Skip to main content Accessibility help
×
Hostname: page-component-76dd75c94c-lntk7 Total loading time: 0 Render date: 2024-04-30T09:34:02.636Z Has data issue: false hasContentIssue false

5 - The Mysterious Periodicities of Saturn

Clues to the Rotation Rate of the Planet

Published online by Cambridge University Press:  13 December 2018

Kevin H. Baines
Affiliation:
University of Wisconsin, Madison
F. Michael Flasar
Affiliation:
NASA-Goddard Space Flight Center
Norbert Krupp
Affiliation:
Max-Planck-Institut für Sonnensystemforschung, Göttingen
Tom Stallard
Affiliation:
University of Leicester
Get access

Summary

The rotation rate of a planet is a fundamental parameter, no less than its mass or composition, and planetary investigators require this rate to assess various other phenomena such as planetary wind speeds, internal and atmospheric models, ring dynamics and so forth. Saturn presents a conundrum, however, because none of its various planetary periods indicates the “true” rotation of the planet. Thus, although the planet displays an abundance of periodicities near 10.7 hours, the exact rotation period of Saturn is unknown. In the magnetosphere, “planetary-period oscillations” (PPOs) appear in charged particles, magnetic fields, energetic neutral atoms, radio emissions and motions of the plasma sheet and magnetopause. In Saturn’s rings, the spoke phenomenon can exhibit periodicities near 10.7 hours, and ring phenomena themselves may be related to the interior rotation of the planet. In the high-latitude ionosphere, modulations near this period appear in auroral motions and intensities. In the upper atmosphere, some cloud features rotate near this period, although wind speeds are generally faster, and the well-known polar hexagon rotates with a period close to 10.7 hours. Some of the magnetospheric/ionospheric oscillations differ in the northern and southern hemispheres and their periods do not remain constant, sometimes varying on long time scales of a year or longer and sometimes on much shorter time scales. These variations in the period argue against a cause related to changes interior to Saturn, and because the magnetic and spin axes of Saturn are reported to be axisymmetric (unlike those of any other known planet), Saturn’s periodicities cannot be explained as “wobble” caused by a geometric tilt or by a nondipolar magnetic anomaly. Several models have been proposed to account for the observed periodicities, including rotating atmospheric vortices, periodic plasma releases and a flapping magnetodisk, but none can satisfactorily explain all of Saturn’s periodicities nor their common origin, and none can determine the exact rotation rate of the planet. This chapter reviews Saturn’s periodicities, theories thereof, and how they might be used to determine the elusive rotation rate of the planet.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acuña, M. H., Connerney, J. E. P. and Ness, N. F. (1983), The Z(3) zonal harmonic model of Saturn’s magnetic field: Analyses and implications, J. Geophys. Res., 88, 8771.Google Scholar
Andrews, D. J., Bunce, E. J., Cowley, S. W. H. et al. (2008), Planetary period oscillations in Saturn’s magnetosphere: Phase relation of equatorial magnetic field oscillations and Saturn kilometric radiation, J. Geophys. Res., 113, A09205, doi:10.1029/ 2007JA0129376.CrossRefGoogle Scholar
Andrews, D. J., Coates, A. J., Cowley, S. W. H. et al. (2010a), Magnetospheric period oscillations at Saturn: Comparison of equatorial and high-latitude magnetic field periods with north and south SKR periods, J. Geophys. Res., 115, A12252.Google Scholar
Andrews, D. J., Coates, A. J., Cowley, S. W. H. (2010b), Magnetospheric period oscillations at Saturn: Comparison of equatorial and high-latitude magnetic field periods with north and south SKR periods, J. Geophys. Res., 115, A12252, http://dx.doi.org/10.1029/2010JA015666.Google Scholar
Andrews, D. J., Cecconi, B., Cowley, S. W. H. et al. (2011), Planetary period oscillations at Saturn: Evidence in magnetic field phase data for rotational modulation of Saturn kilometric radiation emissions, J. Geophys. Res., 116, A09206.CrossRefGoogle Scholar
Andrews, D. J., Cowley, S. W. H., Dougherty, M. K. et al. (2012), Planetary period oscillations in Saturn’s magnetosphere: Evolution of magnetic oscillation properties from southern summer to post-equinox, J. Geophys. Res., 117, A4, A04224.Google Scholar
Anderson, J. D. and Schubert, G. (2007), Saturn’s gravitation field, internal rotation, and interior structure, Science, 317, 13841387, doi:10.1126/science.1144835.Google Scholar
