We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
A summary is not available for this content so a preview has been provided. Please use the Get access link above for information on how to access this content.
Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
Dennis, W., Bibliographies of eminent scientists. Scientific Monthly, 79(3), (1954), 180–183.Google Scholar
[2]
Simonton, D. K., Creative productivity: A predictive and explanatory model of career trajectories and landmarks. Psychological Review, 104(1), (1997), 66.CrossRefGoogle Scholar
Dong, Y., Ma, H., Shen, Z., et al., A century of science: Globalization of scientific collaborations, citations, and innovations, in Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (New York: ACM, 2017), pp. 1437–1446.CrossRefGoogle Scholar
[5]
Sinatra, R., Deville, P., Szell, M., et al., A century of physics. Nature Physics, 11(10), (2015), 791–796.CrossRefGoogle Scholar
[6]
Goldberger, M. L., Maher, B. A., and Flattau, P. E. E., Doctorate Programs in the United States: Continuity and Change (Washington, DC: The National Academies Press, 1995).Google Scholar
[7]
Baird, L., Departmental publication productivity and reputational quality: Disciplinary differences. Tertiary Education and Management, 15(4), 2009), 355–369.CrossRefGoogle Scholar
[8]
Ioannidis, J. P., Why most published research findings are false. PLoS Medicine, 2(8), (2005), e124.CrossRefGoogle ScholarPubMed
[9]
Shockley, W., On the statistics of individual variations of productivity in research laboratories. Proceedings of the IRE, 45(3), (1957), 279–290.CrossRefGoogle Scholar
[10]
Fronczak, P., Fronczak, A., and Hołyst, J. A., Analysis of scientific productivity using maximum entropy principle and fluctuation-dissipation theorem. Physical Review E, 75(2), (2007), 026103.CrossRefGoogle ScholarPubMed
[11]
Lotka, A. J., The frequency distribution of scientific productivity. Journal of Washington Academy Sciences, 16(12), (1926), 317–324.Google Scholar
[12]
de Solla Price, D., Little Science, Big Science and Beyond (New York: Columbia University Press, 1986).Google Scholar
[13]
Lehman, H. C., Men’s creative production rate at different ages and in different countries. The Scientific Monthly, 78, (1954), 321–326.Google Scholar
[14]
Allison, P. D. and Stewart, J. A., Productivity differences among scientists: Evidence for accumulative advantage. American Sociological Review, 39(4), (1974), 596–606.Google Scholar
[15]
Radicchi, F. and Castellano, C., Analysis of bibliometric indicators for individual scholars in a large data set. Scientometrics, 97(3), (2013), 627–637.Google Scholar
[16]
Barabási, A.-L., The Formula: The Universal Laws of Success (London: Hachette, 2018).Google Scholar
[17]
Bertsimas, D., Brynjolfsson, E., Reichman, S., et al., OR forum–tenure analytics: Models for predicting research impact. Operations Research, 63(6), (2015), 1246–1261.CrossRefGoogle Scholar
[18]
Stephan, P. E., How Economics Shapes Science vol. 1 (Cambridge, MA: Harvard University Press, 2012).CrossRefGoogle Scholar
[19]
Clauset, A., Arbesman, S., and Larremore, D. B., Systematic inequality and hierarchy in faculty hiring networks. Science Advances, 1(1), (2015), e1400005.CrossRefGoogle ScholarPubMed
[20]
Broad, W. J., The publishing game: Getting more for less. Science, 211(4487), (1981), 1137–1139.CrossRefGoogle Scholar
[21]
Smalheiser, N. R. and Torvik, V. I., Author name disambiguation. Annual review of information science and technology, 43(1), (2009), 1–43.CrossRefGoogle Scholar
[22]
Ferreira, A. A., Gonçalves, M. A., and Laender, A. H., A brief survey of automatic methods for author name disambiguation. ACM SIGMOD Record, 41(2), (2012), 15–26.CrossRefGoogle Scholar
[23]
Torvik, V. I., Weeber, M., Swanson, D. R., et al., A probabilistic similarity metric for Medline records: A model for author name disambiguation. Journal of the American Society for Information Science and Technology, 56(2), (2005), 140–158.CrossRefGoogle Scholar
[24]
Hey, A. J. and Walters, P., Einstein’s Mirror (Cambridge, UK: Cambridge University Press, 1997).CrossRefGoogle Scholar
[25]
Mermin, D. N., My life with Landau, in Gotsman, E. A., Ne’eman, Y., and Voronel, A., eds., Frontiers of Physics, Proceedings of the Landau Memorial Conference (Oxford: Pergamon Press, 1990), p. 43.Google Scholar
[26]
Hirsch, J. E., An index to quantify an individual’s scientific research output. Proceedings of the National Academy of Sciences, 102(46), (2005), 16569–16572.CrossRefGoogle ScholarPubMed
[27]
Van Noorden, R., Metrics: A profusion of measures. Nature, 465(7300), (2010), 864–866.CrossRefGoogle ScholarPubMed
[28]
Van Raan, A. F., Comparison of the Hirsch-index with standard bibliometric indicators and with peer judgment for 147 chemistry research groups. Scientometrics, 67(3), (2006), 491–502.CrossRefGoogle Scholar
[29]
Zhivotovsky, L. and Krutovsky, K., Self-citation can inflate h-index. Scientometrics, 77(2), (2008), 373–375.CrossRefGoogle Scholar
[30]
Purvis, A., The h index: playing the numbers game. Trends in Ecology and Evolution, 21(8), (2006), 422.CrossRefGoogle Scholar
[31]
Hirsch, J. E., Does the h index have predictive power?Proceedings of the National Academy of Sciences, 104(49), (2007), 19193–19198.CrossRefGoogle Scholar
[32]
Cattell, J. M., American Men Of Science: A Biographical Directory (New York: The Science Press, 1910).Google Scholar
[33]
Lane, J., Let’s make science metrics more scientific. Nature, 464(7288), (2010), 488–489.CrossRefGoogle ScholarPubMed
[34]
Alonso, S., Cabrerizo, F. J., Herrera-Viedma, E., et al., hg-index: A new index to characterize the scientific output of researchers based on the h-and g-indices. Scientometrics, 82(2), (2009), 391–400.CrossRefGoogle Scholar
[35]
Alonso, S., Cabrerizo, F. J., Herrera-Viedma, E., et al., h-Index: A review focused in its variants, computation and standardization for different scientific fields. Journal of Informetrics, 3(4), (2009), 273–289.CrossRefGoogle Scholar
[36]
Burrell, Q. L., On the h-index, the size of the Hirsch core and Jin’s A-index. Journal of Informetrics, 1(2), (2007), 170–177.CrossRefGoogle Scholar
[37]
Cabrerizo, F. J., Alonso, S., Herrera-Viedma, E., et al., q2-Index: Quantitative and qualitative evaluation based on the number and impact of papers in the Hirsch core. Journal of Informetrics, 4(1), (2010), 23–28.CrossRefGoogle Scholar
[38]
Jin, B., Liang, L., Rousseau, R., et al., The R-and AR-indices: Complementing the h-index. Chinese science bulletin, 52(6), (2007), 855–863.CrossRefGoogle Scholar
[39]
Kosmulski, M., A new Hirsch-type index saves time and works equally well as the original h-index. ISSI Newsletter, 2(3), (2006), 4–6.Google Scholar
[40]
Egghe, L., An improvement of the h-index: The g-index. ISSI newsletter, 2(1), (2006), 8–9.Google Scholar
[41]
Egghe, L., Theory and practise of the g-index. Scientometrics, 69(1), (2006), 131–152.Google Scholar
[42]
Dorogovtsev, S. N. and Mendes, J. F. F., Ranking scientists. Nature Physics, 11(11), (2015), 882–883.Google Scholar
[43]
Radicchi, F., Fortunato, S., and Castellano, C., Universality of citation distributions: Toward an objective measure of scientific impact. Proceedings of the National Academy of Sciences, 105(45), (2008), 17268–17272.CrossRefGoogle ScholarPubMed
[44]
Kaur, J., Radicchi, F., and Menczer, F., Universality of scholarly impact metrics. Journal of Informetrics, 7(4), (2013), 924–932.CrossRefGoogle Scholar
[45]
Sidiropoulos, A., Katsaros, D., and Manolopoulos, Y., Generalized Hirsch h-index for disclosing latent facts in citation networks. Scientometrics, 72(2), (2007), 253–280.CrossRefGoogle Scholar
[46]
Hirsch, J., An index to quantify an individual’s scientific research output that takes into account the effect of multiple coauthorship. Scientometrics, 85(3), (2010), 741–754.CrossRefGoogle Scholar
[47]
Hirsch, J. E., h α: An index to quantify an individual’s scientific leadership. Scientometrics, 118(2), (2019), 673–686.CrossRefGoogle Scholar
[48]
Schreiber, M., A modification of the h-index: The h m-index accounts for multi-authored manuscripts. Journal of Informetrics, 2(3), (2008), 211–216.CrossRefGoogle Scholar
[49]
Egghe, L., Mathematical theory of the h‐and g‐index in case of fractional counting of authorship. Journal of the American Society for Information Science and Technology, 59(10), (2008), 1608–1616.CrossRefGoogle Scholar
[50]
Galam, S., Tailor based allocations for multiple authorship: A fractional gh-index. Scientometrics, 89(1), (2011), 365.CrossRefGoogle Scholar
[51]
Tscharntke, T., Hochberg, M. E., Rand, T. A.et al., Author sequence and credit for contributions in multiauthored publications. PLoS Biology, 5(1), (2007), e18.CrossRefGoogle ScholarPubMed
[52]
