Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-18T23:01:41.012Z Has data issue: false hasContentIssue false

23 - Paying attention to the flash-lag effect

from Part IV - Spatial phenomena: forward shift effects

Published online by Cambridge University Press:  05 October 2010

Romi Nijhawan
Affiliation:
University of Sussex
Beena Khurana
Affiliation:
University of Sussex
Get access

Summary

Summary

In the flash-lag effect (FLE) a stationary flash is usually mislocalized as lagging behind a moving object in spatiotemporal alignment. Nijhawan, who postulated a mechanism of perceptual extrapolation of motion to explain the phenomenon, rediscovered this perceptual effect. The first challenge to the motion extrapolation hypothesis included an attentional shift mechanism as the alternative, which implicitly relied on the spotlight metaphor for visual attention. Other explanations have been forwarded since then, such as those based on differential latencies or perceptual postdiction. In this chapter we aim to scrutinize the role of attention in either modulating or engendering the FLE.

Introduction

To deal with even simple challenges, such as grasping an object or avoiding a collision with either stationary or moving obstacles, everyday life demands from us the ability to localize a visual stimulus, within an acceptable degree of accuracy, in both space and time. Learning how to pin down the location of an object moving along its space–time trajectory in a given task depends on the one hand on the amount and quality of perceptual information provided by the sensory system, and on the other hand on the correctness of the action generated during that task. The behavioral outcome is continuously fed back to the nervous system, therefore constraining and refining, in an adaptive way, the representation of the world both in perception and in action.

