Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-lvtdw Total loading time: 0 Render date: 2024-08-09T05:45:30.606Z Has data issue: false hasContentIssue false

10 - Interlocking of self-organisation and evolution

Published online by Cambridge University Press:  07 December 2009

Paulien Hogeweg
Affiliation:
Utrecht University
Charlotte Hemelrijk
Affiliation:
Rijksuniversiteit Groningen, The Netherlands
Get access

Summary

Introduction

Organisms can cope with a variable environment in which various actions are called for in a variety of ways, e.g.:

  • Red Queen’ evolution. Each individual performs the different types of actions with a pre-set frequency. There is some within-population/ species variation in these frequencies (i.e. it is a ‘quasi-species’ rather than a monomorphic species). Because many variants are present in the population, changes in the environment will cause relatively rapid change in the population by selection of available genotypes of the quasi-species. In such a case the rate of change is fairly independent of mutation rate.

  • Frequency-dependent selection. There are two or more subtypes in the population, each specialising on one or a subset of the actions. In contrast to the previous mode the within-population variation is not unimodal but multi-modal. Dependent on which actions are more in demand these subpopulations will increase/decrease. A clear-cut example is the distribution of the ‘rover’ and ‘sitter’ types in Drosophila, which do what the names suggest in foraging. The difference has been localized to two different alleles of a cGMP-dependent kinase gene which has plural effects, among which is a change in ion channels in the brain, ultimately leading to the two modes of exploiting food resources (Osborne et al., 1997; Sokolowski, 1997; Renger et al., 1999).

  • […]

