Skip to main content Accessibility help
×
Hostname: page-component-7bb8b95d7b-dvmhs Total loading time: 0 Render date: 2024-10-07T09:15:46.359Z Has data issue: false hasContentIssue false

Part II - Society Interacting with Brain, Cognition, and Health in Late Life

Published online by Cambridge University Press:  28 September 2023

Jeanyung Chey
Affiliation:
Seoul National University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Society within the Brain
How Social Networks Interact with Our Brain, Behavior and Health as We Age
, pp. 117 - 192
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Albert, S. M., & Teresi, J. A. (1999). Reading ability, education, and cognitive status assessment among older adults in Harlem, New York City. American Journal of Public Health, 89(1), 9597.Google Scholar
Alexander, G. E., Furey, M. L., Grady, C. L., Pietrini, P., Brady, D. R., Mentis, M. J., & Schapiro, M. B. (1997). Association of premorbid intellectual function with cerebral metabolism in Alzheimer’s disease: Implications for the cognitive reserve hypothesis. American Journal of Psychiatry, 154, 165172.Google Scholar
Amieva, H., Mokri, H., Le Goff, M., Meillon, C., Jacqmin-Gadda, H., Foubert-Samier, A., Orgogozo, J.-M., Stern, Y., & Dartigues, J. F. (2014). Compensatory mechanisms in higher-educated subjects with Alzheimer’s disease: A study of 20 years of cognitive decline. Brain, 137(4), 11671175.Google Scholar
Bang, M., Kim, J., An, S. K., Youm, Y., Chey, J., Kim, H. C., Park, K., Namkoong, E., & Lee, E. (2019). Associations of systemic inflammation with frontotemporal functional network connectivity and out-degree social-network size in community-dwelling older adults. Brain, Behavior, and Immunity, 79, 309313.CrossRefGoogle ScholarPubMed
Barulli, D., & Stern, Y. (2013). Efficiency, capacity, compensation, maintenance, plasticity: Emerging concepts in cognitive reserve. Trends in Cognitive Sciences, 17(10), 502509.Google Scholar
Bertram, L., Lill, C. M., & Tanzi, R. E. (2010). The genetics of Alzheimer disease: Back to the future. Neuron, 68(2), 270281.Google Scholar
Boldrini, M., Fulmore, C. A., Tartt, A. N., Simeon, L. R., Pavlova, I., Poposka, V., Rosloklija, G. B., Stankov, A., Arango, V., Dwork, A. J., Hen, R., & Mann, J. J. (2018). Human hippocampal neurogenesis persists throughout aging. Cell Stem Cell, 22(4), 589599.CrossRefGoogle ScholarPubMed
Borenstein, A., & Mortimer, J. (eds.). (2016). Alzheimer’s disease: Life Course Perspectives on Risk Reduction. Academic Press.Google Scholar
Braak, H., & Braak, E. (1991). Neuropathological stageing of Alzheimer-related changes. Acta Neuropathologica, 82(4), 239259.Google Scholar
Cabeza, R., Albert, M., Belleville, S., Craik, F. I., Duarte, A., Grady, C. L., Lindenberger, U., Nyberg, L., Park, D. C., Reuter-Lorenz, P. A., Rugg, M. D., Steffener, J., & Rajah, M. N. (2018). Maintenance, reserve and compensation: The cognitive neuroscience of healthy ageing. Nature Reviews Neuroscience, 19(11), 701710.CrossRefGoogle ScholarPubMed
Cabeza, R., Nyberg, L., & Park, D. C. (eds.). (2016). Cognitive Neuroscience of Aging: Linking Cognitive and Cerebral Aging. Oxford University Press.CrossRefGoogle Scholar
Campbell, K. L., Grady, C. L., Ng, C., & Hasher, L. (2012). Age differences in the frontoparietal cognitive control network: Implications for distractibility. Neuropsychologia, 50(9), 22122223.Google Scholar
Chey, J, Kim, MJ, Stern, Y, Shin, M, Byun, HS, et al. (2016) Neural Substrates of Reserve Observed in a Non-Demented Aging Population. J Alzheimers Dis Parkinsonism, 7(294), 19.Google Scholar
Chey, J., Na, D. R., Park, S. H., & Park, E. H. (1998). The validity and reliability of the Korean dementia rating scale. Korean Journal of Clinical Psychology, 17(1), 247–58.Google Scholar
Deal, J. A., Betz, J., Yaffe, K., Harris, T., Purchase-Helzner, E., Satterfield, S., Pratt, S., Govil, N., Simonsick, E. M., Lin, F. R., & Health ABC Study Group. (2017). Hearing impairment and incident dementia and cognitive decline in older adults: The health ABC study. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences, 72(5), 703709.Google ScholarPubMed
Duque, A., Arellano, J. I., & Rakic, P. (2022). An assessment of the existence of adult neurogenesis in humans and value of its rodent models for neuropsychiatric diseases. Molecular Psychiatry, 27(1), 377382.Google Scholar
Elias, M. F., Wolf, P. A., D’Agostino, R. B., Cobb, J., & White, L. R. (1993). Untreated blood pressure level is inversely related to cognitive functioning: The Framingham Study. American Journal of Epidemiology, 138(6), 353364.Google Scholar
Eriksson, P. S., Perfilieva, E., Björk-Eriksson, T., Alborn, A. M., Nordborg, C., Peterson, D. A., & Gage, F. H. (1998). Neurogenesis in the adult human hippocampus. Nature Medicine, 4(11), 13131317.CrossRefGoogle ScholarPubMed
Fjell, A. M., McEvoy, L., Holland, D., Dale, A. M., Walhovd, K. B., & Alzheimer’s Disease Neuroimaging Initiative. (2014). What is normal in normal aging? Effects of aging, amyloid and Alzheimer’s disease on the cerebral cortex and the hippocampus. Progress in Neurobiology, 117, 2040.CrossRefGoogle ScholarPubMed
Franzmeier, N., Hartmann, J., Taylor, A. N., Araque-Caballero, M. Á., Simon-Vermot, L., Kambeitz-Ilankovic, L., Bürger, K., Catak, C., Janowitz, D., Müller, C., Ertl-Wagner, B., Stahl, R., Dichgans, M., Duering, M., & Ewers, M. (2018). The left frontal cortex supports reserve in aging by enhancing functional network efficiency. Alzheimer’s Research & Therapy, 10(1), 112.Google Scholar
Fuhrer, R., Dufouil, C., & Dartigues, J. F. (2003). Exploring sex differences in the relationship between depressive symptoms and dementia incidence: Prospective results from the PAQUID Study. Journal of the American Geriatrics Society, 51(8), 10551063.Google Scholar
Hall, C. B., Derby, C., LeValley, A., Katz, M. J., Verghese, J., & Lipton, R. B. (2007). Education delays accelerated decline on a memory test in persons who develop dementia. Neurology, 69(17), 16571664.Google Scholar
He, Y. L., Zhang, X. K., & Zhang, M. Y. (2000). Psychosocial risk factors for Alzheimer’s disease. Hong Kong Journal of Psychiatry, 10(2), 28.Google Scholar
Hippius, H., & Neundörfer, G. (2003). The discovery of Alzheimer’s disease. Dialogues in Clinical Neuroscience, 5(1), 101108.Google Scholar
Hyman, B. T., Phelps, C. H., Beach, T. G., Bigio, E. H., Cairns, N. J., Carrillo, M. C., Dickson, D. W., Duyckaerts, C., Frosch, M. P., Masliah, E., Mirra, S. S., Nelson, P. T., Schneider, J. A., Thal, D. R., Thies, B., Trojanowski, J. Q., Vinters, H. V., & Montine, T. J. (2012). National Institute on Aging–Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimer’s & dementia, 8(1), 113.Google Scholar
Jack, C. R. Jr, & Holtzman, D. M. (2013). Biomarker modeling of Alzheimer’s disease. Neuron, 80(6), 13471358.Google Scholar
Jack, C. R. Jr, Wiste, H. J., Therneau, T. M., Weigand, S. D., Knopman, D. S., Mielke, M. M., Lowe, V. J., Vemuri, P., Machulda, M. M., Schwarz, C. G., Gunter, J. L., Senjem, M. L., Graff-Radford, J., Jones, D. T., Roberts, R. O., Rocca, W. A., & Petersen, R. C. (2019). Associations of amyloid, tau, and neurodegeneration biomarker profiles with rates of memory decline among individuals without dementia. Journal of the American Medical Association, 321(23), 23162325.Google Scholar
Jagust, W. (2018). Imaging the evolution and pathophysiology of Alzheimer disease. Nature Reviews Neuroscience, 19(11), 687700.Google Scholar
Katzman, R. (1993). Education and the prevalence of dementia and Alzheimer’s disease. Neurology. 43(1), 1320.Google Scholar
Katzman, R., Terry, R., DeTeresa, R., Brown, T., Davies, P., Fuld, P., Renbing, X., & Peck, A. (1988). Clinical, pathological, and neurochemical changes in dementia: A subgroup with preserved mental status and numerous neocortical plaques. Annals of Neurology, 23(2), 138144.CrossRefGoogle ScholarPubMed
Kempermann, G., Gage, F. H., Aigner, L., Song, H., Curtis, M. A., Thuret, S., Kuhn, H. G., Jessberger, S., Frankland, P. W., Cameron, H. A., Gould, E., Hen, R., Abrous, D. N., Toni, N., Schinder, A. F., Zhao, X., Lucassen, P. J., & Frisén, J. (2018). Human adult neurogenesis: Evidence and remaining questions. Cell Stem Cell, 23(1), 2530.Google Scholar
Kim, J., Chey, J., Kim, S. E., & Kim, H. (2015). The effect of education on regional brain metabolism and its functional connectivity in an aged population utilizing positron emission tomography. Neuroscience Research, 94, 5061.Google Scholar
Kim, H., Kwak, S., Youm, Y., & Chey, J. (2022). Social network characteristics predict loneliness in older adults. Gerontology, 68(3), 309320.CrossRefGoogle ScholarPubMed
Klunk, W. E., Engler, H., Nordberg, A., Wang, Y., Blomqvist, G., Holt, D. P., Bergström, M., Savitcheva, I., Huang, G. F., Estrada, S., Ausén, B., Debnath, M. L., Barletta, J., Price, J. C., Sandell, J., Lopresti, B. J., Wall, A., Koivisto, P., Antoni, G., … Långström, B. (2004). Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound‐B. Annals of Neurology, 55(3), 306319.Google Scholar
Langa, K. M., Larson, E. B., Karlawish, J. H., Cutler, D. M., Kabeto, M. U., Kim, S. Y., & Rosen, A. B. (2008). Trends in the prevalence and mortality of cognitive impairment in the United States: Is there evidence of a compression of cognitive morbidity? Alzheimer’s & Dementia, 4(2), 134144.Google Scholar
Livingston, G., Huntley, J., Sommerlad, A., Ames, D., Ballard, C., Banerjee, S., Brayne, C., Burns, A., Cohen-Mansfield, J., Cooper, C., Costafreda, S. G., Dias, A., Fox, N., Gitlin, L. N., Howard, R., Kales, H. C., Kivimäki, M., Larson, E. B., Ogunniyi, A., … Mukadam, N. (2020). Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. The Lancet, 396(10248), 413446.Google Scholar