Ausloos, M., Assessing the true role of coauthors in the h-index measure of an author scientific impact. Physica A: Statistical Mechanics and its Applications, 422, (2015), 136–142.Google Scholar
[53]
Liu, X. Z. and Fang, H., Modifying h-index by allocating credit of multi-authored papers whose author names rank based on contribution. Journal of Informetrics, 6(4), (2012), 557–565.CrossRefGoogle Scholar
[54]
Hu, X., Rousseau, R., and Chen, J., In those fields where multiple authorship is the rule, the h-index should be supplemented by role-based h-indices. Journal of Information Science, 36(1), (2010), 73–85.CrossRefGoogle Scholar
Radicchi, F., Fortunato, S., Markines, B., et al., Diffusion of scientific credits and the ranking of scientists. Physical Review E, 80(5), (2009), 056103.CrossRefGoogle ScholarPubMed
[57]
Abbott, A., Cyranoski, D., Jones, N., et al., Metrics: Do metrics matter?Nature News, 465(7300), (2010), 860–862.CrossRefGoogle ScholarPubMed
[58]
Pavlou, M. and Diamandis, E. P., The athletes of science. Nature, 478(7369), (2011), 419–419.CrossRefGoogle Scholar
[59]
Kuhn, T. S., The Structure of Scientific Revolutions (Chicago: University of Chicago Press, 1962).Google Scholar
[60]
Merton, R. K., The Matthew effect in science. Science, 159(3810), (1968), 56–63.CrossRefGoogle Scholar
[61]
Simcoe, T. S. and Waguespack, D. M., Status, quality, and attention: What’s in a (missing) name?Management Science, 57(2), (2011), 274–290.CrossRefGoogle Scholar
[62]
Tomkins, A., Zhang, M., and Heavlin, W. D., Reviewer bias in single-versus double-blind peer review. Proceedings of the National Academy of Sciences, 114(48), (2017), 12708–12713.CrossRefGoogle ScholarPubMed
[63]
McGillivray, B. and De Ranieri, E., Uptake and outcome of manuscripts in Nature journals by review model and author characteristics.Research Integrity and Peer Review3, (2018), 5, DOI: https://doi.org/10.1186/s41073-018-0049-zGoogle ScholarPubMed
[64]
Blank, R. M., The effects of double-blind versus single-blind reviewing: Experimental evidence from the American Economic Review.The American Economic Review, 81(5), (1991), 1041–1067.Google Scholar
[65]
Petersen, A. M., Fortunato, S., Pan, R. K., et al., Reputation and impact in academic careers. Proceedings of the National Academy of Sciences, 111 (2014), 15316–15321.CrossRefGoogle ScholarPubMed
[66]
Cole, S., Age and scientific performance. American Journal of Sociology, (1979), 958–977.CrossRefGoogle Scholar
[67]
Newman, M., Networks: An Introduction (Oxford: Oxford University Press, 2010).CrossRefGoogle Scholar
Fenn, J. B., Mann, M., Meng, C. K., et al., Electrospray ionization for mass spectrometry of large biomolecules. Science, 246(4926), (1989), 64–71.CrossRefGoogle ScholarPubMed
[70]
Mazloumian, A., Eom, Y.-H., Helbing, D., et al., How citation boosts promote scientific paradigm shifts and Nobel Prizes. PloS one, 6(5), (2011), e18975.CrossRefGoogle ScholarPubMed
[71]
Fang, F. C., Steen, R. G., and Casadevall, A., Misconduct accounts for the majority of retracted scientific publications. Proceedings of the National Academy of Sciences, 109(42), (2012), 17028–17033.CrossRefGoogle ScholarPubMed
[72]
Lu, S. F., Jin, G., Uzzi, B., et al., The retraction penalty: Evidence from the Web of Science. Scientific Reports, 3(3146), (2013).Google Scholar
[73]
Azoulay, P., Furman, J. L., Krieger, J. L., et al., Retractions. Review of Economics and Statistics, 97(5), (2015), 1118–1136.CrossRefGoogle Scholar
[74]
Azoulay, P., Bonatti, A., and Krieger, J. L., The career effects of scandal: Evidence from scientific retractions. Research Policy, 46(9), (2017), 1552–1569.Google Scholar
[75]
Jin, G. Z., Jones, B., Feng Lu, S., et al., The Reverse Matthew Effect: Catastrophe and Consequence in Scientific Teams, working paper 19489 (Cambridge, MA: National Bureau of Economic Research, 2013).CrossRefGoogle Scholar
[76]
Merton, R. K., Singletons and multiples in scientific discovery: A chapter in the sociology of science.Proceedings of the American Philosophical Society, 105(5), (1961), 470–486.Google Scholar
[77]
Azoulay, P., Stuart, T., and Wang, Y., Matthew: Effect or fable?Management Science, 60(1), (2013), 92–109.CrossRefGoogle Scholar
[78]
Garfield, E., and Welljams-Dorof, A., Of Nobel class: A citation perspective on high impact research authors. Theoretical Medicine, 13(2), (1992), 117–135.CrossRefGoogle ScholarPubMed
[79]
Azoulay, P., Research efficiency: Turn the scientific method on ourselves. Nature, 484(7392), (2012), 31–32.Google ScholarPubMed
[80]
Restivo, M., and Van De Rijt, A., Experimental study of informal rewards in peer production. PloS One, 7(3), (2012), e34358.CrossRefGoogle ScholarPubMed
[81]
van de Rijt, A., Kang, S. M., Restivo, M., et al., Field experiments of success-breeds-success dynamics. Proceedings of the National Academy of Sciences, 111(19), (2014), 6934–6939.Google ScholarPubMed
[82]
Alberts, B., Kirschner, M. W., Tilghman, S., et al., Opinion: Addressing systemic problems in the biomedical research enterprise. Proceedings of the National Academy of Sciences, 112(7), (2015), 1912–1913.CrossRefGoogle ScholarPubMed
[83]
Kaiser, J., Biomedical research. The graying of NIH research. Science, 322(5903), (2008), 848–849.CrossRefGoogle ScholarPubMed
[84]
Beard, G. M., Legal Responsibility in Old Age (New York: Russells’ American Steam Printing House, 1874) pp. 5–42.Google Scholar
[85]
Lehman, H. C., Age and Achievement(Princeton, NJ: Princeton University Press, 1953).CrossRefGoogle Scholar
Dennis, W., Creative productivity between the ages of 20 and 80 years. Journal of Gerontology, 21(1), (1966), 1–8.CrossRefGoogle ScholarPubMed
[88]
Jones, B. F., Age and great invention. The Review of Economics and Statistics, 92(1), (2010), 1–14.CrossRefGoogle Scholar
[89]
Jones, B., Reedy, E. J., and Weinberg, B. A., Age and Scientific Genius, working paper 19866 (Cambridge, MA: National Bureau of Economic Research, 2014).CrossRefGoogle Scholar
[90]
Usher, A. P., A History of Mechanical Inventions, revised edition (North Chelmsford, MA: Courier Corporation, 1954).Google Scholar
[91]
Weitzman, M. L., Recombinant growth. Quarterly Journal of Economics, 113(2), (1998), 331–360.CrossRefGoogle Scholar
[92]
Uzzi, B., Mukherjee, S., Stringer, M., et al., Atypical combinations and scientific impact. Science, 342(6157), (2013), 468–472.CrossRefGoogle ScholarPubMed
[93]
Ericsson, K. A., Krampe, R. T., and Tesch-Römer, C., The role of deliberate practice in the acquisition of expert performance. Psychological Review, 100(3), (1993), 363–406.CrossRefGoogle Scholar
[94]
Ericsson, K. A., and Lehmann, A. C., Expert and exceptional performance: Evidence of maximal adaptation to task constraints. Annual Review of Psychology, 47(1), (1996), 273–305.CrossRefGoogle ScholarPubMed
[95]
Ericsson, K. A., Hoffman, R. R., Kozbelt, A., et al., The Cambridge Handbook of Expertise and Expert Performance (Cambridge, UK: Cambridge University Press, 2006).Google Scholar
[96]
Pelz, D. C., and Andrews, F. M., Scientists in Organizations: Productive Climates for Research and Development (New York: Wiley, 1966).Google Scholar
[97]
Bayer, A. E., and Dutton, J. E., Career age and research-professional activities of academic scientists: Tests of alternative nonlinear models and some implications for higher education faculty policies.The Journal of Higher Education, 48(3), (1977), 259–282.Google Scholar
[98]
Blackburn, R. T., Behymer, C. E., and Hall, D. E., Research note: Correlates of faculty publications. Sociology of Education, 51(2) (1978), 132–141.CrossRefGoogle Scholar
[99]
Matthews, K. R., Calhoun, K. M., Lo, N., et al., The aging of biomedical research in the United States.PLoS ONE, 6(12), (2011), e29738.CrossRefGoogle ScholarPubMed
[100]
Adams, C. W., The age at which scientists do their best work.Isis, 36(3/4) (1946), 166–169.Google ScholarPubMed
[101]
Zuckerman, H., Scientific Elite: Nobel Laureates in the United States (Piscataway, NJ: Transaction Publishers, 1977).Google Scholar
[102]
Simonton, D. K., Career landmarks in science: Individual differences and interdisciplinary contrasts. Developmental Psychology, 27(1), (1991), 119–130.CrossRefGoogle Scholar
[103]
Jones, B. F., and Weinberg, B. A., Age dynamics in scientific creativity. Proceedings of the National Academy of Sciences, 108(47), (2011), 18910–18914.CrossRefGoogle ScholarPubMed
[104]
Jones, B. F., The burden of knowledge and the “death of the renaissance man”: Is innovation getting harder?The Review of Economic Studies, 76(1), (2009), 283–317.CrossRefGoogle Scholar
[105]
Jones, B. F., As science evolves, how can science policy? Innovation Policy and the Economy, 11 (2011), 103–131.Google Scholar
[106]
Machlup, F., The Production and Distribution of Knowledge in the United States (Princeton, NJ: Princeton University Press, 1962).Google Scholar
