Skip to main content Accessibility help
Hostname: page-component-99c86f546-t82dr Total loading time: 0.77 Render date: 2021-12-08T07:49:17.013Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

9 - Development of the Social Brain in Adolescence

from Part III - Neural Mechanisms

Published online by Cambridge University Press:  05 October 2015

Gabriele Oettingen
New York University
Peter M. Gollwitzer
New York University
Get access


Author Note

Sarah-Jayne Blakemore, Institute of Cognitive Neuroscience, University College London.

The author is supported by a Royal Society University Research Fellowship, and by grants from the Leverhulme Trust and the Nuffield Foundation.

Correspondence concerning this chapter should be addressed to Sarah-Jayne Blakemore, Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AR, UK. E-mail:

Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Amodio, D. M., & Frith, C. D. (2006). Meeting of minds: The medial frontal cortex and social cognition. Nature Reviews Neuroscience, 7, 268277.CrossRefGoogle ScholarPubMed
Bahrami, B., Olsen, K., Latham, P. E., Roepstorff, A., Rees, G., & Frith, C. D. (2010) Optimally interacting minds. Science, 329, 10811085.CrossRefGoogle ScholarPubMed
Baillargeon, R., Rose, M., Scott, R. M., & Hea, Z. (2010). False-belief understanding in infants. Trends in Cognitive Science 14, 110118.CrossRefGoogle ScholarPubMed
Baron-Cohen, S., Jolliffe, T., Mortimore, C., & Robertson, M. (1997). Another advanced test of theory of mind: Evidence from very high functioning adults with autism or Asperger syndrome. Journal of Child Psychology and Psychiatry, 38, 813822.CrossRefGoogle ScholarPubMed
Barresi, J., & Moore, C. (1996). Intentional relations and social understanding. Behavioral and Brain Sciences, 19, 107154.CrossRefGoogle Scholar
Blakemore, S.-J. (2008). The social brain in adolescence. Nature Reviews Neuroscience, 9, 267277.CrossRefGoogle ScholarPubMed
Blakemore, S.-J., Den Ouden, H., Choudhury, S., & Frith, C. (2007). Adolescent development of the neural circuitry for thinking about intentions. Social Cognitive and Affective Neuroscience, 2, 130139.CrossRefGoogle ScholarPubMed
Bourgeois, J. P., Goldman-Rakic, P. S., & Rakic, P. (1994). Synaptogenesis in the prefrontal cortex of rhesus-monkeys. Cerebral Cortex, 4, 7896.CrossRefGoogle ScholarPubMed
Brain Development Cooperative Group (2012). Total and regional brain volumes in a population-based normative sample from 4 to 18 years: The NIH MRI study of normal brain development. Cerebral Cortex, 22, 112. doi: 10.1093/cercor/bhr018CrossRef
Burnett, S., Bird, G., Moll, J., Frith, C., & Blakemore, S.-J. (2009). Development during adolescence of the neural processing of social emotion. Journal of Cognitive Neuroscience, 21, 17361750.CrossRefGoogle ScholarPubMed
Burnett, S., Sebastian, C., Cohen-Kadosh, K., & Blakemore, S.-J. (2011). The social brain in adolescence: Evidence from functional magnetic resonance imaging and behavioural studies. Neuroscience and Biobehavioral Reviews, 35, 16541664.CrossRefGoogle ScholarPubMed
Carruthers, P. (2009). How we know our own minds: The relationship between mindreading and metacognition. Behavioral and Brain Sciences, 32, 121182.CrossRefGoogle ScholarPubMed
Cragg, B. G. (1975). The development of synapses in the visual system of the cat. Journal of Comparative Neurology, 160, 147166.CrossRefGoogle ScholarPubMed
Dumontheil, I., Apperly, I. A., & Blakemore, S.-J. (2010). Online usage of theory of mind continues to develop in late adolescence. Developmental Science, 13, 331338.CrossRefGoogle ScholarPubMed
