)O across the electronic spin transition. Physics of Chemistry and Minerals, 36, 585592.CrossRefGoogle Scholar
Lincot, A., Cardin, P., Deguen, R., Merkel, S. (2016). Multiscale model of global inner-core anisotropy induced by hcp alloy plasticity. Geophysical Research Letters, 43, 10841091.Google Scholar
Long, M. D., Xiao, X., Jiang, Z., Evansa, B., Karato, S. (2006). Lattice preferred orientation in deformed polycrystalline (Mg,Fe)O and implications for seismic anisotropy in D”. Physics of the Earth and Planetary Interiors, 156, 7588.Google Scholar
Ludwig, W., King, A., Reischig, P., et al. (2009). New opportunities for 3D materials science of polycrystalline materials at the micrometre lengthscale by combined use of X-ray diffraction and X-ray imaging. Materials Science and Engineering A, 524, 6976.Google Scholar
Lutterotti, L., Matthies, S., Wenk, H.-R. (1999). MAUD: a friendly Java program for materials analysis using diffraction. IUCr: Newsletter of the CPD, 21, 1415.Google Scholar
Ma, Y., Selvi, E., Levitas, V. I., Hashemi, J. (2006). Effect of shear strain on the α−ε phase transition of iron: a new approach in the rotational diamond anvil cell. Journal of Physics: Condensed Matter, 18, S1075S1082.Google Scholar
Mainprice, D., Barruol, G., Ismaïl, W. B. (2000). The seismic anisotropy of the earth’s mantle: from single crystal to polycrystal, in Karato, S., Forte, A. M., Liebermann, R. C., Master, G., Stixrude, L., eds. Earth’s Deep Interior. Mineral Physics and Tomography. From the Atomic to the Global Scale, American Geophysical Union, pp. 237264.Google Scholar
Mandolini, T., Hilairet, N., Chantel, J., et al. (2020). Microstructural evolution in deforming olivine-serpentine aggregates at subduction zones conditions using in-situ X-ray tomography. AGU Fall Meeting, MR028–06Google Scholar
Mao, H. K., Shu, J., Shen, G., Hemley, R. J., Li, B., Singh, A. K. (1998). Elasticity and rheology of iron above 220 GPa and the nature of the earth’s inner core. Nature, 396, 741743. Correction (1999), Nature, 399, 280.Google Scholar
Marquardt, H., Miyagi, L. (2015). Slab stagnation in the shallow lower mantle linked to an increase in mantle viscosity. Nature Geoscience, 8, 311314.Google Scholar
Meade, C., Jeanloz, R. (1988) Yield strength of MgO to 40 GPa. Journal of Geophysical Research, 93, 32613269.Google Scholar
Mei, S., Kohlstedt, D. L., Durham, W. B., Wang, L. (2008). Experimental investigation of the creep behavior of MgO at high pressures. Physics of the Earth and Planetary Interiors, 170, 170175.Google Scholar
Méndez, A. S. J., Marquardt, H., Husband, R. J., et al. (2020). A resistively-heated dynamic diamond anvil cell (RHdDAC) for fast compression X-ray diffraction experiments at high temperatures. Review of Scientific Instruments, 91, 073906CrossRefGoogle ScholarPubMed
Merkel, S., Gruson, M., Wang, Y., Nishiyama, N. & Tomé, C. N. (2012). Texture and elastic strains in hcp-iron plastically deformed up to 17.5 GPa and 600 K: experiment and model. Modelling and Simululation in Materials Science and Engineering, 20, 024005.Google Scholar
Merkel, S., Hilairet, N. (2015). Multifit/polydefix: a framework for the analysis of polycrystal deformation using X-rays. Journal of Applied Crystallography, 48, 13071313.Google Scholar
Merkel, S., McNamara, A. K., Kubo, A., et al. (2007). Deformation of (Mg,Fe)SiO3 post-perovskite and D” anisotropy. Science, 316, 17291732.Google Scholar
Merkel, S., Miyajima, N., Antonangeli, D., Fiquet, G., Yagi, T. (2006). Lattice preferred orientation and stress in polycrystalline hcp–Co plastically deformed under high pressure. Journal of Applied Physics, 100, 023510.Google Scholar
Merkel, S., Tomé, C. N., Wenk, H.-R. (2009). A modeling analysis of the influence of plasticity on high pressure deformation of hcp–Co. Physical Review B, 79, 064110.Google Scholar
Merkel, S., Wenk, H.-R., Gillet, P., Mao, H. K., Hemley, R. J. (2004). Deformation of polycrystalline iron up to 30 GPa and 1000 K. Physics of the Earth and Planetary Interiors, 145, 239251.Google Scholar