Livingston, G., Sommerlad, A., Orgeta, V., Costafreda, S. G., Huntley, J., Ames, D., Ballard, C., Banerjee, S., Burns, A., Cohen-Mansfield, J., Cooper, C., Fox, N., Gitlin, L. N., Howard, R., Kales, H. C., Larson, E. B., Ritchie, K., Rockwood, K., Sampson, E. L., … Mukadam, N. (2017). Dementia prevention, intervention, and care. The Lancet, 390(10113), 26732734.Google Scholar
Lockhart, S. N., & DeCarli, C. (2014). Structural imaging measures of brain aging. Neuropsychology Review, 24(3), 271289.CrossRefGoogle ScholarPubMed
Maguire, E. A., Gadian, D. G., Johnsrude, I. S., Good, C. D., Ashburner, J., Frackowiak, R. S., & Frith, C. D. (2000). Navigation-related structural change in the hippocampi of taxi drivers. Proceedings of the National Academy of Sciences, 97(8), 43984403.CrossRefGoogle ScholarPubMed
Marek, S., & Dosenbach, N. U. (2018). The frontoparietal network: Function, electrophysiology, and importance of individual precision mapping. Dialogues in Clinical Neuroscience, 20(2), 133141.Google Scholar
Metzler-Baddeley, C., Jones, D. K., Belaroussi, B., Aggleton, J. P., & O’Sullivan, M. J. (2011). Frontotemporal connections in episodic memory and aging: A diffusion MRI tractography study. Journal of Neuroscience, 31(37), 1323613245.Google Scholar
Moreno-Jiménez, E. P., Terreros-Roncal, J., Flor-García, M., Rábano, A., & Llorens-Martín, M. (2021). Evidences for adult hippocampal neurogenesis in humans. Journal of Neuroscience, 41(12), 25412553.Google Scholar
Mortimer, J. A. (1997). Brain reserve and the clinical expression of Alzheimer’s disease. Geriatrics, 52, S50S53.Google ScholarPubMed
Neitzel, J., Franzmeier, N., Rubinski, A., Ewers, M., & Alzheimer’s Disease Neuroimaging Initiative (ADNI). (2019). Left frontal connectivity attenuates the adverse effect of entorhinal tau pathology on memory. Neurology, 93(4), e347e357.Google Scholar
Nyberg, L., Lövdén, M., Riklund, K., Lindenberger, U., & Bäckman, L. (2012). Memory aging and brain maintenance. Trends in Cognitive Sciences, 16(5), 292305.Google Scholar
Nyberg, L., & Pudas, S. (2019). Successful memory aging. Annual Review of Psychology, 70, 219243.Google Scholar
Opdebeeck, C., Martyr, A., & Clare, L. (2016). Cognitive reserve and cognitive function in healthy older people: A meta-analysis. Aging, Neuropsychology, and Cognition, 23(1), 4060.CrossRefGoogle ScholarPubMed
Ott, A., Stolk, R. P., van Harskamp, F., Pols, H. A. P., Hofman, A., & Breteler, M. M. B. (1999). Diabetes mellitus and the risk of dementia: The Rotterdam Study. Neurology, 53(9), 19371937.CrossRefGoogle ScholarPubMed
Ott, A., Van Rossum, C. T. M., van Harskamp, F., Van de Mheen, H., Hofman, A., & Breteler, M. M. B. (1999). Education and the incidence of dementia in a large population-based study: The Rotterdam Study. Neurology, 52(3), 663666.Google Scholar
Perani, D., & Abutalebi, J. (2015). Bilingualism, dementia, cognitive and neural reserve. Current Opinion in Neurology, 28(6), 618625.Google Scholar
Rehm, J., Hasan, O. S., Black, S. E., Shield, K. D., & Schwarzinger, M. (2019). Alcohol use and dementia: A systematic scoping review. Alzheimer’s Research & Therapy, 11(1), 111.CrossRefGoogle ScholarPubMed
Rentería, M. A., Vonk, J. M., Felix, G., Avila, J. F., Zahodne, L. B., Dalchand, E., Frazer, K. M., Martinez, M. N., Shouel, H. L., & Manly, J. J. (2019). Illiteracy, dementia risk, and cognitive trajectories among older adults with low education. Neurology, 93(24), e2247e2256.Google Scholar
Richards, M., James, S. N., Sizer, A., Sharma, N., Rawle, M., Davis, D. H., & Kuh, D. (2019). Identifying the lifetime cognitive and socioeconomic antecedents of cognitive state: Seven decades of follow-up in a British birth cohort study. BMJ Open, 9(4), e024404.CrossRefGoogle Scholar
Riley, K. P., Snowdon, D. A., & Markesbery, W. R. (2002). Alzheimer’s neurofibrillary pathology and the spectrum of cognitive function: Findings from the nun study. Annals of Neurology, 51(5), 567577.Google Scholar
Satz, P. (1993). Brain reserve capacity on symptom onset after brain injury: A formulation and review of evidence for threshold theory. Neuropsychology, 7(3), 273.Google Scholar
Scarmeas, N., & Stern, Y. (2003). Cognitive reserve and lifestyle. Journal of Clinical and Experimental Neuropsychology, 25(5), 625633.CrossRefGoogle ScholarPubMed
Shankar, A., McMunn, A., Banks, J., & Steptoe, A. (2011). Loneliness, social isolation, and behavioral and biological health indicators in older adults. Health Psychology, 30(4), 377.Google Scholar
Snowdon, D. A. (2003). Healthy aging and dementia: Findings from the nun study. Annals of Internal Medicine, 139(5), 450454.Google Scholar
Snowdon, D. A., Kemper, S. J., Mortimer, J. A., Greiner, L. H., Wekstein, D. R., & Markesbery, W. R. (1996). Linguistic ability in early life and cognitive function and Alzheimer’s disease in late life: Findings from the nun study. Journal of the American Medical Association, 275(7), 528532.Google Scholar
Sorrells, S. F., Paredes, M. F., Cebrian-Silla, A., Sandoval, K., Qi, D., Kelley, K. W., James, D., Mayer, S., Chang, J., Auguste, K. I., Chang, E. F., Gutierrez, A. J., Kriegstein, A. R., Mathern, G. W., Oldham, M. C., Huang, E. J., Garcia-Verdugo, J. M., Yang, Z., & Alvarez-Buylla, A. (2018). Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature. 555, 377381.Google Scholar
Spalding, K. L., Bergmann, O., Alkass, K., Bernard, S., Salehpour, M., Huttner, H. B., Boström, E., Westerlund, I., Vial, C., Buchholz, B. A., Possnert, G., Mash, D. C., Druid, H., & Frisén, J. (2013). Dynamics of hippocampal neurogenesis in adult humans. Cell, 153(6), 12191227.Google Scholar
Steptoe, A., Shankar, A., Demakakos, P., & Wardle, J. (2013). Social isolation, loneliness, and all-cause mortality in older men and women. Proceedings of the National Academy of Sciences, 110(15), 57975801.Google Scholar
Stern, Y. (2002). What is cognitive reserve? Theory and research application of the reserve concept. Journal of the International Neuropsychological Society, 8(3), 448460.Google Scholar
Stern, Y. (2012). Cognitive reserve in ageing and Alzheimer’s disease. The Lancet Neurology, 11(11), 10061012.Google Scholar
Stern, Y., Albert, M., Barnes, C., Cabeza, R., Pascual-Leone, A., & Rapp, P. (2022). Framework for Terms Used in Research of Reserve and Resilience. Collaboratory on Research Definitions for Reserve and Resilience in Cognitive Aging and Dementia. https://reserveandresilience.com/framework/Google Scholar
Stern, Y., Arenaza-Urquijo, E. M., Bartrés-Faz, D., Belleville, S., Cantilon, M., Chetelat, G., Ewers, M., Franzmeier, N., Kempermann, G., Kremen, W. S., Okonkwo, O., Scarmeas, N., Soldan, A., Udeh-Momoh, C., Valenzuela, M., Vemuri, P., Vuoksimaa, E., & Reserve, Resilience and Protective Factors PIA Empirical Definitions and Conceptual Frameworks Workgroup. (2020). Whitepaper: Defining and investigating cognitive reserve, brain reserve, and brain maintenance. Alzheimers Dementia, 16(9), 13051311.Google Scholar
Stern, Y., Barnes, C. A., Grady, C., Jones, R. N., & Raz, N. (2019). Brain reserve, cognitive reserve, compensation, and maintenance: Operationalization, validity, and mechanisms of cognitive resilience. Neurobiology of Aging, 83, 124129.Google Scholar
Stern, Y., Gazes, Y., Razlighi, Q., Steffener, J., & Habeck, C. (2018). A task-invariant cognitive reserve network. Neuroimage, 178, 3645.CrossRefGoogle ScholarPubMed
Stern, Y., Habeck, C., Steffener, J., Barulli, D., Gazes, Y., Razlighi, Q., Shaked, D., & Salthouse, T. (2014). The Reference Ability Neural Network Study: Motivation, design, and initial feasibility analyses. Neuroimage, 103, 139151.Google Scholar
Stern, Y., Zarahn, E., Habeck, C., Holtzer, R., Rakitin, B. C., Kumar, A., Flynn, J., Steffener, J., & Brown, T. (2008). A common neural network for cognitive reserve in verbal and object working memory in young but not old. Cerebral Cortex, 18(4), 959967.CrossRefGoogle Scholar
Strittmatter, W. J., Saunders, A. M., Schmechel, D., Pericak-Vance, M., Enghild, J., Salvesen, G. S., & Roses, A. D. (1993). Apolipoprotein E: High-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proceedings of the National Academy of Sciences, 90(5), 19771981.CrossRefGoogle ScholarPubMed
Tanzi, R. E. (2012). The genetics of Alzheimer disease. Cold Spring Harbor Perspectives in Medicine, 2(10).Google Scholar
Thomas, A. K. & Gutchess, A. (eds.). (2020). The Cambridge Handbook of Cognitive Aging: A Life Course Perspective. Cambridge University Press.CrossRefGoogle Scholar
Valenzuela, M. J., & Sachdev, P. (2006). Brain reserve and dementia: A systematic review. Psychological Medicine, 36(4), 441454.CrossRefGoogle ScholarPubMed
Vemuri, P., Lesnick, T. G., Przybelski, S. A., Knopman, D. S., Lowe, V. J., Graff‐Radford, J., Roberts, R. O., Mielke, M. M., Machulda, M. M., Petersen, R. C., & Jack, C. R. Jr (2017). Age, vascular health, and Alzheimer disease biomarkers in an elderly sample. Annals of Neurology, 82(5), 706718.Google Scholar
Vemuri, P., Lesnick, T. G., Przybelski, S. A., Knopman, D. S., Roberts, R. O., Lowe, V. J., Kantarci, K., Senjem, M. L., Gunter, J. L., Boeve, B. F., Petersen, R. C., & Jack, C. R. Jr (2012). Effect of lifestyle activities on Alzheimer disease biomarkers and cognition. Annals of Neurology, 72(5), 730738.Google Scholar
Whalley, L. J., Dick, F. D., & McNeill, G. (2006). A life-course approach to the aetiology of late-onset dementias. The Lancet Neurology, 5(1), 8796.Google Scholar
Wilkins, R. H., & Brody, I. A. (1969). Alzheimers disease. Archives of Neurology, 21(1), 109.Google Scholar
Wilson, R. S., Boyle, P. A., Yu, L., Barnes, L. L., Schneider, J. A., & Bennett, D. A. (2013). Life-span cognitive activity, neuropathologic burden, and cognitive aging. Neurology, 81(4), 314321.Google Scholar
Yao, Z. F., Yang, M. H., Hwang, K., & Hsieh, S. (2020). Frontoparietal structural properties mediate adult life span differences in executive function. Scientific Reports, 10(1), 114.Google Scholar
