Skip to main content Accessibility help
×
Home
Hostname: page-component-59b7f5684b-fmrbl Total loading time: 0.618 Render date: 2022-10-04T17:58:22.854Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

27 - History and theory of flash-lag: past, present, and future

from Part IV - Spatial phenomena: forward shift effects

Published online by Cambridge University Press:  05 October 2010

Romi Nijhawan
Affiliation:
University of Sussex
Beena Khurana
Affiliation:
University of Sussex
Get access

Summary

Summary

Some basic versions of the flash-lag effect have been known since the early decades of the twentieth century. Intriguingly, neural delays were as central in the early attempts at explaining the effect, as they are in the more recent investigations into its cause. For a changing visual stimulus a delayed registration of the stimulus by the central nervous system (CNS) constitutes an “error” between the instantaneously registered state of the stimulus on the one hand and its physical state on the other. Therefore, for animals to acquire food, mate, and avoid predators, compensation of sensory delays is essential. One may ask which component(s) of the CNS compensate for visual delays. Logically compensation could be carried out either by visual or motor mechanisms, or both. The motion extrapolation account of the flash-lag effect challenged the dominant view that only motor mechanisms compensate for visual delays, suggesting instead that visual mechanisms also contribute. Controversy fueled by empirical observations with unpredictable motion, in particular the flash-initiated and flashterminated conditions of the flash-lag effect, soon followed; prima facie motion extrapolation could not accommodate these results. Armed with these challenging findings (primarily) several alternative accounts of flash-lag were proposed. In light of new developments, this chapter evaluates the motion extrapolation, motion sampling, motion integration, postdiction, differential latency, and attentional cuing accounts of flash-lag.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alais, D., & Burr, D. (2003). The “flash-lag” effect occurs in audition and cross-modally. Current Biology 13(1): 59–63.CrossRefGoogle ScholarPubMed
Bachmann, T., Luiga, I., Põder, E., & Kalev, K. (2003). Perceptual acceleration of objects in stream: evidence from flash-lag displays. Conscious Cogn 12: 279–297.CrossRefGoogle ScholarPubMed
Baldo, M. V. C., Kihara, A. H., Namba, J., & Klein, S. A. (2002). Evidence for an attentional component of the perceptual misalignment between moving and flashing stimuli. Perception 31: 17–30.CrossRefGoogle ScholarPubMed
Baldo, M. V., & Klein, S. A. (1995). Extrapolation or attention shift? Nature 378: 565–566.CrossRefGoogle ScholarPubMed
Berry, M. J., Brivanlou, I. H., Jordan, T. A., & Meister, M. (1999). Anticipation of moving stimuli by the retina. Nature 398(6725): 334–338.CrossRefGoogle ScholarPubMed
Brenner, E., & Smeets, J. B. J. (2000). Motion extrapolation is not responsible for the flash-lag effect. Vision Res 40: 1645–1648.CrossRefGoogle Scholar
Burr, D. C., & Morgan, M. J. (1997). Motion deblurring in human vision. Proc R Soc Lond B Biol Sci 264(1380): 431–436.CrossRefGoogle ScholarPubMed
Cai, R., & Schlag, J. (2001). A new form of illusory conjunction between color and shape [Abstract]. J Vis 1(3): 127. Retrieved from doi:10.1167/1.3.127CrossRefGoogle Scholar
Cavanagh, P. (1997). Predicting the present. Nature 386(6620): 19, 21.CrossRefGoogle ScholarPubMed
De Valois, R. L., & De Valois, K. K. (1991). Vernier acuity with stationary moving gabors. Vision Res 31: 1619–1626.CrossRefGoogle ScholarPubMed
Eagleman, D. M., & Sejnowski, T. J. (2000). Motion integration and postdiction in visual awareness. Science 287(5460): 2036–2038.CrossRefGoogle ScholarPubMed
Fröhlich, F. W. (1923). Über die Messung der Empfindungszeit. Zeitschrift für Sinnesphysiologie 54: 58–78.Google Scholar
Fröhlich, F. W. (1929). Die Empfindungszeit. Jena: Gustav Fischer.Google Scholar
Fu, Y. X., Shen, S. Y., & Dan, Y. (2001). Motion-induced perceptual extrapolation of blurred visual targets. J Neurosci 21(20): (RC172).CrossRefGoogle ScholarPubMed