Merkel, S., Wenk, H.-R., Shu, J., et al. (2002). Deformation of polycrystalline MgO at pressures of the lower mantle. Journal of Geophysical Research, 107, 2271.Google Scholar
Merkel, S., Yagi, T. (2005). X-ray transparent gasket for diamond anvil cell high pressure experiments. Review of Scientific Instruments, 76, 046109.CrossRefGoogle Scholar
Miyagi, L., Amulele, G., Otsuka, K., Du, Z., Farla, R., Karato, S. (2014). Plastic anisotropy and slip systems in ringwoodite deformed to high shear strain in the rotational Drickamer apparatus. Physics of the Earth and Planetary Interiors, 228, 244253.Google Scholar
Miyagi, L., Kanitpanyacharoen, W., Kaercher, P., Lee, K. K. M., Wenk, H.-R. (2010). Slip systems in MgSiO3 post-perovskite: Implications for D” anisotropy. Science, 329, 16391641.Google Scholar
Miyagi, L., Kanitpanyacharoen, W., Raju, S. V., et al. (2013). Combined resistive and laser heating technique for in situ radial X-ray diffraction in the diamond anvil cell at high pressure and temperature. Review of Scientific Instruments, 84, 025118Google Scholar
Miyagi, L., Kunz, M., Knight, J., Nasiatka, J., Voltolini, M., Wenk, H.-R. (2008). In situ phase transformation and deformation of iron at high pressure and temperature. Journal of Applied Physics, 104, 103510.Google Scholar
Miyagi, L., Wenk, H.-R. (2016). Texture development and slip systems in bridgmanite and bridgmanite + ferropericlase aggregates. Physics and Chemistry of Minerals, 43(8), 597613.Google Scholar
Mohiuddin, A., Karato, S., Girard, J. (2020). Slab weakening during the olivine to ringwoodite transition in the mantle. Nature Geoscience, 13, 170174Google Scholar
Muránsky, O., Barnett, M., Carr, D., Vogel, S., Oliver, E. (2010). Investigation of deformation twinning in a fine-grained and coarse-grained ZM20 mg alloy: combined in situ neutron diffraction and acoustic emission. Acta Materialia, 58(5), 15031517.Google Scholar
Naik, S. N., Walley, S. M. (2020). The Hall–Petch and inverse Hall–Petch relations and the hardness of nanocrystalline metals. Journal of Materials Science, 55(7), 26612681.CrossRefGoogle Scholar
Neil, C. J., Wollmershauser, J. A., Clausen, B., Tomé, C. N., Agnew, S. R. (2010). Modeling lattice strain evolution at finite strains and experimental verification for copper and stainless steel using in situ neutron diffraction. International Journal of Plasticity, 26, 17721791Google Scholar
Nishihara, Y., Ohuchi, T., Kawazoe, T., et al. (2018). Deformation-induced crystallographic-preferred orientation of hcp-iron: an experimental study using a deformation-DIA apparatus. Earth and Planetary Science Letters, 490, 151160.Google Scholar
Nishihara, Y., Tinker, D., Kawazoe, T., et al. (2008). Plastic deformation of wadsleyite and olivine at high-pressure and high-temperature using a rotational Drickamer apparatus (RDA). Physics of the Earth and Planetary Interiors, 170, 156169.Google Scholar
Nisr, C., Ribárik, G., Ungár, T., Vaughan, G. B., Merkel, S. (2014). Three-dimensional X-ray diffraction in the diamond anvil cell: application to stishovite. High Pressure Research, 34, 158166.Google Scholar
Nisr, C., Ribárik, G., Ungár, T., Vaughan, G. B. M., Cordier, P., Merkel, S. (2012). High resolution three-dimensional X-ray diffraction study of dislocations in grains of MgGeO3 post-perovskite at 90 GPa. Journal of Geophysical Research, 117, B03201.Google Scholar
Nomura, R., Azuma, S., Uesugi, K., et al. (2017). High-pressure rotational deformation apparatus to 135 GPa. Review of Scientific Instruments, 88, 044501.Google Scholar
Noyan, I., Cohen, J. (1987). Residual Stress: Measurements by Diffraction and Interpretation. Springer-Verlag.Google Scholar
Nzogang, B. C., Bouquerel, J., Cordier, P., Mussi, A., Girard, J., Karato, S. (2018). Characterization by scanning precession electron diffraction of an aggregate of bridgmanite and ferropericlase deformed at HP-HT. Geochemistry, Geophysics, Geosystems, 19(3), 582594.Google Scholar
