Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-23T09:27:17.231Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 February 2012

Robert H. Stolt
Affiliation:
ConocoPhillips, Texas
Arthur B. Weglein
Affiliation:
University of Houston
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Seismic Imaging and Inversion
Application of Linear Inverse Theory
, pp. 397 - 400
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aki, K. and Richards, P. (1980). Quantitative Seismology Volume 1: Theory and Methods. San Francisco: W.H. Freeman. (S 5.2.3, 8.4.1, 8.4.2, 8.4.3, 8.4.4, 8.7)Google Scholar
Alkhalifah, T. and Bagaini, C. (2006). Straight-rays redatuming: A fast and robust alternative to wave-equation-based redatuming. Geophysics, 71, 37–46. (S 12.3)CrossRefGoogle Scholar
Aveni, G. and Biondi, B. (2010). Target-oriented joint least-squares migration/inversion of time-lapse seismic data sets. Geophysics, 75, 61–73. (S 14.1)CrossRefGoogle Scholar
Baysal, E., Kosloff, D. and Sherwood, J. (1983). Reverse time migration. Geophysics, 48, 1514–24. (S 2.4)CrossRefGoogle Scholar
Berkhout, A. (1981). Wave field extrapolation techniques in seismic migration, a tutorial. Geophysics, 46, 1638–56. (S 2.3)CrossRefGoogle Scholar
Berkhout, A. (1982). Seismic Migration: Imaging of Acoustic Energy by Wave Field Extrapolation, Part A: Theoretical Aspects. Amsterdam: Elsevier. (S 1.5)Google Scholar
Berkhout, A. (1984). Seismic Resolution, a Quantitative Analysis of Resolving Power of Acoustical Echo Techniques. Amsterdam: Geophysical Press. (S 4.2)Google Scholar
Beydoun, W. and Keho, T. (1987). The paraxial ray method. Geophysics 52, 1639–53. (S 6.2.3)CrossRefGoogle Scholar
Beylkin, G. (1985). Imaging of discontinuities in the inverse scattering problem by inversion of a causal generalized radon transform. J. Math. Phys., 26, 99–108. (S 2.7.1, 10.4.4)CrossRefGoogle Scholar
Bisset, D. and Durrani, T. (1990). Radon transform migration below plane sloping layers. Geophysics, 55, 277–83. (S 2.7.1, 10.4.4)CrossRefGoogle Scholar
Black, J., Schleicher, K. and Zhang, L. (1993). True-amplitude imaging and dip moveout. Geophysics, 58, 47–66. (S 1.10, 4.3. 10.2)CrossRefGoogle Scholar
Bleistein, N. (1984). Mathematical Methods for Wave Phenomena. London: Academic Press. (S 2.6.1)Google Scholar
Bleistein, N. (1987). On the imaging of reflectors in the earth. Geophysics, 52, 931–42. (S 8.2)CrossRefGoogle Scholar
Bleistein, N. and Handelsman, R. (1986). Asymptotic Expansions of Integrals. Mineola: Dover. (S F)Google Scholar
Bleistein, N., Cohen, J. and Hagin, F. (1985). Two and one-half dimensional Born inversion with an arbitrary reference. Geophysics, 52, 26–36. (S 5.4.2)CrossRefGoogle Scholar
Bleistein, N., Cohen, J. and Jaramillo, H. (1999). True-amplitude transformation to zero offset of data from curved reflectors. Geophysics, 64, 112–29. (S 10.2)CrossRefGoogle Scholar
Bleistein, N., Cohen, J. and Stockwell, J. (2001). Mathematics of Multidimensional Seismic Imaging, Migration, and Inversion.New York: Springer Verlag. (S 2.2.1, 11.2, Appendix E, F)CrossRefGoogle Scholar
Born, M. and Wolf, E. (1980). Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light, 6th Edn. Oxford: Pergamon Press. (S 2.2.2, 2.2.6)Google Scholar
Cerveny, V. (2001). Seismic Ray Theory. Cambridge: Cambridge University Press. (S 6.2.3)CrossRefGoogle Scholar
Chapman, C. (1978). A new method for computing synthetic seismograms. Geophys. J. R. Astr. Soc., 54, 481–518. (S 2.6.1)CrossRefGoogle Scholar