Gegenfurtner, K. (1999). Neurobiology. The eyes have it! Nature 398(6725): 291–292.CrossRefGoogle Scholar
Ghez, C., & Krakauer, J. (2000). The organization of movement. In E. R., Kandel, J. H., Schwartz, & T. M., Jessel (eds.), Principles of Neural Science (4th ed.). New York: McGraw-Hill.Google Scholar
Hazelhoff, F., & Wiersma, H. (1924). Die Wahrnehmungszeit. Zeitschrift für Psychologie 96: 171–188.Google Scholar
Hess, C. (1904). Untersuchungen über den Erregungsvorgang im Sehorgan bei kurz- und länger dauernder Reizung. Pflügers Archiv für die gesamte Physiologie 101: 226–262.CrossRefGoogle Scholar
Ichikawa, M., & Masakura, Y. (2006). Manual control of the visual stimulus reduces the flash-lag effect. Vision Res 46(14): 2192–2203.CrossRefGoogle ScholarPubMed
James, W. (1890/1952). The Principles of Psychology. London: Encyclopaedia Brittanica.Google Scholar
Jancke, D., Erlhagen, W., Schoner, G., & Dinse, H. (2004). Shorter latencies for motion trajectories than for flashes in population responses of cat primary visual cortex. J Physiol 556(Pt 3): 971–982.CrossRefGoogle ScholarPubMed
Jordan, M. I. (1995). Computational motor control. In M. S., Gazzaniga (ed.), The Cognitive Neurosciences. Cambridge, MA: MIT Press.Google Scholar
Khurana, B., & Nijhawan, R. (1995). Extrapolation or attention shift: reply. Nature 378(6557): 565–566.CrossRefGoogle Scholar
Khurana, B., Watanabe, K., & Nijhawan, R. (2000). The role of attention in motion extrapolation: are moving objects “corrected” or flashed objects attentionally delayed? Perception 29(6): 675–692.CrossRefGoogle ScholarPubMed
Kirschfeld, K., & Kammer, T. (1999). The Fröhlich effect: a consequence of the interaction of visual focal attention and metacontrast. Vision Res 39(22): 3702–3709.CrossRefGoogle ScholarPubMed
Köhler, W. (1947/1992). Gestalt Psychology: An Introduction to New Concepts in Modern Psychology. New York: Liveright.Google Scholar
Kratz, K. E., & May, J. G. (1990). Response persistence of cat retinal ganglion cells to the temporally discrete presentation of sinewave gratings. Int J Neurosci 52(1–2): 111–119.CrossRefGoogle ScholarPubMed
Krekelberg, B., & Lappe, M. (2000). A model of the perceived relative positions of moving objects based upon a slow averaging process. Vision Res 40(2): 201–215.CrossRefGoogle ScholarPubMed
Krekelberg, B., & Lappe, M. (2001). Neuronal latencies and the position of moving objects. Trends Neurosci 24(6): 335–339.CrossRefGoogle ScholarPubMed
Mach, E. (1885/1897). Contributions to the Analysis of the Sensations (C. M. Williams, Trans.). Chicago: The Open Court Publishing Company.Google Scholar
MacKay, D. M. (1958). Perceptual stability of a stroboscopically lit visual field containing self-luminous objects. Nature 181: 507–508.CrossRefGoogle ScholarPubMed
Mateeff, S., & Hohnsbein, J. (1988). Perceptual latencies are shorter for motion towards the fovea than for motion away. Vision Res 28(6): 711–719.CrossRefGoogle ScholarPubMed
Maus, G. W., & Nijhawan, R. (2006). Forward displacements of fading objects in motion: the role of transient signals in perceiving position. Vision Res 46(26): 4375–4381.CrossRefGoogle ScholarPubMed
Maus, G. W., & Nijhawan, R. (2008). Motion extrapolation into the blind spot. Psychol Sci 19(11): 1087–1091.CrossRefGoogle ScholarPubMed
Maus, G. W., & Nijhawan, R. (in press). Going, going, gone: localizing abrupt offsets of moving objects. J Exp Psychol Hum Percept Perform.
Meister, M., Wong, R. O., Baylor, D. A., & Shatz, C. J. (1991). Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina. Science 252: 939–943.CrossRefGoogle ScholarPubMed
Metzger, W. (1932). Versuch einer gemeinsamen Theorie der Phänomene Fröhlichs und Hazelhoffs und Kritik ihrer Verfahren zur Messung der Empfindungszeit. Psychologische Forschung 16, 176–200.CrossRefGoogle Scholar
Mollon, J. D., & Perkins, a. J. (1996). Errors of judgement at Greenwich in 1796. Nature 380(6570): 101–102.CrossRefGoogle ScholarPubMed
Namba, J., & Baldo, M. V. C. (2004). The modulation of the flash-lag effect by voluntary attention. Perception 33: 621–631.CrossRefGoogle ScholarPubMed