[107]
Fortunato, S., Growing time lag threatens Nobels. Nature, 508(7495), (2014), 186–186.CrossRefGoogle ScholarPubMed
[108]
Cassidy, D. C., Uncertainty: The Life and Science of Werner Heisenberg (New York: Freeman, 1992), p. 1.Google Scholar
[109]
Weinberg, B. A., and Galenson, D. W., Creative Careers: The Life Cycles of Nobel Laureates in Economics, working paper 11799 (Cambridge, MA: National Bureau of Economic Research, 2005).CrossRefGoogle Scholar
[110]
Rappa, M. and Debackere, K., Youth and scientific innovation: The role of young scientists in the development of a new field. Minerva, 31(1), (1993), 1–20.CrossRefGoogle Scholar
[111]
Packalen, M. and Bhattacharya, J., Age and the Trying Out of New Ideas. working paper 20920 (Cambridge, MA: National Bureau of Economic Research, 2015).CrossRefGoogle Scholar
[112]
Galenson, D. W., Painting Outside the Lines: Patterns of Creativity in Modern Art (Cambridge, MA: Harvard University Press, 2009).Google Scholar
[113]
Galenson, D. W., Old Masters and Young Geniuses: The Two Life Cycles of Artistic Creativity (Princeton, NJ: Princeton University Press, 2011).CrossRefGoogle Scholar
[114]
Hull, D. L., Tessner, P. D., and Diamond, A. M., Planck’s principle. Science, 202(4369), (1978), 717–723.CrossRefGoogle ScholarPubMed
[115]
Azoulay, P., Zivin, J. S., and Wang, J., Superstar extinction. Quarterly Journal of Economics, 125(2), (2010), 549–589.CrossRefGoogle Scholar
[116]
Sinatra, R., Wang, D., Deville, P., et al., Quantifying the evolution of individual scientific impact. Science, 354(6312), (2016), aaf5239.CrossRefGoogle ScholarPubMed
[117]
Liu, L., Wang, Y., Sinatra, R., et al., Hot streaks in artistic, cultural, and scientific careers. Nature, 559, (2018), 396–399.CrossRefGoogle ScholarPubMed
[118]
Simonton, D. K., Creative productivity, age, and stress: A biographical time-series analysis of 10 classical composers. Journal of Personality and Social Psychology, 35(11), (1977), 791–804.CrossRefGoogle ScholarPubMed
[119]
Simonton, D. K., Quality, quantity, and age: The careers of ten distinguished psychologists.International Journal of Aging & Human Development, 21(4), (1985), 241–254.CrossRefGoogle ScholarPubMed
[120]
Simonton, D. K., Genius, Creativity, and Leadership: Historiometric Inquiries (Cambridge, MA; Harvard University Press, 1984).CrossRefGoogle Scholar
[121]
Simonton, D. K., Scientific Genius: A Psychology of Science (Cambridge, UK: Cambridge University Press, 1988).Google Scholar
[122]
Li, J., Yin, Y., Fortunato, S., et al., Nobel laureates are almost the same as us. Nature Reviews Physics, 1(5), (2019), 301–303.CrossRefGoogle Scholar
[123]
Azoulay, P., Jones, B. F., Kim, N. J. D., et al., Age and High-Growth Entrepreneurship working paper 24489 (Cambridge, MA: National Bureau of Economic Research, 2018).CrossRefGoogle Scholar
[124]
Azoulay, P., Jones, B., King, J. D., et al., Research: The average age of a successful startup founder is 45. Harvard Business Review, (2018), July 11.Google Scholar
[125]
Powdthavee, N., Riyanto, Y. E., and Knetsch, J. L., Lower-rated publications do lower academics’ judgments of publication lists: Evidence from a survey experiment of economists. Journal of Economic Psychology, 66, (2018), 33–44.CrossRefGoogle Scholar
[126]
Gilovich, T., Vallone, R., and Tversky, A., The hot hand in basketball: On the misperception of random sequences. Cognitive Psychology, 17(3), (1985), 295–314.CrossRefGoogle Scholar
Ayton, P., and Fischer, I., The hot hand fallacy and the gambler’s fallacy: Two faces of subjective randomness?Memory & Cognition, 32(8), (2004), 1369–1378.CrossRefGoogle ScholarPubMed
[129]
Rabin, M., and Vayanos, D., The gambler’s and hot-hand fallacies: Theory and applications. Review of Economic Studies, 77(2), (2010), 730–778.CrossRefGoogle Scholar
[130]
Xu, J. M., and Harvey, N., Carry on winning: The gamblers’ fallacy creates hot hand effects in online gambling. Cognition, 131(2), (2014), 173–180.CrossRefGoogle ScholarPubMed
[131]
Csapo, P. and Raab, M., Correction “Hand down, Man down.” Analysis of defensive adjustments in response to the hot hand in basketball using novel defense metrics (vol. 9, e114184, 2014). PLoS One, 10(4), (2015), e0124982.CrossRefGoogle ScholarPubMed
[132]
Barabási, A.-L., The origin of bursts and heavy tails in human dynamics. Nature, 435(7039), (2005), 207–211.CrossRefGoogle ScholarPubMed
[133]
Vázquez, A., Oliveira, J. G., Dezsö, Z., et al., Modeling bursts and heavy tails in human dynamics. Physical Review E, 73(3), (2006), 036127.CrossRefGoogle ScholarPubMed
[134]
Barabási, A.-L., Bursts: The Hidden Patterns Behind Everything We Do, From Your E-mail to Bloody Crusades (New York: Penguin, 2010).Google Scholar
[135]
Abbott, B. P, Abbott, R., Abbott, T. D., et al., Observation of gravitational waves from a binary black hole merger. Physical Review Letters, 116(6), (2016), 061102.CrossRefGoogle ScholarPubMed
[136]
Wuchty, S., Jones, B.F., and Uzzi, B., The increasing dominance of teams in production of knowledge. Science, 316(5827), (2007), 1036–1039.CrossRefGoogle ScholarPubMed
[137]
Cooke, N. J. and Hilton, M. L. (eds.), Enhancing the Effectiveness of Team Science (Washington, DC: National Academies Press, 2015).Google Scholar
Valderas, J. M., Why do team-authored papers get cited more?Science, 317(5844), (2007), 1496–1498.CrossRefGoogle ScholarPubMed
[141]
Leahey, E., From solo investigator to team scientist: Trends in the practice and study of research collaboration. Annual Review of Sociology, 42, (2016), 81–100.CrossRefGoogle Scholar
[142]
Rawlings, C. M. and McFarland, D. A., Influence flows in the academy: Using affiliation networks to assess peer effects among researchers. Social Science Research, 40(3), (2011), 1001–1017.CrossRefGoogle Scholar
[143]
Jones, B. F., Wuchty, S., and Uzzi, B., Multi-university research teams: shifting impact, geography, and stratification in science. Science, 322(5905), (2008), 1259–1262.CrossRefGoogle Scholar
[144]
Xie, Y. and Killewald, A. A., Is American Science in Decline? (Cambridge, MA: Harvard University Press, 2012).CrossRefGoogle Scholar
[145]
Adams, J., Collaborations: The fourth age of research. Nature, 497(7451), (2013), 557–560.CrossRefGoogle ScholarPubMed
Bikard, M., Murray, F., and Gans, J. S., Exploring trade-offs in the organization of scientific work: Collaboration and scientific reward. Management Science, 61(7), (2015), 1473–1495.CrossRefGoogle Scholar
[148]
Manski, C. F., Identification of endogenous social effects: The reflection problem. The Review of Economic Studies, 60(3), (1993), 531–542.CrossRefGoogle Scholar
[149]
Sacerdote, B., Peer effects with random assignment: Results for Dartmouth roommates. The Quarterly Journal of Economics, 116(2), (2001), 681–704.CrossRefGoogle Scholar
[150]
Mas, A. and Moretti, E., Peers at work. The American Economic Review, 99(1), (2009), 112–145.CrossRefGoogle Scholar
[151]
Herbst, D. and Mas, A., Peer effects on worker output in the laboratory generalize to the field. Science, 350(6260), (2015), 545–549.CrossRefGoogle ScholarPubMed
[152]
Agrawal, A. K., McHale, J., and Oettl, A., Why Stars Matter working paper 20012 (Cambrdige, MA: National Bureau of Economic Research, 2014).CrossRefGoogle Scholar
[153]
Angrist, J. D. and Pischke, J. -S., Mostly Harmless Econometrics: An Empiricist’s Companion(Princeton, NJ: Princeton University Press, 2008).CrossRefGoogle Scholar
[154]
Borjas, G. J. and Doran, K. B., Which peers matter? The relative impacts of collaborators, colleagues, and competitors. Review of Economics and Statistics, 97(5), (2015), 1104–1117.CrossRefGoogle Scholar
[155]
Waldinger, F., Peer effects in science: Evidence from the dismissal of scientists in Nazi Germany.The Review of Economic Studies, 79(2), (2011), 838–861.CrossRefGoogle Scholar
[156]
Crane, D., Invisible Colleges: Diffusion of Knowledge in Scientific Communities(Chicago: University of Chicago Press, 1972).Google Scholar
Oettl, A., Reconceptualizing stars: Scientist helpfulness and peer performance. Management Science, 58(6), (2012), 1122–1140.CrossRefGoogle Scholar
[159]
Grossman, J. W., Patterns of research in mathematics. Notices of the AMS, 52(1), (2005), 35–41.Google Scholar
[160]
Palla, G., Barabási, A.-L., and Vicsek, T., Quantifying social group evolution. Nature, 446(7136), (2007), 664–667.CrossRefGoogle ScholarPubMed
[161]
Grossman, J. W. and Ion, P. D., On a portion of the well-known collaboration graph.Congressus Numerantium, 108, (1995), 129–132.Google Scholar
[162]
Grossman, J. W., The evolution of the mathematical research collaboration graph.Congressus Numerantium, 158, (2002), 201–212.Google Scholar
[163]
Barabási, A. -L, Jeong, H., Neda, Z., et al., Evolution of the social network of scientific collaborations. Physica A: Statistical Mechanics and its Applications, 311(3), (2002), 590–614.CrossRefGoogle Scholar