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ben-Shahar, Y., Robichon, A., Sokolowski, M. B. and Robinson, G. E. (2002). Influence of gene action across different time scales on behavior. Science 296, 741–744CrossRefGoogle ScholarPubMed
Beshers, S. N., Huang, Z. Y., Oono, Y. and Robinson, G. E. (2001). Social inhibition and the regulation of temporal polyethism in honey bees. J. Theoret. Biol. 213, 461–479CrossRefGoogle ScholarPubMed
Boerlijst, M. A. and Hogeweg, P. (1991a). Spiral wave structure in pre-biotic evolution: hypercycles stable against parasites. Physica D 48, 17–28CrossRefGoogle Scholar
Boerlijst, M. A. and Hogeweg, P. (1991b). Selfstructuring and selection: spiral waves as a substrate for prebiotic evolution. In Artificial Life II: SFI Studies in the Sciences of Complexity, vol 10, ed. Langton, C. G.. Redwood City, CA: Addison-Wesley, pp. 255–276Google Scholar
Camazine, S., Deneubourg, J.-L., Franks, N. R.et al. (2001). Self-Organisation in Biological Systems. Princeton, NJ: Princeton University PressGoogle Scholar
Crutchfield, J. P. and Mitchell, M. (1995). The evolution of emergent computation. Proc. Natl Acad. Sci. USA 92, 10742–10746CrossRefGoogle ScholarPubMed
Czaran, T. L., Hoekstra, R. F. and Pagie, L. (2002). Chemical warfare between microbes promotes biodiversity. Proc. Natl Acad. Sci. USA 99, 786–790CrossRefGoogle ScholarPubMed
Eigen, M. and Schuster, P. (1979). The Hypercycle: A Principle of Natural Self-organisation. Berlin:Springer-Verlag.CrossRefGoogle Scholar
Ferea, T. L., Botstein, D., Brown, P. O. and Rosenzweig, R. F. (1999). Systematic changes in gene expression patterns following adaptive evolution in yeast. Proc. Natl Acad. Sci USA 96, 9721–9726CrossRefGoogle Scholar
Furusawa, C. and Kaneko, K. (2000). ‘Origin of complexity in multicellular organisms. Phys. Rev. Lett. 84, 6130–6133CrossRefGoogle ScholarPubMed
Furusawa, C. and Kaneko, K. (2001). Theory of robustness of irreversible differentiation in a stem cell system: chaos hypothesis. J. Theoret. Biol. 209, 395–416CrossRefGoogle Scholar
Givnish, T. J. and Sytsma, K. J. (1997). Molecular Evolution and Adaptive Radiation. Cambridge: Cambridge University PressGoogle Scholar
Goldbeter, A. (1996). Biochemical Oscillations and Cellular Rhythms: The Molecular Basis of Periodic and Chaotic Behaviour. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Hemelrijk, C. K. (1998). Spatial centrality of dominants without positional preference. In Artificial Life, vol. 6, ed. Adami, C., Belew, R. K., Kitano, H. and Taylor, C. E.. Cambridge, MA: MIT Press, pp. 307–315Google Scholar
Hemelrijk, C. K. (1999). An individual-oriented model on the emergence of despotic and egalitarian societies. Proc. Roy. Soc. London B 266, 361–369CrossRefGoogle Scholar
Hemelrijk, C. K. (2000a). Towards the integration of social dominance and spatial structure. Anim. Behav. 59, 1035–1048CrossRefGoogle Scholar
Hemelrijk, C. K. (2000b). Self-reinforcing dominance interactions between virtual males and females: hypothesis generation for primate studies. Adapt. Behav. 8, 13–26CrossRefGoogle Scholar
Hogeweg, P. (1988). MIRROR beyond MIRROR, puddles of Life. In Artificial Life: SFI Studies in the Sciences of Complexity, ed. Langton, C.. Redwood City, CA: Addison-Wesley, pp. 297–315Google Scholar
Hogeweg, P. (1994). On the potential role of DNA in an RNA world: Pattern generation and information accumulation in replicator systems. Ber. Bunsengesel Phys. Chem. 98, 1135–1139CrossRefGoogle Scholar
Hogeweg, P. (1998). On searching generic properties in non-generic phenomena: an approach to bioinformatic theory formation. In Artificial Life, vol. 6, ed. Adami, C., Belew, R. K., Kitano, H. and Taylor., C. E.Cambridge, MA: MIT Press, pp. 285–294Google Scholar
Hogeweg, P. (2000a). Evolving mechanism of morphogenesis: on the interplay between differential adhesion and cell differentiation. J. Theoret. Biol. 203, 317–333CrossRefGoogle Scholar
Hogeweg, P. (2000b). Shapes in the shadow: evolutionary dynamics of morphogenesis. Artif. Life 6, 85–101CrossRefGoogle Scholar
Hogeweg, P. (2002). Computing an organism: on the interface between informatic and dynamic processes. Biosystems 64, 97–109CrossRefGoogle ScholarPubMed
Hogeweg, P. and B., Hesper (1983). The ontogeny of the interaction structure in bumble bee colonies: a MIRROR model. Behav. Ecol. Sociobiol. 12, 271–283CrossRefGoogle Scholar
Hogeweg, P. and B., Hesper (1985). Socioinformatic processes: a MIRROR modelling methodology. J. Theoret. Biol. 113, 311–330CrossRefGoogle Scholar
Hogeweg, P. and Hesper, B. (1991). Evolution as pattern processing: TODO as substrate for evolution. In From Animals to Animats, ed. Meyer, J. A. and Wilson, S. W.. Cambridge, MA: MIT Press, pp. 492–497Google Scholar