Chapman, C. and Coates, R. (1994). Generalized Born scattering in anisotropic media. Wave Motion, 19, 309–41. (S 5.2.3)CrossRefGoogle Scholar
Claerbout, J. (1971). Toward a unified theory of reflector mapping. Geophysics, 36, 467–81. (S 1.5, 2.3)CrossRefGoogle Scholar
Claerbout, J. (1976). Fundamentals of Geophysical Data Processing: With Applications to Petroleum Prospecting. New York: McGraw-Hill. (S 1.5, 2.3, 2.5, 3.1, 10.2, Appendix E)Google Scholar
Clayton, R. and Stolt, R. (1981). A Born–WKBJ inversion method for acoustic reflection data. Geophysics, 46, 1559–67. (S 2.6.1, 3.2, 5.4.2)CrossRefGoogle Scholar
Cohen, J. and Bleistein, N. (1977). An inverse method for determining small variations in propagation speed. SIAM J. Appl. Math., 32, 784–99. (S 5.4.2)CrossRefGoogle Scholar
Cohen, J., Hagin, F. and Bleistein, N. (1986). Three-dimensional Born inversion with an arbitrary reference. Geophysics, 51, 1552–8. (S 5.4.2)CrossRefGoogle Scholar
de Hoop, M. and Bleistein, N. (1997). Generalized Radon transform inversions for reflectivity in anisotropic elastic media. Inverse Problems, 13, 669–90. (S 5.2.3)CrossRefGoogle Scholar
Dix, C. (1955). Seismic velocities from surface measurements. Geophysics, 20, 68–86. (S 2.8.1)CrossRefGoogle Scholar
Fomel, S. (2003). Velocity continuation and the anatomy of residual prestack time migration. Geophysics, 68, 1650–61. (S 1.7, 10.3, 12.1)CrossRefGoogle Scholar
Gazdag, J. (1978). Wave equation migration with the phase-shift method. Geophysics, 43, 1342–51. (S 2.6.1)CrossRefGoogle Scholar
Gazdag, J. and Sguazzero, P. (1984). Migration of seismic data by phase shift plus interpolation. Geophysics, 49, 124–31. (S 2.6.1)CrossRefGoogle Scholar
Jackson, J. (1962). Classical Electrodynamics. New York: McGraw-Hill. (S 2.2.2, 2.3.3)Google Scholar
Keller, J. (1953). The geometrical theory of diffraction. Proc. Symp. Microwave Opt., Eaton Electronics Research Laboratory. McGill University:, Montreal. (S 2.2.6, Appendix G)Google Scholar
Keller, J. (1978). Rays, waves, and asymptotics. Bull. Am.Math. Soc., 84, 727–50. (S 2.2.6, Appendix G)CrossRefGoogle Scholar
Lambar, G., Operto, S., Podvin, P. and Thierry, P. (2003). 3D ray + Born migration/inversion. Part 1: Theory. Geophysics, 68, 1348–56. (S. 11.2, 14.1)CrossRefGoogle Scholar
Levin, S. (1980). A frequency-dip formulation of wave-theoretic migration in stratified media. In Wang, K. Y., ed. Acoustical Imaging: Visualisation and Characterisation Volume 9, 681–97. New York: Plenum. (S 10.4.4)CrossRefGoogle Scholar
Liu, Z. and Bleistein, N. (1995). Migration velocity analysis: Theory and an iterative algorithm. Geophysics, 60, 142–53. (S 1.7)CrossRefGoogle Scholar
Marfurt, K. (1978). Elastic Wave Equation Migration-Inversion. Unpublished Ph.D thesis, Columbia University, New York. (S 5.2.3)
Newton, R. (1966). Scattering Theory of Waves and Particles. New York: McGraw-Hill. (S 5.4.2, Appendix F)Google Scholar
Operto, M., Xu, S. and Lambar, G. (2000). Can we quantitatively image complex structures with rays? Geophysics, 65, 1223–38. (S 14.1, 14.4.3)CrossRefGoogle Scholar
Ottolini, R. and Claerbout, J. (1984). The migration of common midpoint slant stacks. Geophysics, 49, 237–49. (S 2.7.1, 10.4.4)CrossRefGoogle Scholar
Ramirez, A. and Weglein, A. (2009). Green's theorem as a comprehensive framework for data reconstruction, regularization, wavefield separation, seismic interferometry, and wavelet estimation: A tutorial. Geophysics, 74, 35–62. (S 12.3)CrossRefGoogle Scholar
Raz, S. (1981). Three-dimensional velocity profile inversion from finite-offset scattering data. Geophysics, 46, 837–42. (S 5.4.2)CrossRefGoogle Scholar