[164]
Newman, M. E., Coauthorship networks and patterns of scientific collaboration. Proceedings of the National Academy of Sciences, 101(suppl 1), (2004), 5200–5205.CrossRefGoogle ScholarPubMed
[165]
Newman, M. E., The structure of scientific collaboration networks. Proceedings of the National Academy of Sciences, 98(2), (2001), 404–409.CrossRefGoogle ScholarPubMed
Watts, D. J. and Strogatz, S. H., Collective dynamics of “small-world” networks. Nature, 393(6684), (1998), 440–442.CrossRefGoogle ScholarPubMed
[168]
Uzzi, B. and Spiro, J., Collaboration and creativity: The small world Problem1. American Journal of Sociology, 111(2), (2005), 447–504.CrossRefGoogle Scholar
[169]
Muir, W. M., Group selection for adaptation to multiple-hen cages: Selection program and direct responses. Poultry Science, 75(4), (1996), 447–458.CrossRefGoogle ScholarPubMed
[170]
Wilson, D. S., Evolution for Everyone: How Darwin’s Theory Can Change the Way We Think About Our Lives(McHenry, IL: Delta, 2007).Google Scholar
[171]
Marks, M. A., Mathieu, J. E., and Zaccaro, S. J., A temporally based framework and taxonomy of team processes. Academy of Management Review, 26(3), (2001), 356–376.CrossRefGoogle Scholar
[172]
Scott, J., Discord turns academe’s hot team cold: The self-destruction of the English department at Duke. The New York Times, (November 21, 1998).Google Scholar
[173]
Yaffe, D., The department that fell to Earth: The deflation of Duke English. Lingua Franca: The Review of Academic Life, 9(1), (1999), 24–31.Google Scholar
[174]
Swaab, R. I., Schaerer, M., Anicich, E. M., et al., The too-much-talent effect team interdependence determines when more talent is too much or not enough. Psychological Science, 25(8), (2014), 1581–1591.CrossRefGoogle ScholarPubMed
[175]
Ronay, R., Greenaway, K., Anicich, E. M., et al., The path to glory is paved with hierarchy when hierarchical differentiation increases group effectiveness. Psychological Science, 23(6), (2012), 669–677.CrossRefGoogle ScholarPubMed
[176]
Groysberg, B., Polzer, J. T., and Elfenbein, H. A., Too many cooks spoil the broth: How high-status individuals decrease group effectiveness. Organization Science, 22(3), (2011), 722–737.CrossRefGoogle Scholar
[177]
Uzzi, B., Wuchty, S., Spiro, J., et al., Scientific teams and networks change the face of knowledge creation, in Vedres, B. and Scotti, M. (eds.), Networks in Social Policy Problems (Cambridge: Cambridge University Press, 2012), pp. 47–59.Google Scholar
[178]
Freeman, R. B. and Huang, W., Collaboration: Strength in diversity. Nature, 513(7518), (2014), 305–305.CrossRefGoogle ScholarPubMed
[179]
Freeman, R. B. and Huang, W., Collaborating With People Like Me: Ethnic Coauthorship Within the US, working paper 19905, (Cambridge, MA: National Bureau of Economic Research, 2014).CrossRefGoogle Scholar
[180]
Smith, M. J., Weinberger, C., Bruna, E. M., et al., The scientific impact of nations: Journal placement and citation performance. PloS One, 9(10), (2014), e109195.CrossRefGoogle ScholarPubMed
[181]
AlShebli, B. K., Rahwan, T., and Woon, W. L., The preeminence of ethnic diversity in scientific collaboration. Nature Communications, 9(1), (2018), 5163.CrossRefGoogle ScholarPubMed
[182]
Powell, K., These labs are remarkably diverse: Here’s why they’re winning at science. Nature, 558(7708), (2018), 19–22.CrossRefGoogle ScholarPubMed
[183]
Cummings, J. N., Kiesler, S., Bosagh Zadeh, R., et al., Group heterogeneity increases the risks of large group size a longitudinal study of productivity in research groups. Psychological Science, 24(6), (2013), 880–890.CrossRefGoogle Scholar
[184]
Deary, I. J., Looking Down on Human Intelligence: From Psychometrics to the Brain(Oxford: Oxford University Press, 2000).CrossRefGoogle Scholar
[185]
Spearman, C., “General Intelligence,” objectively determined and measured. The American Journal of Psychology, 15(2), (1904), 201–292.CrossRefGoogle Scholar
[186]
Woolley, A.W., Chabris, C. F., Pentland, A., et al., Evidence for a collective intelligence factor in the performance of human groups. Science, 330(6004), (2010), 686–688.CrossRefGoogle ScholarPubMed
[187]
Guimera, R., Uzzi, B., Spiro, J., et al., Team assembly mechanisms determine collaboration network structure and team performance. Science, 308(5722), (2005), 697–702.CrossRefGoogle ScholarPubMed
[188]
De Vaan, M., Stark, D., and Vedres, B., Game changer: The topology of creativity. American Journal of Sociology, 120(4), (2015), 1144–1194.CrossRefGoogle ScholarPubMed
[189]
Vedres, B., Forbidden triads and creative success in jazz: The Miles Davis factor. Applied Network Science, 2(1), (2017), 31.CrossRefGoogle Scholar
[190]
Petersen, A. M., Quantifying the impact of weak, strong, and super ties in scientific careers. Proceedings of the National Academy of Sciences, 112(34), (2015), E4671–E4680.CrossRefGoogle ScholarPubMed
[191]
Dahlander, L. and McFarland, D. A., Ties that last tie formation and persistence in research collaborations over time. Administrative Science Quarterly, 58(1), (2013), 69–110.CrossRefGoogle Scholar
[192]
Brown, M. S. and Goldstein, J. L., A receptor-mediated pathway for cholesterol homeostasis. Science, 232(4746), (1986), 34–47.CrossRefGoogle ScholarPubMed
[193]
Heron, M., Deaths: Leading causes for 2012. National Vital Statistics Reports, 64(10), (2015).Google ScholarPubMed
[194]
Aad, G., Abbott, B., Abdallah, J., et al., Combined measurement of the Higgs boson mass in pp collisions at √s= 7 and 8 TeV with the ATLAS and CMS experiments. Physical Review Letters, 114(19), (2015), 191803.CrossRefGoogle Scholar
[195]
Castelvecchi, D., Physics paper sets record with more than 5,000 authors. Nature News, May 15, 2015.CrossRefGoogle Scholar
[196]
Milojevic, S., Principles of scientific research team formation and evolution. Proceedings of the National Academy of Sciences, 111(11), (2014), 3984–3989.CrossRefGoogle Scholar
[197]
Klug, M. and Bagrow, J. P., Understanding the group dynamics and success of teams. Royal Society Open Science, 3(4), (2016), 160007.CrossRefGoogle Scholar
[198]
Paulus, P. B., Kohn, N. W., Arditti, L. E., et al., Understanding the group size effect in electronic brainstorming. Small Group Research, 44(3), (2013), 332–352.CrossRefGoogle Scholar
[199]
Lakhani, K. R., Boudreau, K. J., Loh, P.-R., et al., Prize-based contests can provide solutions to computational biology problems. Nature Biotechnology, 31(2), (2013), 108–111.CrossRefGoogle ScholarPubMed
[200]
Barber, S. J., Harris, C. B., and Rajaram, S., Why two heads apart are better than two heads together: Multiple mechanisms underlie the collaborative inhibition effect in memory. Journal of Experimental Psychology: Learning Memory and Cognition, 41(2), (2015), 559–566.Google ScholarPubMed
[201]
Minson, J. A. and Mueller, J. S., The cost of collaboration: Why joint decision-making exacerbates rejection of outside information. Psychological Science, 23(3), (2012), 219–224.CrossRefGoogle ScholarPubMed
[202]
Greenstein, S. and Zhu, F., Open content, Linus’ law, and neutral point of view. Information Systems Research, 27(3), (2016), 618–635.CrossRefGoogle Scholar
[203]
Christensen, C. M., and Christensen, C. M., The Innovator’s Dilemma: The Revolutionary Book That Will Change the Way You do Business (New York: Harper Business Essentials, 2003).Google Scholar
[204]
Bak, P., Tang, C., and Wiesenfeld, K., Self-organized criticality: An explanation of the 1/f noise. Physical Review Letters, 59(4), (1987), 381–384.CrossRefGoogle ScholarPubMed
[205]
Davis, K.B., Mewes, M. -O., Andrews, M. R., et al., Bose–Einstein condensation in a gas of sodium atoms. Physical Review Letters, 75(22), (1995), 3969–3973.CrossRefGoogle Scholar
[206]
Wu, L., Wang, D., and Evans, J. A., Large teams develop and small teams disrupt science and technology. Nature, 566(7744), (2019), 378–382.CrossRefGoogle ScholarPubMed
[207]
Funk, R. J., and Owen-Smith, J., A dynamic network measure of technological change. Management Science, 63(3), (2017), 791-817.CrossRefGoogle Scholar
[208]
Einstein, A., Die feldgleichungen der gravitation. Sitzung der physikalische-mathematischen Klasse, 25, (1915), 844–847.Google Scholar
[209]
Cummings, J. N. and Kiesler, S., Coordination costs and project outcomes in multi-university collaborations. Research Policy, 36(10), (2007), 1620–1634.CrossRefGoogle Scholar
[210]
Biagioli, M. and Galison, P., Scientific Authorship: Credit and Intellectual Property in Science (Abingdon, UK: Routledge, 2014).CrossRefGoogle Scholar
[211]
Corrêa Jr, E. A., Silva, F. N., da F. Costa, L., et al., Patterns of authors contribution in scientific manuscripts.Journal of Informetrics, 11(22), (2016), 498–510.CrossRefGoogle Scholar
[212]