Oddershede, J., Schmidt, S., Poulsen, H. F., Sorensen, H. O., Wright, J., Reimers, W. (2010). Determining grain resolved stresses in polycrystalline materials using three-dimensional X-ray diffraction. Journal of Applied Crystallography., 43, 539549.Google Scholar
Paterson, M. S., Weaver, C. W. (1970). Deformation of polycrystalline MgO under pressure. Journal of the American Ceramic Society, 53, 463471.Google Scholar
Philippe, J., Godec, Y. L., Mezouar, M., et al. (2016). Rotating tomography Paris–Edinburgh cell: a novel portable press for micro-tomographic 4-D imaging at extreme pressure/temperature/stress conditions. High Pressure Research, 36, 512532.Google Scholar
Poulsen, H. F. (2004). Three-Dimensional X-Ray Diffraction Microscopy: Mapping Polycrystals and their Dynamics, vol. 205 of Springer Tracts in Modern Physics. Springer.Google Scholar
Raterron, P., Merkel, S. (2009). In situ rheological measurements at extreme pressure and temperature using synchrotron X-ray diffraction and radiography. Journal of Synchrotron Radiation, 16, 748756.Google Scholar
Raterron, P., Merkel, S., Holyoke, C. W. III (2013). Axial temperature gradient and stress measurements in the deformation-DIA cell using alumina pistons. Review of Scientific Instruments, 84, 043906.Google Scholar
Reali, R., Jackson, J., Orman, J. V., Bower, D., Carrez, P., Cordier, P. (2019). Modeling viscosity of (Mg,Fe)O at lowermost mantle conditions. Physics of the Earth and Planetary Interiors, 287, 6575.CrossRefGoogle Scholar
Reynard, B., Caracas, R., Cardon, H., Montagnac, G., Merkel, S. (2019). High-pressure yield strength of rocksalt structures using quartz raman piezometry. Comptes Rendus Geoscience., 351(2–3), 7179.Google Scholar
Ribárik, G., Jóni, B., Ungár, T. (2019). Global optimum of microstructure parameters in the CMWP line-profile-analysis method by combining Marquardt–Levenberg and Monte-Carlo procedures. Journal of Materials Science and Technology, 35, 15081514Google Scholar
Rosa, A. D., Hilairet, N., Ghosh, S., Perrillat, J.-P., Garbarino, G., Merkel, S. (2016). Evolution of grain sizes and orientations during phase transitions in hydrous Mg2SiO4. Journal of Geophysical Research, 121, 71617176.Google Scholar
Schmidt, S. (2014). Grainspotter: a fast and robust polycrystalline indexing algorithm. Journal of Applied Crystallography, 47, 276284.Google Scholar
Schropp, A., Hoppe, R., Meier, V., et al. (2015). Imaging shock waves in diamond with both high temporal and spatial resolution at an XFEL. Scientific Reports, 5, 11089.Google Scholar
Schubnel, A., Brunet, F., Hilairet, N., Gasc, J., Wang, Y., Green II, H. W. (2013). Deep-focus earthquake analogs recorded at high pressure and temperature in the laboratory. Science, 341, 13771380.Google Scholar
Sedmák, P., Pilch, J., Heller, L., et al. (2016). Grain-resolved analysis of localized deformation in nickel–titanium wire under tensile load. 353, 559562.Google Scholar
Simons, H., King, A., Ludwig, W., et al. (2015). Dark-field X-ray microscopy for multiscale structural characterization. Nature Communications, 6(1), 6098.Google Scholar
Singh, A. K., Balasingh, C., Mao, H. K., Hemley, R. J., Shu, J. (1998). Analysis of lattice strains measured under non-hydrostatic pressure. Journal of Applied Physics, 83, 75677575.Google Scholar
Singh, A. K., Liermann, H., Akahama, Y., Saxena, S. K., Menéndez-Proupin, E. (2008). Strength of polycrystalline coarse-grained platinum to 330 GPa and of nanocrystalline platinum to 70 GPa from high-pressure X-ray diffraction data. Journal of Applied Physics, 103, 063524.Google Scholar
Singh, A. K., Liermann, H.-P., Akahama, Y., Kawamura, H. (2007). Aluminum as a pressure-transmitting medium cum pressure standard for X-ray diffraction experiments to 200 GPa with diamond anvil cells. Journal of Applied Physics, 101, 123526.Google Scholar
Stretton, I., Heidelbach, F., Mackwell, S., Langenhorst, F. (2001). Dislocation creep of magnesiowüstite (Mg0.8Fe0.2O). Earth and Planetary Science Letters, 194, 229240.Google Scholar