Zhang, M., Katzman, R., Yu, E., Liu, W., Xiao, S. F., & Yan, H. (1998). A preliminary analysis of incidence of dementia in Shanghai, China. Psychiatry and Clinical Neurosciences, 52, S291S294.Google Scholar

References

Adolphs, R., Baron-Cohen, S., & Tranel, D. (2002). Impaired recognition of social emotions following amygdala damage. Journal of Cognitive Neuroscience, 14(8), 12641274. https://doi.org/10.1162/089892902760807258Google Scholar
Badre, D., & D’Esposito, M. (2009). Is the rostro-caudal axis of the frontal lobe hierarchical? Nature Reviews Neuroscience, 10(9), 659669. https://doi.org/10.1038/nrn2667Google Scholar
Bang, M., Kim, J., An, S. K., Youm, Y., Chey, J., Kim, H. C., Park, K., Namkoong, K., & Lee, E. (2019). Associations of systemic inflammation with frontotemporal functional network connectivity and out-degree social-network size in community-dwelling older adults. Brain, Behavior, and Immunity, 79, 309313. https://doi.org/10.1016/j.bbi.2019.01.025CrossRefGoogle ScholarPubMed
Barnes, D. E. (2011). The Mediterranean diet: Good for the heart = good for the brain? Annals of Neurology, 69(2), 226228. https://doi.org/10.1002/ana.22376Google Scholar
Barulli, D., & Stern, Y. (2013). Efficiency, capacity, compensation, maintenance, plasticity: Emerging concepts in cognitive reserve. Trends in Cognitive Sciences, 17(10), 502509. https://doi.org/10.1016/j.tics.2013.08.012CrossRefGoogle ScholarPubMed
Bell, H. C., Pellis, S. M., & Kolb, B. (2010). Juvenile peer play experience and the development of the orbitofrontal and medial prefrontal cortices. Behavioural Brain Research, 207(1), 713. https://doi.org/10.1016/j.bbr.2009.09.029Google Scholar
Bickart, K. C., Brickhouse, M., Negreira, A., Sapolsky, D., Barrett, L. F., & Dickerson, B. C. (2014). Atrophy in distinct corticolimbic networks in frontotemporal dementia relates to social impairments measured using the Social Impairment Rating Scale. Journal of Neurology, Neurosurgery & Psychiatry, 85(4), 438448. https://doi.org/10.1136/jnnp-2012-304656Google Scholar
Bickart, K. C., Dickerson, B. C., Barrett, L. F., & Feldman Barrett, L. (2014). The amygdala as a hub in brain networks that support social life. Neuropsychologia, 63, 235248. https://doi.org/10.1016/j.neuropsychologia.2014.08.013Google Scholar
Bickart, K. C., Hollenbeck, M. C., Barrett, L. F., & Dickerson, B. C. (2012). Intrinsic Amygdala – Cortical Functional Connectivity Predicts Social Network Size in Humans. Journal of Neuroscience, 32(42), 1472914741. https://doi.org/10.1523/JNEUROSCI.1599-12.2012Google Scholar
Bickart, K. C., Wright, C. I., Dautoff, R. J., Dickerson, B. C., & Barrett, L. F. (2011). Amygdala volume and social network size in humans. Nature Neuroscience, 14(2), 163164. https://doi.org/10.1038/nn.2724CrossRefGoogle ScholarPubMed
Blevins, C. L., Sagui, S. J., & Bennett, J. M. (2017). Inflammation and positive affect: Examining the stress-buffering hypothesis with data from the National Longitudinal Study of Adolescent to Adult Health. Brain, Behavior, and Immunity, 61, 2126. https://doi.org/10.1016/j.bbi.2016.07.149Google Scholar
Blumen, H. M., & Verghese, J. (2019). Gray matter volume covariance networks associated with social networks in older adults. Social Neuroscience, 14(5), 559570. https://doi.org/10.1080/17470919.2018.1535999Google Scholar
Casaletto, K. B., Elahi, F. M., Staffaroni, A. M., Walters, S., Contreras, W. R., Wolf, A., Dubal, D., Miller, B., Yaffe, K., & Kramer, J. H. (2019). Cognitive aging is not created equally: Differentiating unique cognitive phenotypes in “normal” adults. Neurobiology of Aging, 77, 1319. https://doi.org/10.1016/j.neurobiolaging.2019.01.007Google Scholar
Conti, L., Riccitelli, G. C., Preziosa, P., Vizzino, C., Marchesi, O., Rocca, M. A., & Filippi, M. (2021). Effect of cognitive reserve on structural and functional MRI measures in healthy subjects: A multiparametric assessment. Journal of Neurology, 268(5), 17801791. https://doi.org/10.1007/s00415-020-10331-6Google Scholar
Dávid-Barrett, T., & Dunbar, R. I. M. (2013). Processing power limits social group size: Computational evidence for the cognitive costs of sociality. Proceedings of the Royal Society B: Biological Sciences, 280(1765), 20131151. https://doi.org/10.1098/rspb.2013.1151CrossRefGoogle ScholarPubMed
Davis, S. W., Kragel, J. E., Madden, D. J., & Cabeza, R. (2012). The architecture of cross-hemispheric communication in the aging brain: Linking behavior to functional and structural connectivity. Cerebral Cortex, 22(1), 232242. https://doi.org/10.1093/cercor/bhr123Google Scholar
Dunbar, R. I. M. (2014). The social brain: Psychological underpinnings and implications for the structure of organizations. Current Directions in Psychological Science, 23(2), 109114. https://doi.org/10.1177/0963721413517118Google Scholar
Dziura, S. L., & Thompson, J. C. (2014). Social-network complexity in humans is associated with the neural response to social information. Psychological Science, 25(11), 20952101. https://doi.org/10.1177/0956797614549209Google Scholar
Ehlers, D. K., Daugherty, A. M., Burzynska, A. Z., Fanning, J., Awick, E. A., Chaddock-Heyman, L., Kramer, A. F., & McAuley, E. (2017). Regional brain volumes moderate, but do not mediate, the effects of group-based exercise training on reductions in loneliness in older adults. Frontiers in Aging Neuroscience, 9(APR). https://doi.org/10.3389/fnagi.2017.00110Google Scholar
Fjell, A. M., McEvoy, L., Holland, D., Dale, A. M., Walhovd, K. B., & Alzheimer’s Disease Neuroimaging Initiative. (2014). What is normal in normal aging? Effects of aging, amyloid and Alzheimer’s disease on the cerebral cortex and the hippocampus. Progress in Neurobiology, 117(2014), 2040. https://doi.org/10.1016/j.pneurobio.2014.02.004Google Scholar
Foubert-Samier, A., Catheline, G., Amieva, H., Dilharreguy, B., Helmer, C., Allard, M., & Dartigues, J.-F. (2012). Education, occupation, leisure activities, and brain reserve: A population-based study. Neurobiology of Aging, 33(2), 423.e15423.e25. https://doi.org/10.1016/j.neurobiolaging.2010.09.023CrossRefGoogle ScholarPubMed
Genon, S., Reid, A., Langner, R., Amunts, K., & Eickhoff, S. B. (2018). How to characterize the function of a brain region. Trends in Cognitive Sciences, 22(4), 350364. https://doi.org/10.1016/j.tics.2018.01.010Google Scholar
Gianaros, P. J., Kraynak, T. E., Kuan, D. C. H., Gross, J. J., McRae, K., Hariri, A. R., Manuck, S. B., Rasero, J., & Verstynen, T. D. (2020). Affective brain patterns as multivariate neural correlates of cardiovascular disease risk. Social Cognitive and Affective Neuroscience, 15(10), 10341045. https://doi.org/10.1093/scan/nsaa050Google Scholar
Gianaros, P. J., Marsland, A. L., Kuan, D. C. H., Schirda, B. L., Jennings, J. R., Sheu, L. K., Hariri, A. R., Gross, J. J., & Manuck, S. B. (2014). An inflammatory pathway links atherosclerotic cardiovascular disease risk to neural activity evoked by the cognitive regulation of emotion. Biological Psychiatry, 75(9), 738745. https://doi.org/10.1016/j.biopsych.2013.10.012Google Scholar
Gianaros, P. J., Marsland, A. L., Sheu, L. K., Erickson, K. I., & Verstynen, T. D. (2013). Inflammatory pathways link socioeconomic inequalities to white matter architecture. Cerebral Cortex, 23(9), 20582071. https://doi.org/10.1093/cercor/bhs191Google Scholar
Gianaros, P. J., & Wager, T. D. (2015). Brain-body pathways linking psychological stress and physical health. Current Directions in Psychological Science, 24(4), 313321. https://doi.org/10.1177/0963721415581476Google Scholar
Glass, C. K., Saijo, K., Winner, B., Marchetto, M. C., & Gage, F. H. (2010). Mechanisms underlying inflammation in neurodegeneration. Cell, 140(6), 918934. https://doi.org/10.1016/j.cell.2010.02.016Google Scholar
Habeck, C., Razlighi, Q., Gazes, Y., Barulli, D., Steffener, J., & Stern, Y. (2016). Cognitive reserve and brain maintenance: Orthogonal concepts in theory and practice. Cerebral Cortex, 1–8. https://doi.org/10.1093/cercor/bhw208Google Scholar
Hackett, R. A., Hamer, M., Endrighi, R., Brydon, L., & Steptoe, A. (2012). Loneliness and stress-related inflammatory and neuroendocrine responses in older men and women. Psychoneuroendocrinology, 37(11), 18011809. https://doi.org/10.1016/j.psyneuen.2012.03.016Google Scholar
Hampton, W. H., Unger, A., Von Der Heide, R. J., & Olson, I. R. (2016). Neural connections foster social connections: A diffusion-weighted imaging study of social networks. Social Cognitive and Affective Neuroscience, 11(5), 721727. https://doi.org/10.1093/scan/nsv153CrossRefGoogle ScholarPubMed
Hermes, G. L., Rosenthal, L., Montag, A., & McClintock, M. K. (2006). Social isolation and the inflammatory response: Sex differences in the enduring effects of a prior stressor. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 290(2), R273R282. https://doi.org/10.1152/ajpregu.00368.2005Google Scholar
Jaremka, L. M., Fagundes, C. P., Peng, J., Bennett, J. M., Glaser, R., Malarkey, W. B., & Kiecolt-Glaser, J. K. (2013). Loneliness promotes inflammation during acute stress. Psychological Science, 24(7), 10891097. https://doi.org/10.1177/0956797612464059Google Scholar
Joo, W., Kwak, S., Youm, Y., & Chey, J. (2017). Brain functional connectivity difference in the complete network of an entire village: The role of social network size and embeddedness. Scientific Reports, 7(1), 4465. https://doi.org/10.1038/s41598–017-04904-1Google Scholar
Kalpouzos, G., Persson, J., & Nyberg, L. (2012). Local brain atrophy accounts for functional activity differences in normal aging. Neurobiology of Aging, 33(3), 623.e1623.e13. https://doi.org/10.1016/j.neurobiolaging.2011.02.021Google Scholar