Larivière, V., Desrochers, N., Macaluso, B., et al., Contributorship and division of labor in knowledge production. Social Studies of Science, 46(3), (2016), 417–435.CrossRefGoogle ScholarPubMed
[213]
Slone, R. M., Coauthors’ contributions to major papers published in the AJR: frequency of undeserved coauthorship. American Journal of Roentgenology, 167(3), (1996), 571–579.CrossRefGoogle ScholarPubMed
Ilakovac, V., Fister, K., Marusic, M., et al., Reliability of disclosure forms of authors’ contributions. Canadian Medical Association Journal, 176(1), (2007), 41–46.CrossRefGoogle ScholarPubMed
[216]
Deacon, R., Hurley, M. J., Rebolledo, C. M., et al., Nrf2: a novel therapeutic target in fragile X syndrome is modulated by NNZ2566. Genes, Brain, and Behavior, 16(7), (2017), 1–10.CrossRefGoogle ScholarPubMed
[217]
Conte, M. L., Maat, S. L., and Omary, M. B., Increased co-first authorships in biomedical and clinical publications: a call for recognition. The FASEB Journal, 27(10), (2013), 3902–3904.CrossRefGoogle Scholar
[218]
Dubnansky, E. and Omary, M. B., Acknowledging joint first authors of published work: the time has come. Gastroenterology, 143(4), (2012), 879–880.CrossRefGoogle ScholarPubMed
[219]
Omary, M. B., Wallace, M. B., El-Omar, E. M., et al., A multi-journal partnership to highlight joint first-authors of manuscripts. Gut, 64(2), (2015), 189.CrossRefGoogle ScholarPubMed
[220]
Drubin, D. G., MBoC improves recognition of co-first authors. Molecular Biology of the Cell, 25(13), (2014), 1937.CrossRefGoogle ScholarPubMed
[221]
Waltman, L., An empirical analysis of the use of alphabetical authorship in scientific publishing. Journal of Informetrics, 6(4), (2012), 700–711.CrossRefGoogle Scholar
[222]
Jabbehdari, S. and Walsh, J. P., Authorship norms and project structures in science.Science, Technology, and Human Values, 42(5), (2017), 872–900.CrossRefGoogle Scholar
[223]
Heffner, A. G., Authorship recognition of subordinates in collaborative research. Social Studies of Science, 9(3), (1979), 377–384.CrossRefGoogle Scholar
[224]
Shapin, S., The invisible technician. American Scientist, 77(6), (1989), 554–563.Google Scholar
Xie, Y. and Shauman, K. A., Women in Science: Career Processes and Outcomes (Cambridge, MA: Harvard University Press, 2003).Google Scholar
[228]
Ceci, S. J., Ginther, D. K., Kahn, S., et al., Women in academic science: A changing landscape. Psychological Science in the Public Interest, 15(3), (2014), 75–141.CrossRefGoogle ScholarPubMed
[229]
Ginther, D. K. and Kahn, S., Women in economics: moving up or falling off the academic career ladder?The Journal of Economic Perspectives, 18(3), (2004), 193–214.CrossRefGoogle Scholar
Niederle, M. and Vesterlund, L., Do women shy away from competition? Do men compete too much?The Quarterly Journal of Economics, 122(3), (2007), 1067–1101.CrossRefGoogle Scholar
[232]
Thomas, W. I. and Thomas, D. S., The Child in America: Behavior Problems and Programs. (New York: A. A. Knopf. 1928).Google Scholar
[233]
Merton, R. K., The Thomas theorem and the Matthew effect. Social Forces, 74(2), (1995), 379–422.CrossRefGoogle Scholar
[234]
Merton, R. K., The Sociology of Science: Theoretical and Empirical Investigations (Chicago: University of Chicago Press, 1973).Google Scholar
[235]
Arnison, G., Astbury, A., Aubert, B., et al., Experimental observation of isolated large transverse energy electrons with associated missing energy at sqrt (s)= 540 GeV. Physics Letters B, 122 (1983), 103–116.CrossRefGoogle Scholar
[236]
Shen, H.-W. and Barabási, A.-L., Collective credit allocation in science. Proceedings of the National Academy of Sciences, 111(34), (2014), 12325–12330.CrossRefGoogle Scholar
[237]
Englert, F. and Brout, R., Broken symmetry and the mass of gauge vector mesons. Physical Review Letters, 13(9), (1964), 321–323.CrossRefGoogle Scholar
[238]
Higgs, P. W., Broken symmetries and the masses of gauge bosons. Physical Review Letters, 13(16), (1964), 508–509.CrossRefGoogle Scholar
[239]
Guralnik, G. S., Hagen, C. R., and Kibble, T. W., Global conservation laws and massless particles. Physical Review Letters, 13(20), (1964), 585–587.CrossRefGoogle Scholar
[240]
Maury, J. -P., Newton: Understanding the Cosmos (London: Thames & Hudson, 1992).Google Scholar
[241]
de Solla Price, D., Science Since Babylon (New Haven, CT: Yale University Press, 1961).Google Scholar
[242]
Gilbert, G. N. and Woolgar, S., The quantitative study of science: An examination of the literature.Science Studies, 4(3), (1974), 279–294.CrossRefGoogle Scholar
[243]
Khabsa, M. and Giles, C. L., The number of scholarly documents on the public web. PLoS One, 9(5), (2014), e93949.CrossRefGoogle ScholarPubMed
[244]
Sinha, A., Shen, Z., Song, Y., et al., An overview of Microsoft Academic Service (MAS) and applications, in WWW ’15 Companion: Proceedings of the 24th International Conference on World Wide Web (New York: ACM, 2015), pp. 243–246.CrossRefGoogle Scholar
[245]
The Works of Francis Bacon vol. IV: Translations of the Philosophical Works ed. Spedding, J., Ellis, R. L., Heath, D. D. (London: Longmans & Co., 1875), p. 109.Google Scholar
[246]
Baldwin, M., “Keeping in the race”: Physics, publication speed and national publishing strategies in Nature, 1895–1939. The British Journal for the History of Science, 47(2), (2014), 257–279.CrossRefGoogle ScholarPubMed
[247]
Editorial, Form follows need. Nature Physics, 12, (2016), 285.Google Scholar
[248]
Csiszar, A., The Scientific Journal: Authorship and the Politics of Knowledge in the Nineteenth Century (Chicago: University of Chicago Press, 2018).CrossRefGoogle Scholar
[249]
Wendler, C., Bridgeman, B., Cline, F., et al., The Path Forward: The Future of Graduate Education in the United States (Prnceton, NJ: Educational Testing Service, 2010).Google Scholar
[250]
Council of Graduate Schools, PhD Completion and Attrition: Policy, Numbers, Leadership, and Next Steps (Washington, DC: Council of Graduate Schools, 2004).Google Scholar
[251]
Schillebeeckx, M., Maricque, B., and Lewis, C., The missing piece to changing the university culture. Nature Biotechnology, 31(10), (2013), 938–941.CrossRefGoogle ScholarPubMed
[252]
Cyranoski, D., Gilbert, N., Ledford, H., et al., Education: The PhD factory. Nature News, 472(7343), (2011), 276–279.CrossRefGoogle Scholar
[253]
Yin, Y. and Wang, D., The time dimension of science: Connecting the past to the future. Journal of Informetrics, 11(2), (2017), 608–621.CrossRefGoogle Scholar
[254]
Vale, R. D., Accelerating scientific publication in biology. Proceedings of the National Academy of Sciences, 112(44), (2015), 13439–13446.CrossRefGoogle ScholarPubMed
Zolas, N., Goldschlag, N., Jarmin, R., et al., Wrapping it up in a person: Examining employment and earnings outcomes for PhD recipients. Science, 350(6266), (2015), 1367–1371.CrossRefGoogle Scholar
[258]
Editorial, Make the most of PhDs. Nature News, 528(7580), (2015), 7.Google Scholar
[259]
Bloom, N., Jones, C. I., Van Reenen, J., et al., Are Ideas Getting Harder to Find? working paper 23782 (Cambridge, MA: National Bureau of Economic Research, 2017).CrossRefGoogle Scholar
[260]
Milojevic, S., Quantifying the cognitive extent of science. Journal of Informetrics, 9(4), (2015), 962–973.CrossRefGoogle Scholar
[261]
Van Noorden, R., Maher, B., and Nuzzo, R., The top 100 papers. Nature, 514(7524), (2014), 550–553.CrossRefGoogle ScholarPubMed
[262]
de Solla Price, D. J., Networks of scientific papers. Science, 149(3683), (1965), 510–515.CrossRefGoogle Scholar
[263]
Garfield, E. and Sher, I. H., New factors in the evaluation of scientific literature through citation indexing. American Documentation, 14(3), (1963), 195–201.CrossRefGoogle Scholar
[264]
Pareto, V., Cours d’économie politique (Geneva: Librairie Droz, 1964).CrossRefGoogle Scholar
Lehmann, S., Lautrup, B., and Jackson, A. D., Citation networks in high energy physics. Physical Review E, 68(2), (2003) 026113.CrossRefGoogle ScholarPubMed
[267]
Seglen, P. O., The skewness of science. Journal of the American Society for Information Science, 43(9), (1992) 628–638.3.0.CO;2-0>CrossRefGoogle Scholar
Eom, Y.-H. and Fortunato, S., Characterizing and modeling citation dynamics. PloS One, 6(9), (2011), e24926.CrossRefGoogle ScholarPubMed
[270]
Menczer, F., Evolution of document networks. Proceedings of the National Academy of Sciences, 101(suppl 1), (2004), 5261–5265.CrossRefGoogle ScholarPubMed
[271]
Radicchi, F. and Castellano, C., Rescaling citations of publications in physics. Physical Review E, 83(4), (2011), 046116.CrossRefGoogle ScholarPubMed
[272]
Redner, S., Citation statistics from 110 years of Physical Review. Physics Today, 58 (2005), 49–54.CrossRefGoogle Scholar
[273]
Stringer, M. J., Sales-Pardo, M., and Amaral, L. A. N., Effectiveness of journal ranking schemes as a tool for locating information. PloS One, 3(2), (2008), e1683.CrossRefGoogle ScholarPubMed