Johnson, C. and Boerlijst, M. C. (2002). Selection at the level of the community: the importance of spatial structure. Trends Ecol. Evol. 17, 83–90CrossRefGoogle Scholar
Johnson, C. and Seinen, I. (2002). Selection for restraint in competetive ability in spatial competing systems. Proc. Roy. Soc. London B 269, 655–663CrossRefGoogle Scholar
Kaneko, K. and Yomo, T. (1997). Isologous diversification: a theory of cell differentiation. Bull. Math. Biol. 59, 139–196CrossRefGoogle ScholarPubMed
Kaneko, K. and Yomo, T. (2000). Sympatric speciation: compliance with phenotype diversification from a single genotype. Proc. Roy. Soc. London B 267, 2367–2373CrossRefGoogle ScholarPubMed
Kaneko, K. and Yomo, T. (2002). Genetic diversification through interaction-driven phenotype differentiation. Evol. Eco. Res. 4, 317–350Google Scholar
Laan, J. D. and Hogeweg, P. (1995). Predator–prey coevolution: interactions among different time scales. Proc. Roy. Soc. London B 259, 35–42CrossRefGoogle Scholar
Marée, A. F. M., Panfilov, A. V. and Hogeweg, P. (1999a). Migration and thermotaxis of Dictyostelium discoideum slugs, a model study. J. Theoret. Biol. 199, 297–309CrossRefGoogle Scholar
Marée, A. F. M., Panfilov, A. V. and Hogeweg, P. (1999b). Phototaxis during the slug stage of Dictyostelium discoideum: a model study. Proc. Roy. Soc. London B 266, 1351–1360CrossRefGoogle Scholar
Smith, Maynard J. and Száthmary, E. (1995). The Major Transitions in Evolution. San Francisco, CA: W. H. Freeman.Google Scholar
Nimwegen, E., Crutchfield, J. P. and Mitchell, M. (1999a). Statistical dynamics of the Royal Road genetic algorithm. Theoret. Comput. Sci. 229, 41–102CrossRefGoogle Scholar
Nimwegen, E., Crutchfield, J. P. and Huynen, M. A. (1999b). Neutral evolution of mutational robustness. Proc. Natl Acad. Sci. USA 96, 9716–9720CrossRefGoogle Scholar
Osborne, K. A., Robichon, A., Burgess, E.et al. (1997). Natural behavior polymorphism due to a cGMP-dependent protein kinase of Drosophila. Science 277, 834–836CrossRefGoogle ScholarPubMed
Pacala, S. W., Gordon, D. M. and Godfray, H. C. J. (1996). Effects of social group size on information transfer and task allocation. Evol. Ecol. 10, 127–165CrossRefGoogle Scholar
Pagie, L. W. P. (1999). Information integration in evolutionary processes. Ph. D. thesis, Utrecht University
Pagie, L. W. P. and Hogeweg, P. (1999). Colicin diversity: a result of eco-evolutionary dynamics. J. Theoret. Biol. 196, 251–261CrossRefGoogle ScholarPubMed
Pagie, L. W. P. and Hogeweg, P. (2000a). Individual- and population-based diversity in restriction-modification systems. Bull. Math. Biol. 62, 759–774CrossRefGoogle Scholar
Pagie, L. W. P. and Hogeweg, P. (2000b). Information integration and red queen dynamics in coevolutionary optimization. In Proc. 2000 Congr. Evol. Computation, pp. 797–806Google Scholar
Pagie, L. W. P. and Mitchell, M. (2002). A comparison of evolutionary and coevolutionary search. Int. J. Comput. Intell. Applic. 2, 53–70CrossRefGoogle Scholar
Post, D. J. van der and Hogeweg, P. (2004). Learning what to eat: studying the interrelationship between learning, grouping and environmental conditions in an artificial world. In Cellular Automata, ed. Slott, P. M. A., Chopard, B. and Hoekstra, A. G.. Berlin: Springer-Verlag, pp. 491–501CrossRefGoogle Scholar
Renger, J. J., Yao, W. D., Sokolowski, M. B. and Wu, C. F. (1999). Neuronal polymorphism among natural alleles of a cGMP-dependent kinase gene, foraging, in Drosophila. J. Neurosci. 19, RC28CrossRefGoogle ScholarPubMed
Savill, N. J. and Hogeweg, P. (1997). Evolutionary stagnation due to pattern–pattern interactions in a co-evolutionary predator–prey model. Artif. Life 3, 81–100CrossRefGoogle Scholar
Savill, N. J., Rohani, P. and Hogeweg, P. (1997). Self-reinforcing spatial patterns enslave evolution in a host–parasitoid system. J. Theoret. Biol. 188, 11–20CrossRefGoogle Scholar
Seeley, T. D. (1982). Adaptive significance of the age polyethism schedule in honey bee colonies. Behav. Ecol. Sociobiol. 11, 287–294CrossRefGoogle Scholar
Seeley, T. D. and Kolmes, S. A. (1991).Age polyethism for hive duties in honey bees: illusion or reality. Ethology 87, 284–297CrossRefGoogle Scholar
Sokolowski, M. B., Pereira, H. S. and Hughes, K. (1997). Evolution of foraging behavior in Drosophila by density-dependent selection. Proc. Natl Acad. Sci. USA 94, 7373–7377CrossRefGoogle ScholarPubMed
VanderMeer, J. (1993). Loose coupling of predator–prey cycles: entrainment, chaos and intermittancy in the classic MacArthur consumer resource equations. Am. Naturalist 141, 687–716CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×