Kanai, R., Bahrami, B., Duchaine, B., Janik, A., Banissy, M. J., & Rees, G. (2012). Brain structure links loneliness to social perception. Current Biology, 22(20), 19751979. https://doi.org/10.1016/j.cub.2012.08.045Google Scholar
Kanai, R., & Rees, G. (2011). The structural basis of inter-individual differences in human behaviour and cognition. Nature Reviews. Neuroscience, 12(4), 231242. https://doi.org/10.1038/nrn3000Google Scholar
Karelina, K., Norman, G. J., Zhang, N., Morris, J. S., Peng, H., & DeVries, A. C. (2009). Social isolation alters neuroinflammatory response to stroke. Proceedings of the National Academy of Sciences, 106(14), 58955900. https://doi.org/10.1073/pnas.0810737106Google Scholar
Kim, G. E., Han, J. W., Kim, T. H., Suh, S. W., Bae, J. Bin, Kim, J. H., & Kim, K. W. (2020). Hippocampus mediates the effect of emotional support on cognitive function in older adults. The Journals of Gerontology: Series A, 75(8), 15021507. https://doi.org/10.1093/gerona/glz183Google Scholar
Kirby, L. A., Moraczewski, D., Warnell, K., Velnoskey, K., & Redcay, E. (2018). Social network size relates to developmental neural sensitivity to biological motion. Developmental Cognitive Neuroscience, 30(March), 169177. https://doi.org/10.1016/j.dcn.2018.02.012Google Scholar
Kolb, B., Gibb, R., & Gorny, G. (2003). Experience-dependent changes in dendritic arbor and spine density in neocortex vary qualitatively with age and sex. Neurobiology of Learning and Memory, 79(1), 110. https://doi.org/10.1016/S1074–7427(02)00021-7Google Scholar
Kolb, B., Mychasiuk, R., Muhammad, A., Li, Y., Frost, D. O., & Gibb, R. (2012). Experience and the developing prefrontal cortex. Proceedings of the National Academy of Sciences, 109, 1718617193. https://doi.org/10.1073/pnas.1121251109CrossRefGoogle ScholarPubMed
Krol, S. A., Meyer, M. L., Lieberman, M. D., & Bartz, J. A. (2018). Social working memory predicts social network size in humans. Adaptive Human Behavior and Physiology, 4(4), 387399. https://doi.org/10.1007/s40750–018-0100-9Google Scholar
Kwak, S., Joo, W., Youm, Y., & Chey, J. (2018). Social brain volume is associated with in-degree social network size among older adults. Proceedings of the Royal Society B: Biological Sciences, 285(1871), 20172708. https://doi.org/10.1098/rspb.2017.2708Google Scholar
Lewis, P. A., Rezaie, R., Brown, R., Roberts, N., & Dunbar, R. I. M. (2011). Ventromedial prefrontal volume predicts understanding of others and social network size. NeuroImage, 57(4), 16241629. https://doi.org/10.1016/j.neuroimage.2011.05.030Google Scholar
Lin, C., Keles, U., Tyszka, J. M., Gallo, M., Paul, L., & Adolphs, R. (2020). No strong evidence that social network index is associated with gray matter volume from a data-driven investigation. Cortex, 125, 307317. https://doi.org/10.1016/j.cortex.2020.01.021Google Scholar
Liu, X., Liu, S., Huang, R., Chen, X., Xie, Y., Ma, R., Luo, Y., Bu, J., & Zhang, X. (2018). Neuroimaging studies reveal the subtle difference among social network size measurements and shed light on new directions. Frontiers in Neuroscience, 12. https://doi.org/10.3389/fnins.2018.00461Google Scholar
Lockhart, S. N., & DeCarli, C. (2014). Structural imaging measures of brain aging. Neuropsychology Review, 24(3), 271289. https://doi.org/10.1007/s11065–014-9268-3Google Scholar
Lövdén, M., Bäckman, L., Lindenberger, U., Schaefer, S., & Schmiedek, F. (2010). A theoretical framework for the study of adult cognitive plasticity. Psychological Bulletin, 136(4), 659676. https://doi.org/10.1037/a0020080Google Scholar
Makinodan, M., Rosen, K. M., Ito, S., & Corfas, G. (2012). A Critical period for social experience-dependent oligodendrocyte maturation and myelination. Science, 337(6100), 13571360. https://doi.org/10.1126/science.1220845CrossRefGoogle ScholarPubMed
Marques, P., Soares, J. M., Magalhães, R., Santos, N. C., & Sousa, N. (2015). The bounds of education in the human brain connectome. Scientific Reports, 5, 12812. https://doi.org/10.1038/srep12812CrossRefGoogle ScholarPubMed
Marsland, A. L., Gianaros, P. J., Abramowitch, S. M., Manuck, S. B., & Hariri, A. R. (2008). Interleukin-6 covaries inversely with hippocampal grey matter volume in middle-aged adults. Biological Psychiatry, 64(6), 484490. https://doi.org/10.1016/j.biopsych.2008.04.016Google Scholar
Marsland, A. L., Gianaros, P. J., Kuan, D. C. H., Sheu, L. K., Krajina, K., & Manuck, S. B. (2015). Brain morphology links systemic inflammation to cognitive function in midlife adults. Brain, Behavior, and Immunity, 48, 195204. https://doi.org/10.1016/j.bbi.2015.03.015Google Scholar
McDonough, I. M., Haber, S., Bischof, G. N., & Park, D. C. (2015). The Synapse Project: Engagement in mentally challenging activities enhances neural efficiency. Restorative Neurology and Neuroscience, 33(6), 865882. https://doi.org/10.3233/RNN-150533Google Scholar
Meunier, D., Lambiotte, R., Fornito, A., Ersche, K. D., & Bullmore, E. T. (2009). Hierarchical modularity in human brain functional networks. Frontiers in Human Neuroscience, 3(October), 112. https://doi.org/10.3389/neuro.11.037.2009Google Scholar
Meunier, D., Stamatakis, E. A., & Tyler, L. K. (2014). Age-related functional reorganization, structural changes, and preserved cognition. Neurobiology of Aging, 35(1), 4254. https://doi.org/10.1016/j.neurobiolaging.2013.07.003Google Scholar
Meyer, M. L., Spunt, R. P., Berkman, E. T., Taylor, S. E., & Lieberman, M. D. (2012). Evidence for social working memory from a parametric functional MRI study. Proceedings of the National Academy of Sciences, 109(6), 18831888. https://doi.org/10.1073/pnas.1121077109Google Scholar
Molesworth, T., Sheu, L. K., Cohen, S., Gianaros, P. J., & Verstynen, T. D. (2014). Social network diversity and white matter microstructural integrity in humans. Social Cognitive and Affective Neuroscience, 10(9), 11691176. https://doi.org/10.1093/scan/nsv001Google Scholar
Ospina, J. P., Larson, A. G., Jalilianhasanpour, R., Williams, B., Diez, I., Dhand, A., Dickerson, B. C., & Perez, D. L. (2019). Individual differences in social network size linked to nucleus accumbens and hippocampal volumes in functional neurological disorder: A pilot study. Journal of Affective Disorders, 258, 5054. https://doi.org/10.1016/j.jad.2019.07.061CrossRefGoogle ScholarPubMed
Pellis, S. M., Hastings, E., Shimizu, T., Kamitakahara, H., Komorowska, J., Forgie, M. L., & Kolb, B. (2006). The effects of orbital frontal cortex damage on the modulation of defensive responses by rats in playful and nonplayful social contexts. Behavioral Neuroscience, 120(1), 7284. https://doi.org/10.1037/0735-7044.120.1.72Google Scholar
Pillemer, S., Holtzer, R., & Blumen, H. M. (2016). Functional connectivity associated with social networks in older adults: A resting-state fMRI study. Social Neuroscience, 12(3), 242252. https://doi.org/10.1080/17470919.2016.1176599Google Scholar
Reed, B. R., Mungas, D., Farias, S. T., Harvey, D., Beckett, L., Widaman, K., Hinton, L., & DeCarli, C. (2010). Measuring cognitive reserve based on the decomposition of episodic memory variance. Brain, 133(8), 21962209. https://doi.org/10.1093/brain/awq154Google Scholar
Reuter-Lorenz, P. A., & Park, D. C. (2014). How does it STAC up? Revisiting the scaffolding theory of aging and cognition. Neuropsychology Review, 24(3), 355370. https://doi.org/10.1007/s11065–014-9270-9Google Scholar
Rosano, C., Marsland, A. L., & Gianaros, P. J. (2012). Maintaining brain health by monitoring inflammatory processes: A mechanism to promote successful aging. Aging and Disease, 3(1), 1633. http://www.ncbi.nlm.nih.gov/pubmed/22500269Google Scholar
Rosenzweig, M. R., Bennett, E. L., & Diamond, M. C. (1972). Brain changes in response to experience. Scientific American, 226(2), 2229. https://doi.org/10.1038/scientificamerican0272–22Google Scholar
Sallet, J., Mars, R. B., Noonan, M. P., Andersson, J. L., O’Reilly, J. X., Jbabdi, S., Croxson, P. L., Jenkinson, M., Miller, K. L., & Rushworth, M. F. S. (2011). Social network size affects neural circuits in macaques. Science, 334(6056), 697700. https://doi.org/10.1126/science.1210027Google Scholar
Sato, W., Kochiyama, T., Uono, S., Sawada, R., Kubota, Y., Yoshimura, S., & Toichi, M. (2016). Structural neural substrates of reading the mind in the eyes. Frontiers in Human Neuroscience, 10(April), 151. https://doi.org/10.3389/fnhum.2016.00151CrossRefGoogle ScholarPubMed
Sato, W., Kochiyama, T., Uono, S., Yoshimura, S., Kubota, Y., Sawada, R., Sakihama, M., & Toichi, M. (2017). Reduced Gray matter volume in the social brain network in adults with autism spectrum disorder. Frontiers in Human Neuroscience, 11. https://doi.org/10.3389/fnhum.2017.00395Google Scholar
Schurz, M., Radua, J., Aichhorn, M., Richlan, F., & Perner, J. (2014). Fractionating theory of mind: A meta-analysis of functional brain imaging studies. Neuroscience and Biobehavioral Reviews, 42, 934. https://doi.org/10.1016/j.neubiorev.2014.01.009Google Scholar
Shine, J. M. (2019). Neuromodulatory influences on integration and segregation in the brain. Trends in Cognitive Sciences, 23(7), 572583. https://doi.org/10.1016/j.tics.2019.04.002CrossRefGoogle ScholarPubMed
Slavich, G. M., & Cole, S. W. (2013). The emerging field of human social genomics. Clinical Psychological Science, 1(3), 331348. https://doi.org/10.1177/2167702613478594Google Scholar
Slavich, G. M., Way, B. M., Eisenberger, N. I., & Taylor, S. E. (2010). Neural sensitivity to social rejection is associated with inflammatory responses to social stress. Proceedings of the National Academy of Sciences, 107(33), 1481714822. https://doi.org/10.1073/pnas.1009164107Google Scholar
Smith, B. M., Yao, X., Chen, K. S., & Kirby, E. D. (2018). A Larger social network enhances novel object location memory and reduces hippocampal microgliosis in aged mice. Frontiers in Aging Neuroscience, 10(May), 142. https://doi.org/10.3389/fnagi.2018.00142Google Scholar