However optimized our behavior turns out to be, the underlying perceptual edifice we assemble from the available sensory world is by no means unique.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alais, D., & Burr, D. (2003). The flash-lag effect occurs in audition and cross-modally. Curr Biol 13: 59–63.CrossRefGoogle ScholarPubMed
Baldo, M. V. C., & Caticha, N. (2004). The flash-lag and Fröhlich effects caught by the net: computational modeling of visual illusions. In A. M., Oliveira, M., Teixeira, G. F., Borges, & M. J., Ferro (eds.), Annual Meeting of the International Society for Psychophysics (Coimbra, Portugal) 222–227.Google Scholar
Baldo, M. V. C., & Caticha, N. (2005). Computational neurobiology of the flash-lag effect. Vision Res 45: 2620–2630.CrossRefGoogle ScholarPubMed
Baldo, M. V. C., Kihara, A. H., & Klein, S. A. (2000). Lagging behind because of sensory and attentional delays. [Abstract]Invest Ophthalmol Vis Sci 41: S420.Google Scholar
Baldo, M. V. C., Kihara, A. H., Namba, J., & Klein, S. A. (2002). Evidence for an attentional component of perceptual misalignment between moving and flashing stimuli. Perception 31: 17–30.CrossRefGoogle ScholarPubMed
Baldo, M. V. C., & Klein, S. A. (1995). Extrapolation or attention shift? Nature 378: 565–566.CrossRefGoogle ScholarPubMed
Baldo, M. V. C., & Namba, J. (2002). The attentional modulation of the flash-lag effect. Braz J Med Biol Res 35: 969–972.CrossRefGoogle ScholarPubMed
Baldo, M. V. C., Ranvaud, R. D., & Morya, E. (2002). Flag errors in soccer games: the flash-lag effect brought to real life. Perception 31: 1205–1210.CrossRefGoogle ScholarPubMed
Berry, M. J., Brivanlou, I. H., Jordan, T. A., & Meister, M. (1999). Anticipation of moving stimuli by the retina. Nature 398: 334–338.CrossRefGoogle ScholarPubMed
Brenner, E., & Smeets, J. B. J. (2000). Computational neurobiology of the flash-lag effect. Vision Res 40: 1645–1648.CrossRefGoogle Scholar
Cantor, C. R. L., & Schor, C. M. (2004). Does the temporal impulse response cause the flash-lag effect? [Abstract]J Vis 4(8): 72, 72a, http://journalofvision.org/4/8/72/, doi: 10.1167/4.8.72.CrossRefGoogle Scholar
Chappell, M., Hine, T. J., Acworth, C., & Hardwick, D. R. (2006). Attention “capture” by the flash-lag flash. Vision Res 46: 3205–3213.CrossRefGoogle ScholarPubMed
Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3: 201–215CrossRefGoogle Scholar
Cravo, A. M., & Baldo, M. V. C. (2008). A psychophysical and computational analysis of the spatio-temporal mechanisms underlying the flash-lag effect. Perception 37: 1850–1866.CrossRefGoogle ScholarPubMed
Dehaene, S., Changeux, J. P., Naccache, L., Sackur, J., & Sergent, C. (2006). Conscious, preconscious, and subliminal processing: a testable taxonomy. Trends Cogn Sci 10: 204–211.CrossRefGoogle ScholarPubMed
Eagleman, D. M. (2001). Visual illusions and neurobiology. Nat Rev Neurosci 2: 920–926.CrossRefGoogle ScholarPubMed
Eagleman, D. M., & Sejnowski, T. J. (2000a). Motion integration and postdiction in visual awareness. Science 287: 2036–2038.CrossRefGoogle ScholarPubMed
Eagleman, D. M., & Sejnowski, T. J. (2000b). Reply to Krekelberg et al. Science 289(5482): 1107a.Google Scholar
Engel, A. K., Fries, P., & Singer, W. (2001). Dynamic predictions: oscillations and synchrony in top-down processing. Nat Rev Neurosci 2: 704–716.CrossRefGoogle ScholarPubMed
Enns, J. T., & Oriet, C. (2004). Perceptual asynchrony: modularity of consciousness or object updating? [Abstract]J Vis 4(8): 27, 27a, http://journalofvision.org/4/8/27/, doi: 10.1167/4.8.27.CrossRefGoogle Scholar
Erlhagen, W. (2003). Internal models for visual perception. Biol Cybern 88: 409–417.CrossRefGoogle ScholarPubMed
Fröhlich, F. W. (1923). Über die Messung der Empfindungszeit. Zeitschrift für Sinnesphysiologie 54: 58–78.Google Scholar
Hayes, A. E., & Freyd, J. J. (2002). Representational momentum when attention is divided. Vis Cogn 9: 8–27.CrossRefGoogle Scholar