Tateno, S., Hirose, K., Ohishi, Y., Tatsumi, Y. (2010). The structure of iron in Earth’s inner core. Science, 330, 359361.Google Scholar
Todd, K. A., Watson, H. C., Yu, T., Wang, Y. (2016). The effects of shear deformation on planetesimal core segregation: results from in-situ X-ray micro-tomography. American Mineralogist, 101, 19962004.Google Scholar
Tommaseo, C. E., Devine, J., Merkel, S., Speziale, S., Wenk, H.-R. (2006). Texture development and elastic stresses in magnesiowüstite at high pressure. Physics and Chemistry of Minerals, 33, 8497.CrossRefGoogle Scholar
Tromas, C., Girard, J. C., Woirgard, J. (2000). Study by atomic force microscopy of elementary deformation mechanisms involved in low load indentations in MgO crystals. Philosophy Magazine A, 80, 23252335.Google Scholar
Tsujino, N., Nishihara, Y., Yamazaki, D., Seto, Y., Higo, Y., Takahashi, E. (2016). Mantle dynamics inferred from the crystallographic preferred orientation of bridgmanite. Nature, 539, 8184.Google Scholar
Turner, P. A., Tomé, C. N. (1994). A study of residual stresses in zircaloy-2 with rod texture. Acta Metallurgica et Materialia, 42, 41434153.Google Scholar
Uchida, T., Wang, Y., Rivers, M. L., Sutton, S. R. (2004). Yield strength and strain hardening of MgO up to 8 GPa measured in the deformation-DIA with monochromatic X-ray diffraction. Earth and Planetary Science Letters, 226, 117126.Google Scholar
Urakawa, S., Terasaki, H. P., Funakoshi, K., Uesugi, K., Yamamoto, S. (2010). Development of high pressure apparatus for X-ray microtomography at SPring-8. Journal of Physics: Conference Series, 215, 012026.Google Scholar
Vinogradov, A., Vasilev, E., Seleznev, M., Máthis, K., Orlov, D., Merson, D. (2016). On the limits of acoustic emission detectability for twinning. Materials Letters, 183, 417419.Google Scholar
Wallis, D., Hansen, L. N., Britton, T. B., Wilkinson, A. J. (2017). Dislocation interactions in olivine revealed by HR-EBSD. Journal of Geophysical Research. Solid Earth, 122, 76597678.Google Scholar
Wang, H., Wu, P. D., Tomé, C. N., Huang, Y. (2010). A finite strain elastic-viscoplastic self-consistent model for polycrystalline materials. Journal of the Mechanics and Physics of Solids, 58, 594612.Google Scholar
Wang, Y., Duhram, W. B., Getting, I. C., Weidner, D. J. (2003). The deformation-DIA: a new apparatus for high temperature triaxial deformation to pressures up to 15 GPa. Review of Scientific Instruments, 74, 30023011.CrossRefGoogle Scholar
Wang, Y. Lesher, C., Fiquet, G., et al. (2011). In situ high-pressure and high-temperature X-ray microtomographic imaging during large deformation: a new technique for studying mechanical behavior of multiphase composites. Geosphere, 7, 4053.Google Scholar
Wang, Y., Hilairet, N., Nishiyama, N., et al. (2013). High-pressure, high-temperature deformation of CaGeO3 (perovskite)±MgO aggregates: Implications for multiphase rheology of the lower mantle. Geochemistry, Geophysics, Geosystems, 14, 33893408.Google Scholar
Wang, Y., Shen, G. (2014). High-pressure experimental studies on geo-liquids using synchrotron radiation at the Advanced Photon Source. Journal of Earth Science, 25, 939-958.CrossRefGoogle Scholar
Wang, Y., Zhu, L., Shi, F., et al. (2017). A laboratory nanoseismological study on deep-focus earthquake micromechanics. Science Advances, 3(7), e1601896.Google Scholar
Wehrenberg, C. E., McGonegle, D., Bolme, C., et al. (2017). In situ X-ray diffraction measurement of shock-wave-driven twinning and lattice dynamics. Nature, 550, 496499.Google Scholar
Weinberger, M. B., Tolbert, S. H., Kavner, A. (2008). Osmium metal studied under high pressure and nonhydrostatic stress. Physical Review Letters, 100, 045506.Google Scholar
Weiss, J., Lahaie, F., Grasso, J. R. (2000). Statistical analysis of dislocation dynamics during viscoplastic deformation from acoustic emission. Journal of Geophysical Research, 105, 433442.Google Scholar