Steffener, J., Gazes, Y., Habeck, C., & Stern, Y. (2016). The indirect effect of age group on switch costs via gray matter volume and task-related brain activity. Frontiers in Aging Neuroscience, 8(JUN), 111. https://doi.org/10.3389/fnagi.2016.00162Google Scholar
Steffener, J., & Stern, Y. (2012). Exploring the neural basis of cognitive reserve in aging. Biochimica et Biophysica Acta (BBA) – Molecular Basis of Disease, 1822(3), 467473. https://doi.org/10.1016/j.bbadis.2011.09.012Google Scholar
Stiller, J., & Dunbar, R. I. M. (2007). Perspective-taking and memory capacity predict social network size. Social Networks, 29(1), 93104. https://doi.org/10.1016/j.socnet.2006.04.001Google Scholar
Suárez, L. E., Markello, R. D., Betzel, R. F., & Misic, B. (2020). Linking structure and function in macroscale brain networks. Trends in Cognitive Sciences, 24(4), 302315. https://doi.org/10.1016/j.tics.2020.01.008Google Scholar
Tavor, I., Jones, O. P., Mars, R. B., Smith, S. M., Behrens, T. E., & Jbabdi, S. (2016). Task-free MRI predicts individual differences in brain activity during task performance. Science, 352(6282), 216220. https://doi.org/10.1126/science.aad8127Google Scholar
Tomasi, D., & Volkow, N. D. (2012). Aging and functional brain networks. Molecular Psychiatry, 17(5), 549558. https://doi.org/10.1038/mp.2011.81Google Scholar
Uchino, B. N., Ruiz, J. M., Smith, T. W., Smyth, J. M., Taylor, D. J., Allison, M., & Ahn, C. (2015). The strength of family ties: Perceptions of network relationship quality and levels of C-reactive proteins in the North Texas Heart Study. Annals of Behavioral Medicine, 49(5), 776781. https://doi.org/10.1007/s12160–015-9699-yGoogle Scholar
Valenzuela, M. J., Brayne, C., Sachdev, P., Wilcock, G., & Matthews, F. (2011). Cognitive lifestyle and long-term risk of dementia and survival after diagnosis in a multicenter population-based cohort. American Journal of Epidemiology, 173(9), 10041012. https://doi.org/10.1093/aje/kwq476Google Scholar
Valenzuela, M. J., Breakspear, M., & Sachdev, P. (2007). Complex mental activity and the aging brain: Molecular, cellular and cortical network mechanisms. Brain Research Reviews, 56(1), 198213. https://doi.org/10.1016/j.brainresrev.2007.07.007Google Scholar
Valenzuela, M. J., Sachdev, P., Wen, W., Chen, X., & Brodaty, H. (2008). Lifespan mental activity predicts diminished rate of hippocampal atrophy. PLoS ONE, 3(7), 16. https://doi.org/10.1371/journal.pone.0002598Google Scholar
Van Overwalle, F. (2009). Social cognition and the brain: A meta-analysis. Human Brain Mapping, 30(3), 829858. https://doi.org/10.1002/hbm.20547Google Scholar
Vemuri, P., Lesnick, T. G., Przybelski, S. A., Knopman, D. S., Lowe, V. J., Graff-Radford, J., Roberts, R. O., Mielke, M. M., Machulda, M. M., Petersen, R. C., & Jack, C. R. (2017). Age, vascular health, and Alzheimer disease biomarkers in an elderly sample. Annals of Neurology, 82(5), 706718. https://doi.org/10.1002/ana.25071Google Scholar
Von der Heide, R., Vyas, G., & Olson, I. R. (2013). The social network–network: Size is predicted by brain structure and function in the amygdala and paralimbic regions. Social Cognitive and Affective Neuroscience, 9(12), 19621972. https://doi.org/10.1093/scan/nsu009Google Scholar
Wang, Y., & Olson, I. R. (2018). The original social network: White matter and social cognition. Trends in Cognitive Sciences, 22(6), 504516. https://doi.org/10.1016/j.tics.2018.03.005CrossRefGoogle ScholarPubMed
Warren, K. N., Beason-Held, L. L., Carlson, O., Egan, J. M., An, Y., Doshi, J., Davatzikos, C., Ferrucci, L., & Resnick, S. M. (2018). Elevated markers of inflammation are associated with longitudinal changes in brain function in older adults. The Journals of Gerontology: Series A, 73(6), 770778. https://doi.org/10.1093/gerona/glx199Google Scholar
Zou, L., Yang, Z., Wang, Y., Lui, S. S. Y., Chen, A., Cheung, E. F. C., & Chan, R. C. K. (2016). What does the nose know? Olfactory function predicts social network size in human. Scientific Reports, 6, 25026. https://doi.org/10.1038/srep25026Google Scholar

References

Badal, V. D., Vaccariello, E. D., Murray, E. R., Yu, K. E., Knight, R., Jeste, D. V., & Nguyen, T. T. (2020). The gut microbiome, aging, and longevity: A systematic review. Nutrients, 12(12), 3759. https://doi.org/10.3390/nu12123759Google Scholar
Belkaid, Y., & Hand, T. W. (2014). Role of the microbiota in immunity and inflammation. Cell, 157(1), 121141). https://doi.org/10.1016/j.cell.2014.03.011Google Scholar
Beydoun, M. A., Weiss, J., Obhi, H. K., Beydoun, H. A., Dore, G. A., Liang, H., Evans, M. K., & Zonderman, A. B. (2019). Cytokines are associated with longitudinal changes in cognitive performance among urban adults. Brain, Behavior, and Immunity, 80, 474487. https://doi.org/10.1016/j.bbi.2019.04.027Google Scholar
Bermúdez-Humarán, L. G., Salinas, E., Ortiz, G. G., Ramirez-Jirano, L. J., Morales, J. A., & Bitzer-Quintero, O. K. (2019). From probiotics to psychobiotics: Live beneficial bacteria which act on the brain–gut axis. Nutrients, 11(4), 890. https://doi.org/10.3390/nu11040890Google Scholar
Blane, D., Kelly-Irving, M., & Bartley, M. (2013). Social-biological transitions: How does the social become biological? Longitudinal and Life Course Studies, 4(2), 136146. https://doi.org/10.14301/llcs.v4i2.236Google Scholar
Boyle, P. A., Buchman, A. S., Barnes, L. L., & Bennett, D. A. (2010). Effect of a purpose in life on risk of incident alzheimer disease and mild cognitive impairment in community-dwelling older persons. Archives of General Psychiatry, 67(3), 304310. http://archpsyc.jamanetwork.com/article.aspx?doi=10.1001/archgenpsychiatry.2009.208CrossRefGoogle ScholarPubMed
Cacioppo, J. T., Hawkley, L. C., Crawford, L. E., Ernst, J. M., Burleson, M. H., Kowalewski, R. B., Malarkey, W. B., Van Cauter, E., & Berntson, G. G. (2002). Loneliness and health: Potential mechanisms. Psychosomatic Medicine, 64(3), 407417. https://doi.org/10.1097/00006842-200205000-00005CrossRefGoogle ScholarPubMed
Calder, P. C., Ahluwalia, N., Brouns, F., Buetler, T., Clement, K., Cunningham, K., Esposito, K., Jönsson, L. S., Kolb, H., Lansink, M., Marcos, A., Margioris, A., Matusheski, N., Nordmann, H., O’Brien, J., Pugliese, G., Rizkalla, S., Schalkwijk, C., Tuomilehto, J., … Winklhofer-Roob, B. M. (2011). Dietary factors and low-grade inflammation in relation to overweight and obesity. British Journal of Nutrition, 106(Suppl. 3), S1S78. https://doi.org/10.1017/s0007114511005460Google Scholar
Calder, P. C., Bosco, N., Bourdet-Sicard, R., Capuron, L., Delzenne, N., Doré, J., Franceschi, C., Lehtinen, M. J., Recker, T., Salvioli, S., & Visioli, F. (2017). Health relevance of the modification of low grade inflammation in ageing (inflammageing) and the role of nutrition. Ageing Research Reviews, 40, 95119. https://doi.org/10.1016/j.arr.2017.09.001Google Scholar
Cohen, R., Bavishi, C., & Rozanski, A. (2016). Purpose in life and its relationship to all-cause mortality and cardiovascular events: A meta-analysis. Psychosomatic Medicine, 78(2), 122133. https://doi.org/10.1097/PSY.0000000000000274Google Scholar
Cole, S. W., Hawkley, L. C., Arevalo, J. M., Sung, C. Y., Rose, R. M., & Cacioppo, J. T. (2007). Social regulation of gene expression in human leukocytes. Genome Biology, 8(9), R189. https://doi.org/10.1186/gb-2007-8-9-r189Google Scholar
Cole, S. W., Levine, M. E., Arevalo, J. M. G., Ma, J., Weir, D. R., & Crimmins, E. M. (2015). Loneliness, eudaimonia, and the human conserved transcriptional response to adversity. Psychoneuroendocrinology, 62, 1117. https://doi.org/10.1016/j.psyneuen.2015.07.001Google Scholar
Corlier, F., Hafzalla, G., Faskowitz, J., Kuller, L. H., Becker, J. T., Lopez, O. L., Thompson, P. M., & Braskie, M. N. (2018). Systemic inflammation as a predictor of brain aging: Contributions of physical activity, metabolic risk, and genetic risk. NeuroImage, 172, 118129. https://doi.org/10.1016/j.neuroimage.2017.12.027Google Scholar
Dantzer, R., O’Connor, J. C., Freund, G. G., Johnson, R. W., & Kelley, K. W. (2008). From inflammation to sickness and depression: When the immune system subjugates the brain. Nature Reviews Neuroscience, 9(1), 4656. https://doi.org/10.1038/nrn2297Google Scholar
Del Giudice, M., & Gangestad, S. W. (2018). Rethinking IL-6 and CRP: Why they are more than inflammatory biomarkers, and why it matters. Brain, Behavior, and Immunity, 70, 6175. https://doi.org/10.1016/j.bbi.2018.02.013Google Scholar
Dinan, T. G., & Cryan, J. F. (2017). Brain–gut–microbiota axis and mental health. Psychosomatic Medicine, 79(8), 920926. http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=28806201&retmode=ref&cmd=prlinksGoogle Scholar
Dinan, T. G., Stilling, R. M., Stanton, C., & Cryan, J. F. (2015). Collective unconscious: How gut microbes shape human behavior. In Journal of Psychiatric Research, 63, 19. https://doi.org/10.1016/j.jpsychires.2015.02.021Google Scholar
Eisenberger, N. I. (2013). Social ties and health: A social neuroscience perspective. Current Opinion in Neurobiology, 23(3), 407413. https://doi.org/10.1016/j.conb.2013.01.006Google Scholar
Fabbri, E., An, Y., Zoli, M., Simonsick, E. M., Guralnik, J. M., Bandinelli, S., Boyd, C. M., & Ferrucci, L. (2015). Aging and the burden of multimorbidity: Associations with inflammatory and anabolic hormonal biomarkers. Journals of Gerontology: Series A, Biological Sciences and Medical Sciences, 70(1), 6370. https://doi.org/10.1093/gerona/glu127Google Scholar
Franceschi, C., Bonafè, M., Valensin, S., Olivieri, F., De Luca, M., Ottaviani, E., & De Benedictis, G. (2000). Inflamm-aging. An evolutionary perspective on immunosenescence. Annals of the New York Academy of Sciences, 908, 244254. https://doi.org/10.1111/j.1749-6632.2000.tb06651.xGoogle Scholar