Nijhawan, R. (1992). Misalignment of contours through the interaction of apparent and real motion systems. Invest Ophthalmol Vis Sci 33(4): 974. See Appendix.Google Scholar
Nijhawan, R. (1994). Motion extrapolation in catching. Nature 370(6487): 256–257.CrossRefGoogle ScholarPubMed
Nijhawan, R. (1997). Visual decomposition of colour through motion extrapolation. Nature 386(6620): 66–69.CrossRefGoogle ScholarPubMed
Nijhawan, R. (2002). Neural delays, visual motion and the flash-lag effect. Trends Cogn Sci 6(9): 387–393.CrossRefGoogle ScholarPubMed
Nijhawan, R. (2008a). Visual prediction: psychophysics and neurophysiology of compensation for time delays. Behav Brain Sci 31: 179–239.CrossRefGoogle ScholarPubMed
Nijhawan, R. (2008b). Predictive perceptions, predictive actions, and beyond. Behav Brain Sci 31(2): 222–239.CrossRefGoogle Scholar
Nijhawan, R., & Kirschfeld, K. (2003). Analogous mechanisms compensate for neural delays in the sensory and the motor pathways: evidence from motor flash-lag. Curr Biol 13(9): 749–753.CrossRefGoogle ScholarPubMed
Nijhawan, R., Watanabe, K., Khurana, B., & Shimojo, S. (2004). Compensation for neural delays in visual-motor behaviour: no evidence for shorter afferent delays for visual motion. Vis Cogn 11: 275–298.CrossRefGoogle Scholar
Nijhawan, R., & Wu, S. (2009). Compensating time delays with neural predictions: are predictions sensory or motor? Philos Trans R Soc Lond A Math Phys Eng Sci 367: 1063–1078.CrossRefGoogle ScholarPubMed
Purushothaman, G., Patel, S. S., Bedell, H. E., & Ogmen, H. (1998). Moving ahead through differential visual latency. Nature 396(6710): 424.CrossRefGoogle ScholarPubMed
Raiguel, S. E., Lagae, L., Gulyas, B., & Orban, G. A. (1989). Response latencies of visual cells in macaque areas V1, V2 and V5. Brain Res 493(1): 155–159.CrossRefGoogle ScholarPubMed
Ratliff, F. (1965). Mach Bands: Quantitative Studies on Neural Networks in the Retina. San Francisco, CA: Holden-Day.Google Scholar
Rojas-Anaya, H., Thirkettle, M., & Nijhawan, R. (2005). Flash-lag anisotrypy for movement in three domains [Abstract]. Perception 34(ECVP abstract supplement): 219–220.Google Scholar
Roulston, B. W., Self, M. W., & Zeki, S. (2006). Perceptual compression of space through position integration. Proc R Soc Lond B Biol Sci 273(1600): 2507–2512.CrossRefGoogle ScholarPubMed
Rubin, E. (1929). Kritisches und Experimentelles zur ‘Empfindungszeit’ Fröhlichs. Psychologische Forschung 13: 101–112.CrossRefGoogle Scholar
Schlag, J., Cai, R. H., Dorfman, A., Mohempur, A., & Schlag-Rey, M. (2000). Extrapolating movement without retinal motion. Nature 403: 38–39.CrossRefGoogle ScholarPubMed
Sheth, B. R., Nijhawan, R., & Shimojo, S. (2000). Changing objects lead briefly flashed ones. Nat Neurosci 3(5): 489–495.CrossRefGoogle ScholarPubMed
Sillito, A. M., Cudeiro, J., & Jones, H. E. (2006). Always returning: feedback and sensory processing in visual cortex and thalamus. Trends Neurosci 29(6): 307–316.CrossRefGoogle ScholarPubMed
Sillito, A. M., & Jones, H. E. (2002). Corticothalamic interactions in the transfer of visual information. Philos Trans R Soc Lond B Biol Sci 357(1428): 1739–1752.CrossRefGoogle ScholarPubMed
Sundberg, K. A., Fallah, M., & Reynolds, J. H. (2006). A motion-dependent distortion of retinotopy in area V4. Neuron 49(3): 447–457.CrossRefGoogle ScholarPubMed
van de Grind, W. (2002). Physical, neural, and mental timing. Conscious Cogn 11(2): 241–264; discussion 208–213.CrossRefGoogle ScholarPubMed
Vroomen, J., & de Gelder, B. (2004). Temporal ventriloquism: sound modulates the flash-lag effect. J Exp Psychol Hum Percept Perform 30(3): 513–518.CrossRefGoogle ScholarPubMed
Whitney, D., & Murakami, I. (1998). Latency difference, not spatial extrapolation. Nat Neurosci 1(8): 656–657.CrossRefGoogle Scholar
Wojtach, W. T., Sung, K., Truong, S., & Purves, D. (2008). An empirical explanation of the flash-lag effect. Proc Nat Acad Sci USA 105: 16338–16343.CrossRefGoogle ScholarPubMed
7
Cited by

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×