[274]
Castellano, C. and Radicchi, F., On the fairness of using relative indicators for comparing citation performance in different disciplines. Archivum immunologiae et therapiae experimentalis, 57(2), (2009), 85–90.CrossRefGoogle ScholarPubMed
[275]
Stringer, M. J., Sales-Pardo, M., and Amaral, L. A. N., Statistical validation of a global model for the distribution of the ultimate number of citations accrued by papers published in a scientific journal. Journal of the American Society for Information Science and Technology, 61(7), (2010), 1377–1385.CrossRefGoogle Scholar
[276]
Wallace, M. L., Larivière, V., and Gingras, Y., Modeling a century of citation distributions. Journal of Informetrics, 3(4), (2009), 296–303.CrossRefGoogle Scholar
[277]
Anastasiadis, A. D., de Albuquerque, M. P., de Albuquerque, M. P., et al., Tsallis q-exponential describes the distribution of scientific citations: A new characterization of the impact. Scientometrics, 83(1), (2010), 205–218.CrossRefGoogle Scholar
[278]
van Raan, A. F., Two-step competition process leads to quasi power-law income distributions: Application to scientific publication and citation distributions. Physica A: Statistical Mechanics and its Applications, 298(3), (2001), 530–536.CrossRefGoogle Scholar
[279]
Van Raan, A. F., Competition amongst scientists for publication status: Toward a model of scientific publication and citation distributions. Scientometrics, 51(1), (2001) 347–357.CrossRefGoogle Scholar
[280]
Kryssanov, V. V., Kuleshov, E. L., and Rinaldo, F. J.et al., We cite as we communicate: A communication model for the citation process. arXiv preprint https://arxiv.org/abs/cs/0703115, (2007).Google Scholar
[281]
Barabási, A. -L., Song, C., and Wang, D., Publishing: Handful of papers dominates citation. Nature, 491(7422), (2012), 40.CrossRefGoogle ScholarPubMed
[282]
Aksnes, D. W., Citation rates and perceptions of scientific contribution. Journal of the American Society for Information Science and Technology, 57(2), (2006), 169–185.CrossRefGoogle Scholar
[283]
Radicchi, F., In science “there is no bad publicity”: Papers criticized in comments have high scientific impact. Scientific Reports, 2 (2012), 815.CrossRefGoogle ScholarPubMed
[284]
Moravcsik, M. J. and Murugesan, P., Some results on the function and quality of citations. Social Studies of Science, 5(1), (1975), 86–92.CrossRefGoogle Scholar
[285]
Cole, J. R. and Cole, S., Social Stratification in Science (Chicago: University of Chicago Press, 1973).Google Scholar
[286]
Cronin, B., Research brief rates of return to citation. Journal of Documentation, 52(2), (1996), 188–197.CrossRefGoogle Scholar
[287]
Lawani, S. M. and Bayer, A. E., Validity of citation criteria for assessing the influence of scientific publications: New evidence with peer assessment. Journal of the American Society for Information Science, 34(1), (1983), 59–66.CrossRefGoogle Scholar
[288]
Luukkonen, T., Citation indicators and peer review: Their time-scales, criteria of evaluation, and biases. Research Evaluation, 1(1), (1991), 21–30.CrossRefGoogle Scholar
[289]
Oppenheim, C. and Renn, S. P., Highly cited old papers and the reasons why they continue to be cited. Journal of the American Society for Information Science, 29(5), (1978), 225–231.CrossRefGoogle Scholar
[290]
Rinia, E. J., van Leeuwen, T. N., van Vuren, H. G., et al., Comparative analysis of a set of bibliometric indicators and central peer review criteria: Evaluation of condensed matter physics in the Netherlands. Research policy, 27(1), (1998), 95–107.CrossRefGoogle Scholar
[291]
Radicchi, F., Weissman, A., and Bollen, J., Quantifying perceived impact of scientific publications. Journal of Informetrics, 11(3), (2017), 704–712.CrossRefGoogle Scholar
[292]
Jaffe, A. B., Patents, patent citations, and the dynamics of technological change.NBER Reporter, (1998, summer), 8–11.Google Scholar
[293]
Jaffe, A. B., Fogarty, M. S., and Banks, B. A., Evidence from patents and patent citations on the impact of NASA and other federal labs on commercial innovation. The Journal of Industrial Economics, 46(2), (1998), 183–205.CrossRefGoogle Scholar
[294]
Trajtenberg, M., A penny for your quotes: patent citations and the value of innovations.The Rand Journal of Economics, 221(1), (1990), 172–187.CrossRefGoogle Scholar
[295]
Hall, B. H., Jaffe, A. B., and Trajtenberg, M., Market Value and Patent Citations: A First Look, working paper 7741, (Cambridge, MA: National Bureau of Economic Research, 2000).CrossRefGoogle Scholar
[296]
Harhoff, D., Narin, F., Scherer, F. M., et al., Citation frequency and the value of patented inventions. Review of Economics and Statistics, 81(3), (1999), 511–515.CrossRefGoogle Scholar
[297]
de Solla Price, D., A general theory of bibliometric and other cumulative advantage processes. Journal of the American Society for Information Science, 27(5), (1976), 292–306.CrossRefGoogle Scholar
[298]
Wang, D., Song, C., and Barabási, A. -L., Quantifying long-term scientific impact. Science, 342(6154), (2013), 127–132.CrossRefGoogle ScholarPubMed
[299]
Eggenberger, F. and Pólya, G., Über die statistik verketteter vorgänge. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 3(4), (1923), 279–289.CrossRefGoogle Scholar
[300]
Yule, G. U., A mathematical theory of evolution, based on the conclusions of Dr. JC Willis, FRS.Philosophical Transactions of the Royal Society of London. Series B, Containing Papers of a Biological Character, 213 (1925), 21–87.Google Scholar
[301]
Gibrat, R., Les inégalités économiques (Paris: Recueil Sirey, 1931).Google Scholar
[302]
Zipf, G. K., Human Behavior and the Principle of Least Effort (Boston, MA: Addison-Wesley Press, 1949).Google Scholar
[303]
Simon, H. A., On a class of skew distribution functions. Biometrika, 42(3/4), (1955), 425–440.CrossRefGoogle Scholar
[304]
Barabási, A.-L. and Albert, R., Emergence of scaling in random networks. Science, 286(5439), (1999), 509–512.CrossRefGoogle ScholarPubMed
[305]
Newman, M. E .J., The first-mover advantage in scientific publication. EPL (Europhysics Letters), 86(6), (2009), 68001.CrossRefGoogle Scholar
[306]
Bardeen, J., Cooper, L. N., and Schrieffer, J. R., Theory of superconductivity. Physical Review, 108(5), (1957), 1175–1204.CrossRefGoogle Scholar
[307]
Bianconi, G. and Barabási, A. -L., Competition and multiscaling in evolving networks. EPL (Europhysics Letters), 54(4), (2001), 436–442.CrossRefGoogle Scholar
[308]
Bianconi, G. and Barabási, A. -L., Bose–Einstein condensation in complex networks. Physical Review Letters,. 86(24), (2001) 5632.CrossRefGoogle ScholarPubMed
[309]
Fleming, L., Mingo, S., and Chen, D., Collaborative brokerage, generative creativity, and creative success. Administrative Science Quarterly, 52(3), (2007), 443-475.CrossRefGoogle Scholar
[310]
Youn, H., Strumsky, D., Bettencourt, L. M. A., et al., Invention as a combinatorial process: Evidence from US patents. Journal of The Royal Society Interface, 12(106), (2015), 20150272.CrossRefGoogle ScholarPubMed
[311]
Wang, J., Veugelers, R., and Stephan, P., Bias against novelty in science: A cautionary tale for users of bibliometric indicators. Research Policy, 46(8), (2017), 1416–1436.CrossRefGoogle Scholar
[312]
Lee, Y. -N., Walsh, J. P., and Wang, J., Creativity in scientific teams: Unpacking novelty and impact. Research Policy, 44(3), (2015), 684–697.CrossRefGoogle Scholar
[313]
Phiel, C. J., Zhang, F., Huang, E. Y., et al., Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. Journal of Biological Chemistry, 276(39), (2001), 36734–36741.CrossRefGoogle ScholarPubMed
[314]
Stephan, P., Veugelers, R., and Wang, J., Reviewers are blinkered by bibliometrics. Nature News,. 544(7651), (2017), 411.CrossRefGoogle ScholarPubMed
[315]
Van Noorden, R., Interdisciplinary research by the numbers. Nature, 525(7569), (2015), 306–307.CrossRefGoogle ScholarPubMed
[316]
Wagner, C. S., Roessner, J. D., Bobb, K., et al., Approaches to understanding and measuring interdisciplinary scientific research (IDR): A review of the literature. Journal of Informetrics, 5(1), (2011), 14–26.CrossRefGoogle Scholar
[317]
Larivière, V., Haustein, S., and Börner, K., Long-distance interdisciplinarity leads to higher scientific impact. PLoS ONE, 10(3), (2015), e0122565.CrossRefGoogle ScholarPubMed
[318]
Leahey, E., and Moody, J., Sociological innovation through subfield integration. Social Currents, 1(3), (2014), 228-256.CrossRefGoogle Scholar
[319]
Foster, J. G., Rzhetsky, A., and Evans, J.A., Tradition and innovation in scientists’ research strategies. American Sociological Review, 80(5), (2015), 875–908.CrossRefGoogle Scholar
[320]
Fleming, L., Breakthroughs and the “long tail” of innovation. MIT Sloan Management Review, 49(1), (2007), 69.Google Scholar