Gyengesi, E., & Münch, G. (2020). In search of an anti-inflammatory drug for Alzheimer disease. Nature Reviews Neurology, 16(3), 131132. https://doi.org/10.1038/s41582-019-0307-9Google Scholar
Haddick, P. C. G., Larson, J. L., Rathore, N., Bhangale, T. R., Phung, Q. T., Srinivasan, K., Hansen, D. V., Lill, J. R., Pericak-Vance, M. A., Haines, J., Farrer, L. A., Kauwe, J. S., Schellenberg, G. D., Cruchaga, C., Goate, A. M., Behrens, T. W., Watts, R. J., Graham, R. R., Kaminker, J. S., & Van Der Brug, M. (2017). A common variant of IL-6R is associated with elevated IL-6 pathway activity in Alzheimer’s disease brains. Journal of Alzheimer’s Disease, 56(3), 10371054. https://doi.org/10.3233/JAD-160524Google Scholar
Holt-Lunstad, J. (2018). Why Social relationships are important for physical health: A systems approach to understanding and modifying risk and protection. Annual Review of Psychology, 69, 437458. https://doi.org/10.1146/annurev-psych-122216-011902Google Scholar
Howard, R., Zubko, O., Bradley, R., Harper, E., Pank, L., O’Brien, J., Fox, C., Tabet, N., Livingston, G., Bentham, P., McShane, R., Burns, A., Ritchie, C., Reeves, S., Lovestone, S., Ballard, C., Noble, W., Nilforooshan, R., Wilcock, G., & Gray, R. (2020). Minocycline at 2 different dosages vs placebo for patients with mild Alzheimer disease: A randomized clinical trial. JAMA Neurology, 77(2), 164174. https://doi.org/10.1001/jamaneurol.2019.3762Google Scholar
Kim, E. S., Sun, J. K., Park, N., & Peterson, C. (2013). Purpose in life and reduced incidence of stroke in older adults: “The Health and Retirement Study.” Journal of Psychosomatic Research, 74(5), 427432. https://linkinghub.elsevier.com/retrieve/pii/S0022399913000391Google Scholar
Kim, E. S., Chen, Y., Nakamura, J. S., Ryff, C. D., & VanderWeele, T. J. (2021). Sense of purpose in life and subsequent physical, behavioral, and psychosocial health: An outcome-wide approach. American Journal of Health Promotion, 36(1):137147. https://doi.org/10.1177/08901171211038545Google Scholar
Kowalski, K., & Mulak, A. (2019). Brain–gut–microbiota axis in Alzheimer’s disease. Journal of Neurogastroenterology and Motility, 25(1), 4860. https://doi.org/10.5056/jnm18087Google Scholar
Kuhlman, K. R., Chiang, J. J., Horn, S., & Bower, J. E. (2017). Developmental psychoneuroendocrine and psychoneuroimmune pathways from childhood adversity to disease. Neuroscience and Biobehavioral Reviews, 80(April), 166184. https://doi.org/10.1016/j.neubiorev.2017.05.020Google Scholar
Leschak, C. J., & Eisenberger, N. I. (2019). Two distinct immune pathways linking social relationships with health: Inflammatory and antiviral processes. Psychosomatic Medicine, 81(8), 711719. https://doi.org/10.1097/PSY.0000000000000685Google Scholar
Miller, G. E., Lachman, M. E., Chen, E., Gruenewald, T. L., Karlamangla, A. S., & Seeman, T. E. (2011). Pathways to resilience: Maternal nurturance as a buffer against the effects of childhood poverty on metabolic syndrome at midlife. Psychological Science, 22(12), 15911599. http://journals.sagepub.com/doi/10.1177/0956797611419170Google Scholar
Moieni, M., & Eisenberger, N. I. (2018). Effects of inflammation on social processes and implications for health. Annals of the New York Academy of Sciences, 1428(1), 513. https://doi.org/10.1111/nyas.13864Google Scholar
Mosca, A., Leclerc, M., & Hugot, J. P. (2016). Gut Microbiota diversity and human diseases: Should we reintroduce key predators in our ecosystem? Frontiers in Microbiology, 7(1182), 842. http://journal.frontiersin.org/Article/10.3389/fmicb.2016.00455/abstractGoogle Scholar
Muscatell, K. A., Brosso, S. N., & Humphreys, K. L. Socioeconomic status and inflammation: A meta-analysis. Molecular Psychiatry 25, 21892199 (2020). https://doi.org/10.1038/s41380-018-0259-2Google Scholar
Mwilambwe-Tshilobo, L., Ge, T., Chong, M., Ferguson, M. A., Misic, B., Burrow, A. L., Leahy, R. M., & Spreng, R. N. (2019). Loneliness and meaning in life are reflected in the intrinsic network architecture of the brain. Social Cognitive and Affective Neuroscience, 14(4), 423433. https://doi.org/10.1093/scan/nsz021Google Scholar
Nersesian, P. V, Han, H.-R., Yenokyan, G., Blumenthal, R. S., Nolan, M. T., Hladek, M. D., & Szanton, S. L. (2018). Loneliness in middle age and biomarkers of systemic inflammation: Findings from midlife in the United States. Social Science & Medicine ( 1982 ), 209, 174181. https://linkinghub.elsevier.com/retrieve/pii/S0277953618301667Google Scholar
Nguyen, T. T., Zhang, X., Wu, T. C., Liu, J., Le, C., Tu, X. M., Knight, R., & Jeste, D. V. (2021). Association of loneliness and wisdom with gut microbial diversity and composition: An exploratory study. Frontiers in Psychiatry, 12(March), 18. https://doi.org/10.3389/fpsyt.2021.648475Google Scholar
Piber, D., Olmstead, R., Cho, J. H. J., Witarama, T., Perez, C., Dietz, N., Seeman, T. E., Breen, E. C., Cole, S. W., & Irwin, M. R. (2019). Inflammaging: Age and systemic, cellular, and nuclear inflammatory biology in older adults. Journals of Gerontology: Series A, Biological Sciences and Medical Sciences, 74(11), 17161724. https://doi.org/10.1093/gerona/glz130Google Scholar
Puzianowska-Kuźnicka, M., Owczarz, M., Wieczorowska-Tobis, K., Nadrowski, P., Chudek, J., Slusarczyk, P., Skalska, A., Jonas, M., Franek, E., & Mossakowska, M. (2016). Interleukin-6 and C-reactive protein, successful aging, and mortality: The PolSenior study. Immunity and Ageing, 13(1). https://doi.org/10.1186/s12979-016-0076-xGoogle Scholar
Ryff, C. D., Heller, A. S., Schaefer, S. M., van Reekum, C., & Davidson, R. J. (2016). Purposeful engagement, healthy aging, and the brain. Current Behavioral Neuroscience Reports, 3(4), 318327. https://doi.org/10.1007/s40473-016-0096-zGoogle Scholar
Salvador, A. F., de Lima, K. A. & Kipnis, J. Neuromodulation by the immune system: a focus on cytokines. Nat Rev Immunol 21, 526541 (2021). https://doi.org/10.1038/s41577-021-00508-zGoogle Scholar
Shiba, K., Kubzansky, L. D., Williams, D. R., VanderWeele, T. J., & Kim, E. S. (2021). Associations between purpose in life and mortality by SES. American Journal of Preventive Medicine, 61(2), e53e61. https://doi.org/10.1016/j.amepre.2021.02.011Google Scholar
Shiovitz-Ezra, S., & Parag, O. (2019). Does loneliness “get under the skin”? Associations of loneliness with subsequent change in inflammatory and metabolic markers. Aging and Mental Health, 23(10), 13581366. https://doi.org/10.1080/13607863.2018.1488942Google Scholar
Smith, K. J., Gavey, S., Riddell, N. E., Kontari, P., & Victor, C. (2020). The association between loneliness, social isolation and inflammation: A systematic review and meta-analysis. Neuroscience and Biobehavioral Reviews, 112, 519541. https://doi.org/10.1016/j.neubiorev.2020.02.002Google Scholar
Sochocka, M., Donskow-Łysoniewska, K., Diniz, B. S., Kurpas, D., Brzozowska, E., & Leszek, J. (2019). The gut microbiome alterations and inflammation-driven pathogenesis of alzheimer’s disease – A critical review. Molecular Neurobiology, 56(3), 18411851. https://doi.org/10.1007/s12035–018-1188-4Google Scholar
Uchino, B. N. (2006). Social support and health: A review of physiological processes potentially underlying links to disease outcomes. Journal of Behavioral Medicine, 29(4), 377387. https://doi.org/10.1007/s10865-006-9056-5Google Scholar
Uchino, B. N., Landvatter, J., Zee, K., & Bolger, N. (2020). Social support and antibody responses to vaccination: A meta-analysis. Annals of Behavioral Medicine, 54(8), 567574. https://doi.org/10.1093/abm/kaaa029Google Scholar
Uchino, B. N., Trettevik, R., Kent de Grey, R. G., Cronan, S., Hogan, J., & Baucom, B. R. W. (2018). Social support, social integration, and inflammatory cytokines: A meta-analysis. Health Psychology, 37(5), 462471. https://doi.org/10.1037/hea0000594Google Scholar
Valentini, L., Pinto, A., Bourdel-Marchasson, I., Ostan, R., Brigidi, P., Turroni, S., Hrelia, S., Hrelia, P., Bereswill, S., Fischer, A., Leoncini, E., Malaguti, M., Blanc-Bisson, C., Durrieu, J., Spazzafumo, L., Buccolini, F., Pryen, F., Donini, L. M., Franceschi, C., & Lochs, H. (2015). Impact of personalized diet and probiotic supplementation on inflammation, nutritional parameters and intestinal microbiota – The “RISTOMED project”: Randomized controlled trial in healthy older people. Clinical Nutrition, 34(4), 593602. https://doi.org/10.1016/j.clnu.2014.09.023Google Scholar
Verdi, S., Jackson, M. A., Beaumont, M., Bowyer, R. C. E., Bell, J. T., Spector, T. D., & Steves, C. J. (2018). An Investigation into physical frailty as a link between the gut microbiome and cognitive health. Frontiers in Aging Neuroscience, 10. https://doi.org/10.3389/fnagi.2018.00398Google Scholar
Vogt, N. M., Kerby, R. L., Dill-McFarland, K. A., Harding, S. J., Merluzzi, A. P., Johnson, S. C., Carlsson, C. M., Asthana, S., Zetterberg, H., Blennow, K., Bendlin, B. B., & Rey, F. E. (2017). Gut microbiome alterations in Alzheimer’s disease. Scientific Reports, 7(1), 111. https://doi.org/10.1038/s41598-017-13601-yGoogle Scholar
Wyss-Coray, T., & Rogers, J. (2012). Inflammation in Alzheimer disease – A brief review of the basic science and clinical literature. Cold Spring Harbor Perspectives in Medicine, 2(1), a006346a006346. https://doi.org/10.1101/cshperspect.a006346Google Scholar
Yu, L., Boyle, P. A., Wilson, R. S., Levine, S. R., Schneider, J. A., & Bennett, D. A. (2015). Purpose in life and cerebral infarcts in community-dwelling older people. Stroke, 46(4), 10711076. https://doi.org/10.1161/STROKEAHA.114.008010Google Scholar

References

Abdellaoui, A., Sanchez-Roige, S., Sealock, J., Treur, J. L., Dennis, J., Fontanillas, P., Elson, S., Nivard, M. G., Ip, H. F., Van Der Zee, M., Baselmans, B. M. L., Hottenga, J. J., Willemsen, G., Mosing, M., Lu, Y., Pedersen, N. L., Denys, D., Amin, N., M Van Duijn, C., Szilagyi, I., … Boomsma, D. I. (2019). Phenome-wide investigation of health outcomes associated with genetic predisposition to loneliness. Human Molecular Genetics, 28(22), 38533865. https://doi.org/10.1093/hmg/ddz219Google Scholar