Efklides, A. (2008). Metacognition: Defining its facets and levels of functioning in relation to self-regulation and co-regulation. European Psychologist, 13, 277287.CrossRefGoogle Scholar
Fernandez-Duque, D., Baird, J. A., & Posner, M. I. (2000). Executive attention and metacognitive regulation. Consciousness and Cognition, 9, 288307.CrossRefGoogle ScholarPubMed
Fjell, A. M., Westlye, L. T., Grydeland, H., Amlien, I., Espeseth, T., et al. (2013). Critical ages in the life course of the adult brain: Nonlinear subcortical aging. Neurobiology of Aging, 34, 22392247.CrossRefGoogle ScholarPubMed
Flavell, J. H. (1979). Metacognition and cognitive monitoring: A new area of cognitive-developmental inquiry. American Journal of Psychology, 34, 906911.CrossRefGoogle Scholar
Fleming, S. M., & Dolan, R. J. (2012). The neural basis of accurate metacognition. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 367, 13381349.CrossRefGoogle Scholar
Fleming, S. M., Weil, R. S., Nagy, Z., Dolan, R. J., & Rees, G. (2010). Relating introspective accuracy to individual differences in brain structure. Science, 329, 15411543.CrossRefGoogle ScholarPubMed
Frith, C. D. (2007). The social brain? Philosophical Transactions of the Royal Society of London B: Biological Sciences, 362, 671678.CrossRefGoogle ScholarPubMed
Frith, C. D. (2012). The role of metacognition in human social interactions. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 367, 22132223.CrossRefGoogle ScholarPubMed
Frith, C. D., & Frith, U. (2007). Social cognition in humans. Current Biology, 17, 724732.CrossRefGoogle ScholarPubMed
Frith, U., & Happe, F. (1999). Theory of mind and self-consciousness: What is it like to be autistic? Mind and Language, 14, 122.CrossRefGoogle Scholar
Giedd, J. N., & Rapoport, J. L., (2010). Structural MRI of pediatric brain development: What have we learned and where are we going? Neuron, 67, 728734.CrossRefGoogle ScholarPubMed
Gilbert, S. J., Spengler, S., Simons, J. S., Steele, J. D., Lawrie, S. M., et al. (2006). Functional specialization within rostral prefrontal cortex (area 10): A meta-analysis. Journal of Cognitive Neuroscience, 18, 932948.CrossRefGoogle ScholarPubMed
Goel, V., Grafman, J., Sadato, N., & Hallett, M. (1995). Modeling other minds. Neuroreport, 6, 17411746.CrossRefGoogle ScholarPubMed
Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., et al. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National Academy of Sciences of the USA, 101, 81748179.CrossRefGoogle ScholarPubMed
Goldman, A. I. (2006). Simulating minds: The philosophy, psychology, and neuroscience of mindreading. Oxford: Oxford University Press.CrossRefGoogle Scholar
Gunther Moor, B., Op de Macks, Z. A., Güroglu, B., Rombouts, S. A., Van der Molen, M. W., & Crone, E. A. (2012). Neurodevelopmental changes of reading the mind in the eyes. Social Cognitive and Affective Neuroscience, 7, 4452.CrossRefGoogle Scholar
Harris, J. J., Reynell, C., & Attwell, D. (2011). The physiology of developmental changes in BOLD functional imaging signals. Developmental Cognitive Neuroscience, 1, 199216.CrossRefGoogle ScholarPubMed
Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. Journal of Physiology, 160, 106154.CrossRefGoogle ScholarPubMed
Huttenlocher, P. R. (1979). Synaptic density in human frontal cortex – developmental changes and effects of aging. Brain Research, 163, 195205.Google ScholarPubMed