Wenk, H.-R., Kaercher, P., Kanitpanyacharoen, W., Zepeda-Alarcon, E., Wang, Y. (2013). Orientation relations during the α-ω phase transition of zirconium: in situ texture observations at high pressure and temperature. Physical Review Letters, 111, 195701.Google Scholar
Wenk, H.-R., Lonardelli, I., Merkel, S., et al. (2006). Deformation textures produced in diamond anvil experiments, analysed in radial diffraction geometry. Journal of Physics: Condensed Matter, 18, S933S947.Google Scholar
Wenk, H.-R., Lutterotti, L., Kaercher, P., Kanitpanyacharoen, W., Miyagi, L.,Vasin, R. (2014). Rietveld texture analysis from synchrotron diffraction images. ii. Complex multiphase materials and diamond anvil cell experiments. Powder Diffraction, 29, 220232.Google Scholar
Wenk, H.-R., Matthies, S., Donovan, J., Chateigner, D. (1998). Beartex: a Windows-based program system for quantitative texture analysis. Journal of Applied Crystallography, 31, 262269.Google Scholar
Wenk, H.-R., Matthies, S., Hemley, R. J., Mao, H. K., Shu, J. (2000). The plastic deformation of iron at pressures of the Earth’s inner core. Nature, 405, 10441047.Google Scholar
Xiong, L., Li, B., Tang, Y., et al. (2018). Radial X-ray diffraction study of the static strength and texture of tungsten to 96 GPa. Solid State Communications, 269, 8389.CrossRefGoogle Scholar
Xiong, L., Liu, J., Bai, L., et al. (2013). Radial X-ray diffraction of tungsten tetraboride to 86 GPa under nonhydrostatic compression. Journal of Applied Physics, 113, 033507.Google Scholar
Xiong, L., Liu, J., Bai, L., Li, X., Lin, C., Lin, J.-F. (2014). Strength and structural phase transitions of gadolinium at high pressure from radial X-ray diffraction. Journal of Applied Physics, 116, 243503.Google Scholar
Xu, Y., Nishihara, Y., Karato, S. (2005). Development of a rotational drickamer apparatus for large-strain deformation experiments at deep Earth conditions, in Chen, J., Wang, Y., Duffy, T. S., Shen, G., Dobrzhinetskaya, L. F., eds., Advances in High-Pressure Technology for Geophysical Applications, Elsevier, pp. 167182.Google Scholar
Yamazaki, D., Karato, S. (2001). High-pressure rotational deformation apparatus to 15 GPa. Review of Scientific Instruments, 72, 42074211.Google Scholar
Yamazaki, D., Karato, S. (2002). Fabric development in (Mg,Fe)O during large strain, shear deformation: implications for seismic anisotropy in Earth’s lower mantle. Physics of the Earth and Planetary Interiors, 131, 251267.Google Scholar
Yang, W., Huang, X., Harder, R., Clark, J. N., Robinson, I. K., Mao, H. K. (2013). Coherent diffraction imaging of nanoscale strain evolution in a single crystal under high pressure. Nature Communications, 4(1), 1680.Google Scholar
Yau, A., Cha, W., Kanan, M. W., Stephenson, G. B., Ulvestad, A. (2017). Bragg coherent diffractive imaging of single-grain defect dynamics in polycrystalline films. Science, 356(6339), 739742.Google Scholar
Yu, T., Wang, Y., Rivers, M. L. (2016). Imaging in 3D under pressure: a decade of high-pressure X-ray microtomography development at GSECARS. Progress in Earth and Planetary Science, 3, 17Google Scholar
Yu, X., Zhang, R., Weldon, D., et al. (2015). High pressure phase-transformation induced texture evolution and strengthening in zirconium metal: experiment and modeling. Scientific Reports, 5, 12552.Google Scholar
Yue, B., Hong, F., Merkel, S., et al. (2016). Deformation behavior across the zircon–scheelite phase transition. Physical Review Letters, 117, 135701.Google Scholar
Zarechnyy, O. M., Levitas, V. I., Ma, Y. (2012). Coupled plastic flow and phase transformation under compression of materials in a diamond anvil cell: effects of transformation kinetics and yield strength. Journal of Applied Physics, 111, 023518.Google Scholar
Zhang, L., Meng, Y., Yang, W., et al. (2014). Disproportionation of (Mg,Fe)SiO3 perovskite in Earth’s deep lower mantle. Science, 344, 877882.Google Scholar
Zhou, X., Feng, Z., Zhu, L., et al. (2020). High-pressure strengthening in ultrafine-grained metals. Nature, 579(7797), 6772.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×