[321]
Boudreau, K. J., Guinan, E., Lakhani, K. R., et al., Looking across and looking beyond the knowledge frontier: Intellectual distance, novelty, and resource allocation in science. Management Science, 62(10), (2016), 2765–2783.CrossRefGoogle Scholar
[322]
Bromham, L., Dinnage, R., and Hua, X., Interdisciplinary research has consistently lower funding success. Nature, 534(7609), (2016), 684–687.CrossRefGoogle ScholarPubMed
[323]
Kim, J., Lee, C. -Y., and Cho, Y., Technological diversification, core-technology competence, and firm growth. Research Policy, 45(1), (2016), 113–124.CrossRefGoogle Scholar
[324]
Phillips, D. P., Kanter, E. J., Bednarczyk, B., et al., Importance of the lay press in the transmission of medical knowledge to the scientific community. The New England Journal of Medicine, 325(16), (1991), 1180–1183.CrossRefGoogle ScholarPubMed
[325]
Gonon, F., Konsman, J. -P., Cohen, D., et al., Why most biomedical findings echoed by newspapers turn out to be false: The case of attention deficit hyperactivity disorder. PLoS One, 7(9), (2012), e44275.CrossRefGoogle ScholarPubMed
[326]
Dumas-Mallet, E., Smith, A., Boraud, T., et al., Poor replication validity of biomedical association studies reported by newspapers. PLoS One, 12(2), (2017), e0172650.CrossRefGoogle ScholarPubMed
[327]
Peng, R. D., Reproducible research in computational science. Science, 334(6060), (2011), 1226–1227.CrossRefGoogle ScholarPubMed
[328]
Open Science Collaboration, Aarts, A., Anderson, J., et al., Estimating the reproducibility of psychological science. Science, 349(6251), (2015), aac4716.Google Scholar
[329]
Wakefield, A. J., Murch, S. H., Anthony, A., et al., RETRACTED: Ileal-lymphoid-nodular hyperplasia, non-specific colitis, and pervasive developmental disorder in children.The Lancet, 351(1998), 637–641.CrossRefGoogle ScholarPubMed
[330]
Catalini, C., Lacetera, N., and Oettl, A., The incidence and role of negative citations in science. Proceedings of the National Academy of Sciences, 112(45), (2015), 13823–13826.CrossRefGoogle Scholar
[331]
Fang, F. C. and Casadevall, A., Retracted science and the retraction index. Infection and Immunity, 79(10), (2011), 3855–3859.CrossRefGoogle ScholarPubMed
[332]
Sandison, A., Densities of use, and absence of obsolescence, in physics journals at MIT. Journal of the American Society for Information Science, 25(3), (1974), 172–182.CrossRefGoogle Scholar
[333]
Candia, C., Jara-Figueroa, C., Rodriguez-Sickert, C., et al., The universal decay of collective memory and attention. Nature Human Behaviour, 3(1), (2019), 82–91.CrossRefGoogle ScholarPubMed
[334]
Mukherjee, S., Romero, D. M., Jones, B., et al., The age of past knowledge and tomorrow’s scientific and technological breakthroughs.Science Advances, 3(4), (2017), e1601315.Google Scholar
[335]
Odlyzko, A., The rapid evolution of scholarly communication. Learned Publishing, 15(1), (2002), 7–19.CrossRefGoogle Scholar
[336]
Larivière, V., Archambault, É., and Gingras, Y., Long-term variations in the aging of scientific literature: From exponential growth to steady-state science (1900–2004). Journal of the American Society for Information Science and Technology, 59(2), (2008), 288–296.CrossRefGoogle Scholar
Evans, J. A., Electronic publication and the narrowing of science and scholarship. Science, 321(5887), (2008), 395–399.CrossRefGoogle ScholarPubMed
[339]
Burnham, J. C., The evolution of editorial peer review. Journal of the American Medical Association, 263(10), (1990), 1323–1329.CrossRefGoogle ScholarPubMed
[340]
Spier, R., The history of the peer-review process. Trends in Biotechnology, 20(8), (2002), 357–358.CrossRefGoogle ScholarPubMed
[341]
Burrell, Q. L., Modelling citation age data: Simple graphical methods from reliability theory. Scientometrics, 55(2), (2002), 273–285.CrossRefGoogle Scholar
[342]
Glänzel, W., Towards a model for diachronous and synchronous citation analyses. Scientometrics, 60(3), (2004), 511–522.CrossRefGoogle Scholar
[343]
Nakamoto, H., Synchronous and diachronous citation distribution, in Egghe, L. and Rousseau, R. (eds.), Informetrics 87/88: Select Proceedings of the First International Conference on Bibliometrics and Theoretical Aspects of Information Retrieval (Amsterdam: Elsevier Science Publishers, 1988).Google Scholar
[344]
Pan, R. K., Petersena, A. M., Pammolli, F., et al., The memory of science: Inflation, myopia, and the knowledge network. Journal of Informetrics, 12, (2016), 656–678.CrossRefGoogle Scholar
[345]
Parolo, P. D. B., Pan, R. K., Ghosh, R., et al., Attention decay in science. Journal of Informetrics, 9(4), (2015), 734–745.CrossRefGoogle Scholar
[346]
Van Raan, A. F., Sleeping beauties in science. Scientometrics, 59(3), (2004), 467–472.CrossRefGoogle Scholar
[347]
Ke, Q., Ferrara, E., Radicchi, F., et al., Defining and identifying Sleeping Beauties in science.Proceedings of the National Academy of Sciences, 112(24), (2015), 7426–7431.CrossRefGoogle Scholar
[348]
He, Z., Lei, Z., and Wang, D., Modeling citation dynamics of “atypical” articles. Journal of the Association for Information Science and Technology, 69(9), (2018), 1148–1160.CrossRefGoogle Scholar
Erdős, P., and Rényi, A., On the evolution of random graphs. Publications of the Mathematical Institute of the Hungarian Academy of Sciences, 5(1), (1960), 17–61.Google Scholar
Swanson, D. R., Migraine and magnesium: Eleven neglected connections. Perspectives in Biology and Medicine, 31(4), (1988), 526–557.CrossRefGoogle ScholarPubMed
[357]
Rzhetsky, A., Foster, J. G., Foster, I. T., et al., Choosing experiments to accelerate collective discovery. Proceedings of the National Academy of Sciences, 112(47), (2015), 14569–14574.CrossRefGoogle ScholarPubMed
[358]
Azoulay, P., Graff-Zivin, J., Uzzi, B., et al., Toward a more scientific science. Science, 361(6408), (2018), 1194–1197.CrossRefGoogle Scholar
[359]
Greenberg, S. A., How citation distortions create unfounded authority: analysis of a citation network. The BMJ, 339, (2009), b2680.CrossRefGoogle ScholarPubMed
[360]
Gerber, A. S., and Malhotra, N., Publication bias in empirical sociological research: Do arbitrary significance levels distort published results?Sociological Methods and Research, 37(1), (2008), 3–30.CrossRefGoogle Scholar
[361]
Benjamin, D. J., Berger, J. O., Johannesson, M., et al., Redefine statistical significance. Nature Human Behaviour, 2(1), (2018), 6–10.CrossRefGoogle ScholarPubMed
[362]
Efthimiou, O., and Allison, S. T., Heroism science: Frameworks for an emerging field. Journal of Humanistic Psychology,. 58(5), (2018), 556–570.CrossRefGoogle Scholar
[363]
Nosek, B. A., Ebersole, C. R., DeHaven, A. C., et al., The preregistration revolution. Proceedings of the National Academy of Sciences, 115(11), (2018), 2600–2606.CrossRefGoogle ScholarPubMed
[364]
Kuhn, T. S., The Essential Tension: Selected Studies in Scientific Tradition and Change (Chicago: University of Chicago Press, 1977).CrossRefGoogle Scholar
[365]
Bourdieu, P., The specificity of the scientific field and the social conditions of the progress of reasons. Social Science Information, 14(6), (1975), 19–47.CrossRefGoogle Scholar
[366]
Yao, L., Li, Y., Ghosh, S., et al., Health ROI as a measure of misalignment of biomedical needs and resources. Nature Biotechnology, 33(8), (2015), 807–811.CrossRefGoogle ScholarPubMed
[367]
Willett, W., Nutritional Epidemiology (New York: Oxford University Press, 2012).CrossRefGoogle Scholar
[368]
Spector, J. M., Harrison, R. S., and Fishman, M.C., Fundamental science behind today’s important medicines. Science Translational Medicine, 10(438), (2018), eaaq1787.CrossRefGoogle ScholarPubMed
[369]
Senior, A., Jumper, J., and Hassabis, D., AlphaFold: Using AI for scientific discovery. Deepmind article/blog post available online at https://bit.ly/34PXtzA (2020).Google Scholar
[370]
Harari, Y. N., Reboot for the AI revolution. Nature News, 550(7676), (2017), 324–327.CrossRefGoogle ScholarPubMed
[371]
Krizhevsky, A., Sutskever, I., and Hinton, G. E.. ImageNet classification with deep convolutional neural networks, in Advances in Neural Information Processing Systems 25 (NIPS 2012) (San Diego, CA: NIPS Foundation, 2012).Google Scholar
[372]
Farabet, C., Couprie, C., Najman, L., et al., Learning hierarchical features for scene labeling. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8), (2012), 1915–1929.CrossRefGoogle Scholar
[373]
Tompson, J. J., Jain, A., LeCun, Y., et al., Joint training of a convolutional network and a graphical model for human pose estimation, in Advances in Neural Information Processing Systems 27 (NIPS 2014) (San Diego, CA: NIPS Foundation, 2014).Google Scholar
[374]