Huttenlocher, P. R., Decourten, C., Garey, L. J., & Vanderloos, H. (1982). Synaptogenesis in human visual-cortex – evidence for synapse elimination during normal development. Neuroscience Letters, 33, 247252.CrossRefGoogle ScholarPubMed
Johnson, M. H. (2011). Interactive specialization: A domain-general framework for human functional brain development? Developmental Cognitive Neuroscience, 1, 721.CrossRefGoogle ScholarPubMed
Johnson, S. C., Baxter, L. C., Wilder, L. S., Pipe, J. G., Heiserman, J. E., & Prigatano, G. P. (2002). Neural correlates of self-reflection. Brain, 125, 18081814.CrossRefGoogle ScholarPubMed
Keysar, B., Lin, S., & Barr, D. J. (2003). Limits on theory of mind use in adults. Cognition, 89, 2541.CrossRefGoogle ScholarPubMed
Kuhn, D. (2000). Theory of mind, metacognition, and reasoning: A life-span perspective. In Mitchell, P. & Riggs, K. J. (Eds.), Children's reasoning and the mind (pp. 301326). Hove, UK: Psychology Press.Google Scholar
Lebel, C., Gee, M., Camicioli, R., Wieler, M., Martin, W., & Beaulieu, C. (2012). Diffusion tensor imaging of white matter tract evolution over the lifespan. Neuroimage, 60, 340352.CrossRefGoogle ScholarPubMed
Low, L. K., & Cheng, H. J. (2006). Axon pruning: An essential step underlying the developmental plasticity of neuronal connections. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 361, 15311544.CrossRefGoogle ScholarPubMed
Lenroot, R. K., Gogtay, N., Greenstein, D. K., Wells, E. M., Wallace, G. L., et al. (2007). Sexual dimorphism of brain development trajectories during childhood and adolescence. Neuroimage, 36, 10651073.CrossRefGoogle ScholarPubMed
Metcalfe, J., & Finn, B. (2008). Evidence that judgments of learning are causally related to study choice. Psychonomic Bulletin Review, 15, 174179.CrossRefGoogle ScholarPubMed
Mills, K. L., Lalonde, F., Clasen, L., Giedd, J. N., & Blakemore, S.-J. (2014). Developmental changes in the structure of the social brain in late childhood and adolescence. Social Cognitive and Affective Neuroscience, 9, 123131.CrossRefGoogle ScholarPubMed
Mitchell, J. P., Banaji, M. R., & Macrae, C. N. (2005). General and specific contributions of the medial prefrontal cortex to knowledge about mental states. Neuroimage, 28, 757762.CrossRefGoogle ScholarPubMed
Nelson, T. O., & Narens, L. (1990). Metamemory: A theoretical framework and new findings. In Bower, G. (Ed.), The psychology of learning and motivation (Vol. 26, pp. 125169). New York: Academic Press.Google Scholar
Ochsner, K. N., Knierim, K., Ludlow, D., Hanelin, J., Ramachandran, T., & Mackey, S. (2004). Reflecting upon feelings: An fMRI study of neural systems supporting the attribution of emotion to self and other. Journal of Cognitive Neuroscience, 16, 17461772.CrossRefGoogle ScholarPubMed
Paus, T., Keshavan, M., & Giedd, J. N. (2008). Why do many psychiatric disorders emerge during adolescence? Nature Reviews Neuroscience, 9, 947957.CrossRefGoogle ScholarPubMed
Petanjek, Z., Judaš, M., Šimic, G., Rasin, M. R., Uylings, H. B., et al. (2011). Extraordinary neoteny of synaptic spines in the human prefrontal cortex. Proceedings of the National Academy of Science USA, 108, 1328113286.CrossRefGoogle ScholarPubMed
Pfeifer, J. H., Lieberman, M. D., & Dapretto, M. (2007). “I know you are but what am I?!”: Neural bases of self- and social knowledge retrieval in children and adults. Journal of Cognitive Neuroscience, 19, 13231337.CrossRefGoogle ScholarPubMed
Pfeifer, J. H., Masten, C. L., Borofsky, L. A., Dapretto, M., Fuligni, A. J., & Lieberman, M. D. (2009). Neural correlates of direct and reflected self-appraisals in adolescents and adults: When social perspective-taking informs self-perception. Child Development, 80, 10161038.CrossRefGoogle ScholarPubMed