Hikosaka, O., Miyauchi, S., & Shimojo, S. (1993). Focal visual attention produces illusory temporal order and motion sensation. Vision Research 33: 1219–1240.CrossRefGoogle ScholarPubMed
Houtkamp, R., Spekreijse, H., & Roelfsema, P. R. (2003). A gradual spread of attention during mental curve tracing. Perception & Psychophysics 65: 1136–1144.CrossRefGoogle ScholarPubMed
Hubbard, T. L. (2005). Representational momentum and related displacements in spatial memory: A review of the findings. Psychonom Bull Rev 12: 822–851.CrossRefGoogle ScholarPubMed
Kanai, R., Sheth, B. R., & Shimojo, S. (2004). Stopping the motion and sleuthing the flash-lag effect: spatial uncertainty is the key to perceptual mislocalization. Vision Res 44: 2605–2619.CrossRefGoogle ScholarPubMed
Kastner, S., & Ungerleider, L. G. (2000). Mechanisms of visual attention in the human cortex. Ann Rev Neurosci 23: 315–341.Google ScholarPubMed
Kerzel, D. (2003). Attention maintains mental extrapolation of target position: irrelevant distractors eliminate forward displacement after implied motion. Cognition 88: 109–131.CrossRefGoogle ScholarPubMed
Kerzel, D., & Gegenfurtner, K. R. (2004). Spatial distortions and processing latencies in the onset repulsion and Fröhlich effects. Vision Res 44: 577–590.CrossRefGoogle ScholarPubMed
Kerzel, D., & Müsseler, J. (2002). Effects of stimulus material on the Fröhlich illusion. Vision Res 42: 181–189.CrossRefGoogle ScholarPubMed
Khayat, P. S., Spekreijse, H., & Roelfsema, P. R. (2006). Attention lights up new object representations before the old ones fade away. J Neurosci 26: 138–142.CrossRefGoogle ScholarPubMed
Khurana, B., & Nijhawan, R. (1995). Reply to Baldo and Klein. Nature 378: 566.CrossRefGoogle Scholar
Khurana, B., Watanabe, K., & Nijhawan, R. (2000). The role of attention in motion extrapolation: Are moving objects “corrected” or flashed objects attentionally delayed? Perception 29: 675–692.CrossRefGoogle ScholarPubMed
Kirschfeld, K., & Kammer, T. (1999). The Fröhlich effect: a consequence of the interaction of visual focal attention and metacontrast. Vision Res 39: 3702–3709.CrossRefGoogle ScholarPubMed
Kirschfeld, K., & Kammer, T. (2000). Visual attention and metacontrast modify latency to perception in opposite directions. Vision Res 40: 1027–1033.CrossRefGoogle ScholarPubMed
Krekelberg, B., & Lappe, M. (2001). Neuronal latencies and the position of moving objects. Trends Neurosci 24: 335–339.CrossRefGoogle ScholarPubMed
Lamme, V. A. F. (2003). Why visual attention and awareness are different. Trends Cogn Sci 7: 12–18.CrossRefGoogle ScholarPubMed
Lappe, M., & Krekelberg, B. (1998). The position of moving objects. Perception 27: 1437–1449.CrossRefGoogle ScholarPubMed
Linares, D., & Lopez-Moliner, J. (2007). Absence of flash-lag when judging global shape from local positions. Vision Res 47: 357–362.CrossRefGoogle ScholarPubMed
Mackay, D. M. (1958). Perceptual stability of a stroboscopically lit visual field containing selfluminous objects. Nature 181: 507–508.CrossRefGoogle ScholarPubMed
Metzger, W. (1931). Versuch einer gemeinsamen Theorie der Phänomene Fröhlichs und Hazelhoffs und Kritik ihrer Verfahren zur Messung der Empfindungszeit. Psychologische Forschung 16: 176–200.CrossRefGoogle Scholar
Moore, C. M., & Enns, J. T. (2004). Object updating and the flash-lag effect. Psychol Sci 15: 866–871.CrossRefGoogle ScholarPubMed
Müsseler, J., & Aschersleben, G. (1998). Localizing the first position of a moving stimulus: the Fröhlich effect and attention shifting explanation. Perception and Psychophysics 60: 683–695.CrossRefGoogle ScholarPubMed
Müsseler, J., & Neumann, O. (1992). Apparent distance reduction with moving stimuli (tandem effect) – Evidence for an attention-shifting model. Psychol Res-Psychologische Forschung 54: 246–266.CrossRefGoogle ScholarPubMed
Namba, J., & Baldo, M. V. C. (2004). The modulation of the flash-lag effect by voluntary attention. Perception 34: 621–631.CrossRefGoogle Scholar