Ronen, S. and Liner, C. (2000). Least-squares DMO and migration. Geophysics, 65, 1364–71. (S 14.1)CrossRefGoogle Scholar
Rothman, D., Levin, A. and Rocca, F. (1985). Residual migration: Applications and limitations. Geophysics, 50, 110–26. (S 10.3, 12.1)CrossRefGoogle Scholar
Sava, P. (2003). Prestack residual migration in the frequency domain. Geophysics, 68, 634–40. (S 10.2, 10.3, 12.1)CrossRefGoogle Scholar
Sava, P., Biondi, B. and Elgen, J. (2005). Wave equation migration velocity analysis by focussing diffractions and reflections. Geophysics, 70, 19–27. (S 1.7)CrossRefGoogle Scholar
Schleicher, J., Tygel, M. and Hubral, P. (1993). 3-D true-amplitude finite-offset migration. Geophysics, 58, 1112–26. (S 11.2)CrossRefGoogle Scholar
Schleicher, J., Tygel, M. and Hubral, P. (2007). Seismic True-Amplitude Imaging. Tulsa: Society of Exploration Geophysicists. (S 1.10, 2.2.1, 5.2.3, 6.2.3, 10.2, 11.2, 12.1, 12.3)CrossRefGoogle Scholar
Schneider, W. (1978). Integral formulation for migration in two and three dimensions. Geophysics, 43, 49–76. (S 2.2.1, 11.2)CrossRefGoogle Scholar
Schultz, P. and Sherwood, J. (1980). Depth migration before stack. Geophysics, 45, 376–93. (S 1.6)CrossRefGoogle Scholar
Shuey, R. (1985). A simplification of the Zoeppritz equations. Geophysics, 50, 609–14. (S 10.1.1)CrossRefGoogle Scholar
Stolt, R. (1978). Migration by Fourier transform. Geophysics, 43, 23–48. (S 2.6.2, 2.8.2)CrossRefGoogle Scholar
Stolt, R. (2002). Seismic data mapping and reconstruction. Geophysics, 67, 890–908. (S 12.3)CrossRefGoogle Scholar
Stolt, R. and Benson, A. (1986). Seismic Migration: Theory and Practice. Amsterdam: Geophysical Press. (S 1.5, 1.6, 8.2, 10.2, 10.3)Google Scholar
Stolt, R. and Weglein, A. (1985). Migration and inversion of seismic data. Geophysics, 50, 2458–72. (S 5.4.2, 8.2)CrossRefGoogle Scholar
Tang, Y. (2009). Target-oriented wave-equation least-squares migration/inversion with phase-encoded Hessian. Geophysics, 74, 95–107. (S 14.1)CrossRefGoogle Scholar
Taylor, J. (1972). Scattering Theory: The Quantum Theory of Nonrelativistic Collisions. New York: John Wiley and Sons. (S 5.4.2)Google Scholar
Tygel, M., Schleicher, J. and Hubral, P. (1994). Pulse distortion in depth migration. Geophysics, 59, 1561–69. (S 4.2.2)CrossRefGoogle Scholar
Tygel, M., Schleicher, J. and Hubral, P. (1998). 2.5-D true-amplitude Kirchhoff migration to zero offset in laterally inhomogeneous media. Geophysics, 63, 557–73. (S 10.2)CrossRefGoogle Scholar
Weglein, A., Stolt, R. and Mayhan, J. (2011a) Reverse time migration and Green's theorem. Part I: The evolution of concepts and setting the stage for the new RTM method. J. Seism. Explor., 20(in press). (S 2.4)Google Scholar
Weglein, A., Stolt, R. and Mayhan, J. (2011b) Reverse time migration and Green's theorem. Part II: A new and consistent theory that progresses and corrects current RTM concepts and methods. J. Seism. Explor., 20, (in press). (S 2.4)Google Scholar
Whitmore, D. (1983). Iterative depth migration by backward time propagation. 53rd Annual International Meeting, SEG Expanded Abstracts, 382–85. (S 2.4)Google Scholar
Yilmaz, O. (2001). Seismic Data Analysis: Processing, Inversion, and Interpretation of Seismic Data. Tulsa: SEG Investigations in Geophysics. (S 1.7)CrossRefGoogle Scholar
Zhang, Y. and Zhang, G. (2009). One-step extrapolation method for reverse time migration. Geophysics, 74, A29–A33. (S 2.4)Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×