Adam, E. K., Hawkley, L. C., Kudielka, B. M., & Cacioppo, J. T. (2006). Day-to-day dynamics of experience-cortisol associations in a population-based sample of older adults. Proceedings of the National Academy of Sciences, 103(45), 1705817063. https://doi.org/10.1073/pnas.0605053103Google Scholar
Aisa, B., Tordera, R., Lasheras, B., Del Río, J., & Ramírez, M. J. (2007). Cognitive impairment associated to HPA axis hyperactivity after maternal separation in rats. Psychoneuroendocrinology, 32(3), 256266. https://doi.org/10.1016/j.psyneuen.2006.12.013Google Scholar
Antonucci, T. C., Ajrouch, K. J., & Birditt, K. S. (2014). The convoy model: Explaining social relations from a multidisciplinary perspective. Gerontologist, 54(1), 8292. https://doi.org/10.1093/geront/gnt118Google Scholar
Beal, C. (2006). Loneliness in older women: A review of the literature. Issues in Mental Health Nursing, 27(7), 795813. https://doi.org/10.1080/01612840600781196Google Scholar
Birditt, K. S., & Fingerman, K. L. (2005). Do we get better at picking our battles? Age group differences in descriptions of behavioral reactions to interpersonal tensions. Journals of Gerontology: Series B, Psychological Sciences and Social Sciences, 60(3), P121P128. https://doi.org/10.1093/geronb/60.3.P121Google Scholar
Burt, R. S., Kilduff, M., & Tasselli, S. (2013). Social network analysis: Foundations and frontiers on advantage. Annual Review of Psychology, 64(January 2013), 527547. https://doi.org/10.1146/annurev-psych-113011-143828Google Scholar
Cacioppo, J. T., Hawkley, L. C., & Thisted, R. A. (2010). Perceived social isolation makes me sad: 5-year cross-lagged analyses of loneliness and depressive symptomatology in the Chicago Health, Aging, and Social Relations Study. Psychology and Aging, 25(2), 453463. https://doi.org/10.1037/a0017216Google Scholar
Cacioppo, S., Grippo, A. J., London, S., Goossens, L., & Cacioppo, J. T. (2015). Loneliness: Clinical Import and Interventions. Perspectives on Psychological Science, 10(2), 238249. https://doi.org/10.1177/1745691615570616Google Scholar
Cairns, R. B., Leung, M.-C., Buchanan, L., & Cairns, B. D. (1995). Friendships and social networks in childhood and adolescence: Fluidity, reliability, and interrelations. Child Development, 66(5), 13301345. https://doi.org/10.2307/1131650Google Scholar
Carstensen, L. L., & Mikels, J. A. (2005). At the intersection of emotion and cognition: Aging and the positivity effect. Current Directions in Psychological Science, 14(3), 117121.Google Scholar
Charles, S. T., & Carstensen, L. L. (2010). Social and emotional aging. Annual Review of Psychology, 61, 383409. https://doi.org/10.1146/annurev.psych.093008.100448Google Scholar
Charles, S. T., Mather, M., & Carstensen, L. L. (2003). Aging and emotional memory: The forgettable nature of negative images for older adults. Journal of Experimental Psychology: General, 132(2), 310324. https://doi.org/10.1037/0096-3445.132.2.310Google Scholar
Chen, Y., & Feeley, T. H. (2014). Social support, social strain, loneliness, and well-being among older adults: An analysis of the Health and Retirement Study. Journal of Social and Personal Relationships, 31(2), 141161.Google Scholar
Clyde, D. (2018). The genetics of loneliness. Nature Reviews Genetics, 19(9), 532533. https://doi.org/10.1038/s41576-018-0036-8Google Scholar
Cohen-Mansfield, J., Hazan, H., Lerman, Y., & Shalom, V. (2016). Correlates and predictors of loneliness in older-adults: A review of quantitative results informed by qualitative insights. International Psychogeriatrics, 28(4), 557576. https://doi.org/10.1017/S1041610215001532Google Scholar
Cohen-Mansfield, J., & Parpura-Gill, A. (2007). Loneliness in older persons: A theoretical model and empirical findings. International Psychogeriatrics, 19(2), 279294. https://doi.org/10.1017/S1041610206004200Google Scholar
Cohen-Mansfield, J., Shmotkin, D., & Goldberg, S. (2009). Loneliness in old age: Longitudinal changes and their determinants in an Israeli sample. International Psychogeriatrics, 21(6), 11601170. https://doi.org/10.1017/S1041610209990974Google Scholar
d’Oleire Uquillas, F., Jacobs, H. I. L., Biddle, K. D., Properzi, M., Hanseeuw, B., Schultz, A. P., Rentz, D. M., Johnson, K. A., Sperling, R. A., & Donovan, N. J. (2018). Regional tau pathology and loneliness in cognitively normal older adults. Translational Psychiatry, 8(1), 282. https://doi.org/10.1038/s41398-018-0345-xGoogle Scholar
Day, F. R., Ong, K. K., & Perry, J. R. B. (2018). Elucidating the genetic basis of social interaction and isolation. Nature Communications, 9(1), 2457. https://doi.org/10.1038/s41467-018-04930-1Google Scholar
Deniro, D. A. (1995). Perceived alienation in individuals with residual-type schizophrenia. Issues in Mental Health Nursing, 16(3), 185200.Google Scholar
Donovan, N. J., Okereke, O. I., Vannini, P., Amariglio, R. E., Rentz, D. M., Marshall, G. A., Johnson, K. A., & Sperling, R. A. (2016). Association of higher cortical amyloid burden with loneliness in cognitively normal older adults. JAMA Psychiatry, 73(12), 12301237. https://doi.org/10.1001/jamapsychiatry.2016.2657Google Scholar
Donovan, N. J., Wu, Q., Rentz, D. M., Sperling, R. A., Marshall, G. A., & Glymour, M. M. (2017). Loneliness, depression and cognitive function in older US adults. International Journal of Geriatric Psychiatry, 32(5), 564573. https://doi.org/10.1002/gps.4495Google Scholar
Dykstra, P. A. (2009). Older adult loneliness: Myths and realities. European Journal of Ageing, 6(2), 91100. https://doi.org/10.1007/s10433-009-0110-3Google Scholar
Dykstra, P. A., Van Tilburg, T. G., & Gierveld, J. D. J. (2005). Changes in older adult loneliness: Results from a seven-year longitudinal study. Research on Aging, 27(6), 725747. https://doi.org/10.1177/0164027505279712Google Scholar
Ferraro, K. F. (1984). Widowhood and Social Participation in Later Life: Isolation or Compensation? Research on Aging, 6(4), 451468. https://doi.org/10.1177/0164027584006004001Google Scholar
Gao, J., Davis, L. K., Hart, A. B., Sanchez-Roige, S., Han, L., Cacioppo, J. T., & Palmer, A. A. (2017). Genome-wide association study of loneliness demonstrates a role for common variation. Neuropsychopharmacology, 42, 811821. https://doi.org/10.1038/npp.2016.197Google Scholar
Hänsel, A., Hong, S., Cámara, R. J. A., & von Känel, R. (2010). Inflammation as a psychophysiological biomarker in chronic psychosocial stress. Neuroscience and Biobehavioral Reviews, 35(1), 115121. https://doi.org/10.1016/j.neubiorev.2009.12.012Google Scholar
Hawkley, L. C. (2007). Aging and loneliness: Downhill quickly? Current Directions in Psychological Science, 16(4), 187191. https://doi.org/10.1111/j.1467-8721.2007.00501.xGoogle Scholar
Hawkley, L. C., Browne, M. W., & Cacioppo, J. T. (2005). How can I connect with thee? Let me count the ways. Psychological Science, 16(10), 798804.CrossRefGoogle ScholarPubMed
Hawkley, L. C., & Cacioppo, J. T. (2010). Loneliness matters: A theoretical and empirical review of consequences and mechanisms. Annals of Behavioral Medicine, 40(2), 218227. https://doi.org/10.1007/s12160-010-9210-8Google Scholar
Hawkley, L. C., Hughes, M. E., Waite, L. J., Masi, C. M., Thisted, R. A., & Cacioppo, J. T. (2008). From social structural factors to perceptions of relationship quality and loneliness: The Chicago Health, Aging, and Social Relations Study. The Journals of Gerontology. Series B, Psychological Sciences and Social Sciences, 63(6), S375S384. https://doi.org/10.1093/geronb/63.6.S375Google Scholar
Hector-Taylor, L., & Adams, P. (1996). State versus trait loneliness in elderly New Zealanders. Psychological Reports, 78(3_suppl), 13291330. https://doi.org/10.2466/pr0.1996.78.3c.1329Google Scholar
Hollenhorst, S. J., & Jones, C. D. (2001). Wilderness solitude: Beyond the social-spatial perspective. In Freimund, W. A., Cole, D. N., comps. Visitor Use Density and Wilderness Experience: Proceedings 13 June 2000, Missoula, MT. Proceedings RMRS-P-20, Ogden, UT. US Department of Agriculture, Forest Service, Rocky Mountain Research Station, 20, 56–61.Google Scholar
Holt-Lunstad, J., Smith, T. B., Baker, M., Harris, T., & Stephenson, D. (2015). Loneliness and social isolation as risk factors for mortality. Perspectives on Psychological Science, 10(2), 227237. https://doi.org/10.1177/1745691614568352Google Scholar
Hostinar, C. E. (2015). Recent developments in the study of social relationships, stress responses, and physical health. Current Opinion in Psychology, 5, 9095. https://doi.org/10.1016/j.copsyc.2015.05.004Google Scholar
House, J. S., Landis, K. R., & Umberson, D. (1988). Social relationships and health. Science, 241(4865), 540545.Google Scholar
Jylhä, M. (2004). Old age and loneliness: Cross-sectional and longitudinal analyses in the Tampere longitudinal study on aging. Canadian Journal on Aging/La Revue Canadienne Du Vieillissement, 23(2), 157168. https://doi.org/10.1353/cja.2004.0023Google Scholar
Kawachi, I., & Berkman, L. F. (2001). Social ties and mental health. Journal of Urban Health, 78(3), 458467. https://doi.org/10.1093/jurban/78.3.458Google Scholar
Kim, H., Kwak, S., Kim, J., Youm, Y., & Chey, J. (2019). Social network position moderates the relationship between late-life depressive symptoms and memory differently in men and women. Scientific Reports, 9(1), 110. https://doi.org/10.1038/s41598-019-42388-3Google Scholar
Kim, H., Kwak, S., Youm, Y., & Chey, J. (2021). Social network characteristics predict loneliness in older adults. Gerontology, 68(3), 309320. https://doi.org/10.1159/000516226Google Scholar