Szegedy, C., Liu, W., Jia, Y., et al., Going deeper with convolutions, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (Piscataway, NJ: IEEE, 2015), pp. 1–9.Google Scholar
[375]
Mikolov, T., Deoras, A., Povey, D., et al., Strategies for training large scale neural network language models, in 2011 IEEE Workshop on Automatic Speech Recognition & Understanding (Piscataway, NJ: IEEE, 2011), pp. 196–201.CrossRefGoogle Scholar
[376]
Hinton, G., Deng, L., Yu, D., et al., Deep neural networks for acoustic modeling in speech recognition. IEEE Signal Processing Magazine, 29(6), (2012), 82–97.CrossRefGoogle Scholar
[377]
Sainath, T. N., Mohamed, A., Kingsbury, B., et al.Deep convolutional neural networks for LVCSR, in 2013 IEEE International Conference on Acoustics, Speech and Signal Processing(Piscataway, NJ: IEEE, 2013), pp. 8614–8618.CrossRefGoogle Scholar
Jean, S., Cho, K., Memisevic, R., et al., On using very large target vocabulary for neural machine translation. arXiv preprint https://arxiv.org/abs/1412.2007, (2014).Google Scholar
[380]
Sutskever, I., Vinyals, O., and Le, Q. V.. Sequence to sequence learning with neural networks, in Advances in Neural Information Processing Systems 27 (NIPS 2014) (San Diego, CA: NIPS Foundation, 2014).Google Scholar
[381]
Ma, J., Sheridan, R. P., Liaw, A., et al., Deep neural nets as a method for quantitative structure–activity relationships. Journal of Chemical Information and Modeling,. 55(2), (2015), 263–274.CrossRefGoogle ScholarPubMed
[382]
Ciodaro, T., Deva, D., de Seixas, J. M., et al., Online particle detection with neural networks based on topological calorimetry information. Journal of Physics: Conference Series,368, (2012), 012030.Google Scholar
Helmstaedter, M., Briggman, K., Turaga, S., et al., Connectomic reconstruction of the inner plexiform layer in the mouse retina. Nature, 500(7461), (2013), 168–174.CrossRefGoogle ScholarPubMed
[385]
Leung, M. K., Xiong, H. Y., Lee, L., et al., Deep learning of the tissue-regulated splicing code. Bioinformatics, 30(12), (2014), i121–i129.CrossRefGoogle ScholarPubMed
[386]
Xiong, H. Y., Alipanahi, B., Lee, L., et al., The human splicing code reveals new insights into the genetic determinants of disease. Science, 347(6218), (2015), 1254806.CrossRefGoogle ScholarPubMed
[387]
Silver, D., Hubert, T., Schrittwieser, J., et al., A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science, 362(6419), (2018), 1140–1144.CrossRefGoogle ScholarPubMed
[388]
De Fauw, J., Ledsam, J. R., Romera-Parede, B., et al., Clinically applicable deep learning for diagnosis and referral in retinal disease. Nature Medicine, 24(9), (2018), 1342–1350.CrossRefGoogle ScholarPubMed
[389]
Esteva, A., Kuprel, B., Novoa, R. A., et al., Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639), (2017), 115–118.CrossRefGoogle ScholarPubMed
[390]
Titano, J. J., Badgeley, M., Schefflein, J., et al., Automated deep-neural-network surveillance of cranial images for acute neurologic events. Nature Medicine, 24(9), (2018), 1337–1341.CrossRefGoogle ScholarPubMed
[391]
Nosek, B. A. and Errington, T. M., Reproducibility in cancer biology: Making sense of replications. Elife, 6, (2017), e23383.CrossRefGoogle ScholarPubMed
[392]
Camerer, C. F., Dreber, A., Forsell, E., et al., Evaluating replicability of laboratory experiments in economics. Science, 351(6280), (2016), 1433–1436.CrossRefGoogle ScholarPubMed
[393]
Camerer, C. F., Dreber, A., Holzmeister, F., et al., Evaluating the replicability of social science experiments in Nature and Science between 2010 and 2015. Nature Human Behaviour, 2(9), (2018), 637–644.CrossRefGoogle ScholarPubMed
[394]
Chang, A. and Li, P., Is economics research replicable? Sixty published papers from thirteen journals say “usually not.” Finance and Economics Discussion Series 2015-083. Washington, DC: Board of Governors of the Federal Reserve System. Available online at https://bit.ly/34RI3uy, (2015).CrossRefGoogle Scholar
[395]
Wu, Y., Yang, Y., and Uzzi, B., An artificial and human intelligence approach to the replication problem in science. [Unpublished data.]Google Scholar
[396]
Tegmark, M., Life 3.0: Being Human in the Age of Artificial Intelligence (New York: Alfred A. Knopf, (2017).Google Scholar
[397]
Dastin, J., Amazon scraps secret AI recruiting tool that showed bias against women. Reuters news article, available online at https://bit.ly/3cChuwe, (October 10, 2018).Google Scholar
[398]
Wang, Y., Jones, B. F., and Wang, D., Early-career setback and future career impact.Nature Communications, 10, (2019), 4331.CrossRefGoogle ScholarPubMed
[399]
Bol, T., de Vaan, M., and van de Rijt, A., The Matthew effect in science funding. Proceedings of the National Academy of Sciences, 115(19), (2018), 4887–4890.CrossRefGoogle Scholar
[400]
Calcagno, V., Demoinet, E., Gollner, K., et al., Flows of research manuscripts among scientific journals reveal hidden submission patterns. Science, 338(6110), (2012), 1065–1069.CrossRefGoogle ScholarPubMed
Haustein, S., Peters, I., Sugimoto, C. R., et al., Tweeting biomedicine: An analysis of tweets and citations in the biomedical literature. Journal of the Association for Information Science and Technology, 65(4), (2014), 656–669.CrossRefGoogle Scholar
[403]
Perneger, T. V., Relation between online “hit counts” and subsequent citations: Prospective study of research papers in The BMJ. The BMJ, 329(7465), (2004), 546–547.CrossRefGoogle ScholarPubMed
[404]
Li, D., Azoulay, P. and Sampat, B. N., The applied value of public investments in biomedical research. Science,. 356(6333), (2017), 78–81.CrossRefGoogle ScholarPubMed
[405]
Ahmadpoor, M. and Jones, B. F., The dual frontier: Patented inventions and prior scientific advance. Science,. 357(6351), (2017), 583–587.CrossRefGoogle ScholarPubMed
[406]
Duckworth, A. and Duckworth, A., Grit: The Power of Passion and Perseverance (New York: Scribner, 2016).Google Scholar
[407]
Angrist, J. D. and Pischke, J.-S., The credibility revolution in empirical economics: How better research design is taking the con out of econometrics. Journal of Economic Perspectives, 24(2), (2010), 3–30.CrossRefGoogle Scholar
[408]
Boudreau, K. J., Brady, T., Ganguli, I., et al., A field experiment on search costs and the formation of scientific collaborations. Review of Economics and Statistics, 99(4), (2017), 565–576.CrossRefGoogle ScholarPubMed
Ruhm, C. J., Deaths of Despair or Drug Problems?, working paper 24188 (Cambridge, MA: National Bureau of Economic Research, 2018).CrossRefGoogle Scholar
[411]
Redner, S., How popular is your paper? An empirical study of the citation distribution. The European Physical Journal B: Condensed Matter and Complex Systems, 4(2), (1998), 131–134.CrossRefGoogle Scholar
[412]
Jeong, H., Néda, Z., and Barabási, A.-L., Measuring preferential attachment in evolving networks. Europhysics Letters, 61(4), (2003), 567.CrossRefGoogle Scholar
[413]
Newman, M. E., Clustering and preferential attachment in growing networks. Physical Review E, 64(2), (2001), 025102.CrossRefGoogle ScholarPubMed
[414]
Krapivsky, P. L. and Redner, S., Organization of growing random networks. Physical Review E, 63(6), (2001), 066123.CrossRefGoogle ScholarPubMed
[415]
Peterson, G. J., Pressé, S., and Dill, K.A., Nonuniversal power law scaling in the probability distribution of scientific citations. Proceedings of the National Academy of Sciences, 107(37), (2010), 16023–16027.CrossRefGoogle ScholarPubMed
[416]
Simkin, M. V. and Roychowdhury, V. P., Do copied citations create renowned papers?Annals of Improbable Research, 11(1), (2005), 24–27.CrossRefGoogle Scholar
[417]
Simkin, M. V. and Roychowdhury, V. P., A mathematical theory of citing. Journal of the American Society for Information Science and Technology, 58(11), (2007), 1661–1673.CrossRefGoogle Scholar
[418]
Bentley, R. A., Hahn, M.W., and Shennan, S. J., Random drift and culture change. Proceedings of the Royal Society of London. Series B: Biological Sciences, 271(1547), (2004), 1443–1450.CrossRefGoogle ScholarPubMed
Kleinberg, J. M., Kumar, R., Raghavan, P., et al., The web as a graph: Measurements, models, and methods, inLecture Notes in Computer Science, vol. 1627, Computing and Combinatorics, (Berlin: Springer-Verlag, 1999), pp. 1–17.Google Scholar
[421]
Perdew, J. P. and Wang, Y., Accurate and simple analytic representation of the electron–gas correlation energy. Physical Review B, 45(23), (1992), 13244.CrossRefGoogle ScholarPubMed
Kosterlitz, J. M. and Thouless, D. J., Ordering, metastability and phase transitions in two-dimensional systems. Journal of Physics C: Solid State Physics, 6(7), (1973), 1181–1203.CrossRefGoogle Scholar
[424]
Radicchi, F. and Castellano, C., A reverse engineering approach to the suppression of citation biases reveals universal properties of citation distributions. PLoS One, 7(3), (2012), e33833.CrossRefGoogle ScholarPubMed