Nieman, D., Nijhawan, R., Khurana, B., & Shimojo, S. (2006). Cyclopean flash-lag illusion. Vision Res 46: 3909–3914.CrossRefGoogle ScholarPubMed
Nijhawan, R. (1992). Misalignment of contours through the interaction of apparent and real motion systems. [Abstract]Invest Ophthalmol Vis Sci 33: 1415.Google Scholar
Nijhawan, R. (1994). Motion extrapolation in catching. Nature 370: 256–257.CrossRefGoogle ScholarPubMed
Nijhawan, R. (2002). Neural delays, visual motion and the flash-lag effect. Trends Cogn Sci 6: 387–393.CrossRefGoogle ScholarPubMed
Nijhawan, R., & Khurana, B. (2000). Conscious registration of continuous and discrete visual events. In T., Metzinger (ed.), Neural Correlates of Consciousness: Empirical and Conceptual Questions (203–219). Cambridge, MA: MIT Press.Google Scholar
Öğmen, H., Patel, S. S., Bedell, H. E., & Camuz, K. (2004). Differential latencies and the dynamics of the position computation process for moving targets, assessed with the flash-lag effect. Vision Res 44: 2109–2128.CrossRefGoogle ScholarPubMed
Palmer, S. E. (1999). Vision Science: Photons to Phenomenology. Cambridge, MA: MIT Press.Google Scholar
Pashler, H. E. (1998). The Psychology of Attention. Cambridge, MA: MIT Press.Google Scholar
Patel, S. S., Öğmen, H., Bedell, H. E., & Sampath, V. (2000). Flash-lag effect: differential latency, not postdiction. Science 290: 1051a.CrossRefGoogle Scholar
Purushothaman, G., Patel, S. S., Bedell, H. E., & Öğmen, H. (1998). Moving ahead through differential visual latency. Nature 396: 424.CrossRefGoogle ScholarPubMed
Roelfsema, P. R. (2006). Cortical algorithms for perceptual grouping. Ann Rev Neurosci 29: 203–227.CrossRefGoogle ScholarPubMed
Roelfsema, P. R., Lamme, V. A. F., & Spekreijse, H. (2000). The implementation of visual routines. Vision Res 40: 1385–1411.CrossRefGoogle ScholarPubMed
Rotman, G., Brenner, E., & Smeets, J. B. J. (2002). Spatial but not temporal cueing influences the mislocalisation of a target flashed during smooth pursuit. Perception 31: 1195–1203.CrossRefGoogle Scholar
Sarich, D., Chappell, M., & Burgess, C. (2007). Dividing attention in the flash-lag illusion. Vision Res 47: 544–547.CrossRefGoogle ScholarPubMed
Schlag, J., & Schlag-Rey, M. (2002). Through the eye, slowly: delays and localization errors in the visual system. Nat Rev Neurosci 3: 191–200.CrossRefGoogle ScholarPubMed
Serences, J. T., & Yantis, S. (2006). Selective visual attention and perceptual coherence. Trends Cogn Sci 10: 38–45.CrossRefGoogle ScholarPubMed
Sheth, B., Nijhawan, R., & Shimojo, S. (2000). Changing objects lead briefly flashed ones. Nat Neurosci 3: 489–495.CrossRefGoogle ScholarPubMed
Shim, W. M., & Cavanagh, P. (2003). Attentive tracking can modulate the illusory misalignment of a flash. [Abstract]J Vis 3(9): 188a, http://journalofvision.org/3/9/188/, doi: 10.1167/3.9.188CrossRefGoogle Scholar
Spence, C., Shore, D. I., & Klein, R. M. (2001). Multisensory prior entry. J Exp Psychol 4: 799–832.CrossRefGoogle Scholar
Tsal, Y. (1983). Movements of attention across the visual field. J Exp Psychol Hum Percept Perform 9: 523–530.CrossRefGoogle ScholarPubMed
Vreven, D., & Verghese, P. (2005). Predictability and the dynamics of position processing in the flash-lag effect. Perception 34: 31–44.CrossRefGoogle ScholarPubMed
Whitney, D. (2002). The influence of visual motion on perceived position. Trends Cogn Sci 6: 211–216.CrossRefGoogle ScholarPubMed
Whitney, D., & Murakami, I. (1998). Latency difference not spatial extrapolation. Nat Neurosci 1: 656–657.CrossRefGoogle Scholar
Wundt, W. (1874). Grundzüge der physiologischen psychologies. Leipzig, Germany: Wilhelm Engelmann.Google Scholar
Yantis, S., & Serences, J. T. (2003). Cortical mechanisms of space-based and object-based attentional control. Curr Opin Neurobiol 13: 187–193.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×