Kinney, J. W., Bemiller, S. M., Murtishaw, A. S., Leisgang, A. M., Salazar, A. M., & Lamb, B. T. (2018). Inflammation as a central mechanism in Alzheimer’s disease. Alzheimer’s and Dementia: Translational Research and Clinical Interventions, 4(1), 575590. https://doi.org/10.1016/j.trci.2018.06.014Google Scholar
Li, Y., & Ferraro, K. F. (2006). Volunteering in middle and later life: Is health a benefit, barrier or both? Social Forces, 85(1), 497519. https://doi.org/10.1353/sof.2006.0132Google Scholar
Long, C. R., & Averill, J. R. (2003). Solitude: An exploration of benefits of being alone. Journal for the Theory of Social Behaviour, 33(1), 2144. https://doi.org/10.1111/1468-5914.00204Google Scholar
Luanaigh, C. Ó., & Lawlor, B. A. (2008). Loneliness and the health of older people. International Journal of Geriatric Psychiatry, 23(12), 12131221. https://doi.org/10.1002/gps.2054Google Scholar
Luhmann, M., & Hawkley, L. C. (2016). Age differences in loneliness from late adolescence to oldest old age. Developmental Psychology, 52(6), 943959. https://doi.org/10.1037/dev0000117Google Scholar
Macdonald, S. J., Nixon, J., & Deacon, L. (2018). “Loneliness in the city”: Examining socio-economics, loneliness and poor health in the North East of England. Public Health, 165, 8894. https://doi.org/10.1016/j.puhe.2018.09.003Google Scholar
Martín-María, N., Caballero, F. F., Lara, E., Domènech-Abella, J., Haro, J. M., Olaya, B., Ayuso-Mateos, J. L., & Miret, M. (2021). Effects of transient and chronic loneliness on major depression in older adults: A longitudinal study. International Journal of Geriatric Psychiatry, 36(1), 7685. https://doi.org/10.1002/gps.5397Google Scholar
Maslow, A. H. (1943). A theory of human motivation. Psychological Review, 50(4), 370.Google Scholar
McEwen, B. S., & Gianaros, P. J. (2011). Stress- and allostasis-induced brain plasticity. Annual Review of Medicine, 62(1), 431445. https://doi.org/10.1146/annurev-med-052209-100430Google Scholar
Neeleman, J., & Power, M. J. (1994). Social support and depression in three groups of psychiatric patients and a group of medical controls. Social Psychiatry and Psychiatric Epidemiology, 29(1), 4651. https://doi.org/10.1007/BF00796448Google Scholar
Newmyer, L., Verdery, A. M., Margolis, R., & Pessin, L. (2020). Measuring older adult loneliness across countries. The Journals of Gerontology: Series B, 76(7), 14081414. https://doi.org/10.1093/geronb/gbaa109Google Scholar
OECD (2020), Social Connections. In How’s Life? 2020: Measuring Well-Being, Paris: OECD Publishing. https://doi.org/10.1787/b2090ea8-enGoogle Scholar
Olsen, R. B., Olsen, J., Gunner-Svensson, F., & Waldstrøm, B. (1991). Social networks and longevity. A 14 year follow-up study among elderly in Denmark. Social Science & Medicine, 33(10), 11891195.Google Scholar
Penninx, B. W. J. H., Van Tilburg, T., Kriegsman, D. M. W., Deeg, D. J. H., Boeke, A. J. P., & Van Eijk, J. T. M. (1997). Effects of social support and personal coping resources on mortality in older age: The Longitudinal Aging Study Amsterdam. American Journal of Epidemiology, 146(6), 510519.Google Scholar
Peplau, L. A., & Perlman, D. (1982). Perspectives on Loneliness. In Loneliness: A Sourcebook of Current Theory, Research and Therapy. John Wiley & Sons.Google Scholar
Perissinotto, C. M., Stijacic Cenzer, I., & Covinsky, K. E. (2012). Loneliness in older persons: A predictor of functional decline and death. Archives of Internal Medicine, 172(14):10781084. https://doi.org/10.1001/archinternmed.2012.1993Google Scholar
Pinquart, M., & Sörensen, S. (2000). Influences of socioeconomic status, social network, and competence on subjective well-being in later life: A meta-analysis. Psychology and Aging, 15(2), 187224. https://doi.org/10.1037/0882-7974.15.2.187Google Scholar
Pressman, S. D., Cohen, S., Miller, G. E., Barkin, A., Rabin, B. S., & Treanor, J. J. (2005). Loneliness, social network size, and immune response to influenza vaccination in college freshmen. Health Psychology, 24(3), 297306. https://doi.org/10.1037/0278-6133.24.3.297Google Scholar
Rafnsson, S. B., Orrell, M., D’Orsi, E., Hogervorst, E., & Steptoe, A. (2020). Loneliness, social integration, and incident dementia over 6 years: Prospective findings from the English Longitudinal Study of Ageing. Journals of Gerontology: Series B, Psychological Sciences and Social Sciences, 75(1), 114124. https://doi.org/10.1093/geronb/gbx087Google Scholar
Richman, N. E., & Sokolove, R. L. (1992). The experience of aloneness, object representation, and evocative memory in borderline and neurotic patients. Psychoanalytic Psychology, 9(1), 77.Google Scholar
Prieto-Flores, M. E., Fernandez-Mayoralas, G., Forjaz, M. J., Rojo-Perez, F., & Martinez-Martin, P. (2011). Residential satisfaction, sense of belonging and loneliness among older adults living in the community and in care facilities. Health & Place, 17(6), 11831190.Google Scholar
Russell, D., Peplau, L. A., & Cutrona, C. E. (1980). The revised UCLA Loneliness Scale: Concurrent and Discriminant validity evidence. Journal of Personality and Social Psychology, 39(3), 472480. https://doi.org/10.1037//0022-3514.39.3.472Google Scholar
Seeman, T. E. (2000). Health promoting effects of friends and family on health outcomes in older adults. American Journal of Health Promotion, 14(6), 362370.Google Scholar
Shiovitz-Ezra, S., & Ayalon, L. (2010). Situational versus chronic loneliness as risk factors for all-cause mortality. International Psychogeriatrics, 22(3), 455462. https://doi.org/10.1017/S1041610209991426Google Scholar
Shumaker, S. A., & Hill, D. R. (1991). Gender differences in social support and physical health. Health Psychology, 10(2), 102111. https://doi.org/10.1037/0278-6133.10.2.102Google Scholar
Silverman, M. N., & Sternberg, E. M. (2012). Glucocorticoid regulation of inflammation and its functional correlates: From HPA axis to glucocorticoid receptor dysfunction. Annals of the New York Academy of Sciences, 1261(1), 5563. https://doi.org/10.1111/j.1749-6632.2012.06633.xGoogle Scholar
Simone, M. J., & Tan, Z. S. (2011). The role of inflammation in the pathogenesis of delirium and dementia in older adults: A review. CNS Neuroscience and Therapeutics, 17(5), 506513. https://doi.org/10.1111/j.1755-5949.2010.00173.xGoogle Scholar
Smith, K. P., & Christakis, N. A. (2008). Social networks and health. Annual Review of Sociology, 34, 405429. http://dx.doi.org/10.1146/annurev.soc.34.040507.134601Google Scholar
Smith, S. M., & Vale, W. W. (2006). The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues in Clinical Neuroscience, 8(4), 383395. https://doi.org/10.31887/dcns.2006.8.4/ssmithGoogle Scholar
Steptoe, A., Owen, N., Kunz-Ebrecht, S. R., & Brydon, L. (2004). Loneliness and neuroendocrine, cardiovascular, and inflammatory stress responses in middle-aged men and women. Psychoneuroendocrinology, 29(5), 593611. https://doi.org/10.1016/S0306-4530(03)00086-6Google Scholar
Szabo, A., Allen, J., Alpass, F., & Stephens, C. (2019). Loneliness, socioeconomic status and quality of life in old age: The moderating role of housing tenure. Ageing and Society, 39(5), 9981021. https://doi.org/10.1017/S0144686X17001362Google Scholar
Thoits, P. A., & Hewitt, L. N. (2001). Volunteer work and well-being. Journal of Health and Social Behavior, 42(2), 115131. https://doi.org/10.2307/3090173Google Scholar
Thurston, R. C., & Kubzansky, L. D. (2009). Women, loneliness, and incident coronary heart disease. Psychosomatic Medicine, 71(8), 836842. https://doi.org/10.1097/PSY.0b013e3181b40efcGoogle Scholar
Tilvis, R. S., Ka, M. H., Jolkkonen, J., Valvanne, J., Pitkala, K. H., & Strandberg, T. E. (2004). Predictors of cognitive decline and mortality of aged people over a 10-year period. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 59(3), 268274.Google Scholar
Umberson, D. (1992). Gender, marital status and the social control of health behavior. Social Science and Medicine, 34(8), 907917. https://doi.org/10.1016/0277-9536(92)90259-SGoogle Scholar
Victor, C., Mansfield, L., Kay, T., Daykim, N., Lane, J., Duffy, L. G., Tomlinsom, A., & Meads, C. (2018). An Overview of Reviews: The Effectiveness of Interventions to Address Loneliness at All Stages of the Life-Course. What Works Centre for Wellbeing.Google Scholar
Victor, C. R., Rippon, I., Nelis, S. M., Martyr, A., Litherland, R., Pickett, J., Hart, N., Henley, J., Matthews, F., & Clare, L. (2020). Prevalence and determinants of loneliness in people living with dementia: Findings from the IDEAL programme. International Journal of Geriatric Psychiatry, 35(8), 851858. https://doi.org/10.1002/gps.5305Google Scholar
Wrzus, C., Hänel, M., Wagner, J., & Neyer, F. J. (2013). Social network changes and life events across the life span: A meta-analysis. Psychological Bulletin, 139(1), 5380. https://doi.org/10.1037/a0028601Google Scholar
Yang, Y. C., McClintock, M. K., Kozloski, M., & Li, T. (2013). Social Isolation and adult mortality: The role of chronic inflammation and sex differences. Journal of Health and Social Behavior, 54(2), 183203. https://doi.org/10.1177/0022146513485244Google Scholar
Youm, Y., Laumann, E. O., Ferraro, K. F., Waite, L. J., Kim, H. C., Park, Y.-R., Chu, S. H., Joo, W.-T., & Lee, J. A. (2014). Social network properties and self-rated health in later life: Comparisons from the Korean social life, health, and aging project and the national social life, health and aging project. BMC Geriatrics, 14(102), 115. https://doi.org/10.1186/1471-2318-14-102Google Scholar
Zebhauser, A., Baumert, J., Häfner, S., Lacruz, M. E., Emeny, R. T., Döring, A., & Grill, E. (2014). How much does it hurt to be lonely? Mental and physical differences between older men and women in the KORA-Age Study. Geriatric Psychiatry, 29(3), 245252. https://doi.org/10.1002/gps.3998Google Scholar