Raznahan, A., Shaw, P., Lalonde, F., Stockman, M., Wallace, G. L., et al. (2011). How does your cortex grow? The Journal of Neuroscience, 31, 71747177.CrossRefGoogle ScholarPubMed
Ruby, P., & Decety, J. (2004). How would you feel versus how do you think she would feel? A neuroimaging study of perspective-taking with social emotions. Journal of Cognitive Neuroscience, 16, 988999.CrossRefGoogle Scholar
Saxe, R. (2006). Uniquely human social cognition. Current Opinion in Neurobiology, 16, 235239.CrossRefGoogle ScholarPubMed
Sebastian, C. L., Fontaine, N. M. G., Bird, G., Blakemore, S.-J., De Brito, S. A., et al. (2012). Neural processing associated with cognitive and affective theory of mind in adolescents and adults. Social, Cognitive and Affective Neuroscience, 7, 5363.CrossRefGoogle ScholarPubMed
Shamay-Tsoory, S. G., Harari, H., Aharon-Peretz, J., & Levkovitz, Y. (2010). The role of the orbitofrontal cortex in affective theory of mind deficits in criminal offenders with psychopathic tendencies. Cortex, 46, 668677.CrossRefGoogle ScholarPubMed
Shaw, P., Kabani, N. J., Lerch, J. P., Eckstrand, K., Lenroot, R., et al. (2008). Neurodevelopmental trajectories of the human cerebral cortex. Journal of Neuroscience, 28, 35863594.CrossRefGoogle ScholarPubMed
Steinberg, L. (2010). Adolescence (9th Ed.). New York: McGraw-Hill Higher Education.Google ScholarPubMed
Tamnes, C. K., Walhovd, K. B., Dale, A. M., Østby, Y., Grydeland, H., et al. (2013). Neuroimage, 68, 6374.CrossRef
Van den Bos, W., Van Dijk, E., Westenberg, M., Rombouts, S. A., & Crone, E. A. (2011). Changing brains, changing perspectives: The neurocognitive development of reciprocity. Psychological Science, 22, 6070.CrossRefGoogle ScholarPubMed
Van Overwalle, F. (2009). Social cognition and the brain: A meta-analysis. Human Brain Mapping, 30, 829858.CrossRefGoogle ScholarPubMed
Vogeley, K., Bussfeld, P., Newen, A., Herrmann, S., Happé, F., et al. (2001). Mind reading: Neural mechanisms of theory of mind and self-perspective. Neuroimage, 14, 170181.CrossRefGoogle ScholarPubMed
Wang, A. T., Lee, S. S., Sigman, M., & Dapretto, M. (2006). Developmental changes in the neural basis of interpreting communicative intent. Social Cognitive and Affective Neuroscience, 1, 107121.CrossRefGoogle ScholarPubMed
Webb, S. J., Monk, C. S., & Nelson, C. A. (2001). Mechanisms of postnatal neuro-biological development: Implications for human development. Developmental Neuropsychology, 19, 147171.CrossRefGoogle Scholar
Weil, L. G., Fleming, S. M., Dumontheil, I., Kilford, E. J., Weil, R. S., et al. (2013). The development of metacognitive ability in adolescence. Consciousness and Cognition, 22, 264271.CrossRefGoogle ScholarPubMed
Westlye, L. T., Walhovd, K. B., Dale, A. M., Biorneryd, A., Due-Tønnessen, P., et al. (2010). Life-span changes of the human brain white matter: Diffusion tensor imaging (DTI) and volumetry. Cerebral Cortex, 20, 20552068.CrossRefGoogle ScholarPubMed
Zysset, S., Huber, O., Ferstl, E., & von Cramon, D. Y. (2002). The anterior frontomedian cortex and evaluative judgment: An fMRI study. NeuroImage, 15, 983991.CrossRefGoogle Scholar
Cited by

Send book to Kindle

To send this book to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats

Send book to Dropbox

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Dropbox.

Available formats

Send book to Google Drive

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Google Drive.

Available formats