Arridge, C. S., Khurana, K. K., Russell, C. T. et al. (2008), Warping of Saturn’s magnetospheric and magnetotail current sheets, J. Geophys. Res., 113, A08217, doi:10.1029/2007JA012963.Google Scholar
Arridge, C. S., André, N., Khurana, K. K. et al. (2011), Periodic motion of Saturn’s nightside plasma sheet, J. Geophys. Res., 116, A11205, doi:10.1029/2011JA016827.Google Scholar
Badman, S. V., S W. H. Cowley, L. Lamy, et al. (2008), Relationship between solar wind corotating interaction regions and the phasing and intensity of Saturn kilometric radiations bursts, Ann. Geophys., 26, 36413651.Google Scholar
Badman, S. V., Masters, A., Hasegawa, H. et al. (2013), Bursty magnetic reconnection at Saturn’s magnetopause, Geophys. Res. Lett., 40, 10271031, doi:10.1002/grl.50199.Google Scholar
Baillié, K., Colwell, J. E., Lissauer, J. J. et al. (2011), Waves in the Cassini UVIS stellar occultations. 2. The C ring, Icarus, 216, 292308, doi:10.1016/ j.icarus.2011.05.019.Google Scholar
Beck, J. G. (1999), A comparison of differential rotation measurements, Solar Phys., 191, 4770.CrossRefGoogle Scholar
Brown, M. E. (1995), Periodicities in the Io plasma torus, J. Geophys. Res., 100, 2168321696.Google Scholar
Bunce, E. J., Arridge, C. S., Clarke, J. T. et al. (2008), Origin of Saturn’s aurora: Simultaneous observations by Cassini and the Hubble Space Telescope, J. Geophys. Res., 113, A09209, doi:10.1029/ 2008JA013257.Google Scholar
Burch, J. L, Goldstein, J., Hill, T. W. et al. (2005), Properties of local plasma injections in Saturn’s magnetosphere, Geophys. Res. Lett., 32, L14S02, doi:10.1029/2005GL022611.Google Scholar
Burns, J. A., Hamilton, D. P. and Showalter, M. R. (2001), Dusty rings and circumplanetary dust: Observations and simple physics, in Interplanetary Dust, ed. Grün, E., Gustafson, B., Dermott, S., and Fecthig, H., Springer, pp. 641725.Google Scholar
Burton, M. E., M. K. Dougherty, C. T. Russell, (2010), Saturn’s internal planetary magnetic field. Geophys. Res. Lett., 37, L24105, http://dx.doi.org/10.1029/ 2010GL045148.Google Scholar
Carbary, J. F. (1980), Periodicities in the Jovian magnetosphere: Magnetodisk models after Voyager, Geophys. Res. Lett., 7(1), 2932.Google Scholar
Carbary, J. F. (2013a), Longitude dependences of Saturn’s ultraviolet aurora, Geophys. Res. Lett., 118, 15, doi:10.1002/grl.50430.Google Scholar
Carbary, J. F. (2013b), Wavy magnetodisk in Saturn’s outer magnetosphere, Geophys. Res. Lett., 40, 15, doi:10.1002/grl.50994.Google Scholar
Carbary, J. F. (2015), Doppler effects of periodicities in Saturn’s magnetosphere, J. Geophys. Res. Space Physics, 120, doi:10.1002/2015JA021850.Google Scholar
Carbary, J. F. and Krimigis, S. M. (1982), Charged particle periodicities in the Saturnian magnetosphere, Geophys. Res. Lett., 9, 10731076.Google Scholar
Carbary, J. F. and Mitchell, D. G. (2013a), Periodicities in Saturn’s Magnetosphere, Rev. Geophys., 51, 130, doi:10.1002/rog.20006.Google Scholar
Carbary, J. F., Mitchell, D. G. and Brandt, P. (2014), Local time dependences of oxygen ENA periodicities at Saturn, J. Geophys. Res., 119, doi:10.1002/jgra51230.Google Scholar
Carbary, J. F., Mitchell, D. G., Brandt, P. et al. (2008), Periodic tilting of Saturn’s plasma sheet, Geophys. Res. Lett., 35, L24101, doi:10.1029/2008GL036339.Google Scholar
Carbary, J. F., Mitchell, D. G., Brandt, P. (2011), ENA periodicities and their phase relations to SKR emission at Saturn, Geophys. Res. Lett., 38, L16106, doi:10.1029/ 2011GL048418.Google Scholar
Carbary, J. F., Mitchell, D. G., Krimigis, S. M. et al. (2007), Charged particle periodicities in Saturn’s outer magnetosphere, J. Geophys. Res., 112, A06246, doi:10.1029/2007JA012351.Google Scholar
Carbary, J. F., Mitchell, D. G., Krimigis, S. M. (2009a), Dual periodicities in energetic electrons at Saturn, Geophys. Res. Lett., 36, L20103, doi:10.1029/ 2009GL040517.Google Scholar
Carbary, J. F., Mitchell, D. G., Krimigis, S. M. (2012), Unusually short period in electrons at Saturn, Geophys. Res. Lett., 39, L22103, doi:10.1029/2012GL054019.Google Scholar
Carbary, J. F., Roelof, E. C., Mitchell, D. G. et al. (2009b), Solar wind periodicity in energetic electrons at Saturn, Geophys. Res. Lett., 36, L22104, doi:10.1029/GL041086.Google Scholar
Carbary, J. F., Roelof, E. C., Mitchell, D. G. (2013b), Solar periodicity in energetic ions at Saturn, J. Geophys. Res., 118, 18, doi:10.1002/jgra.50282.Google Scholar
Chen, Y. and Hill, T. W. (2008), Statistical analysis of injection/dispersion events in Saturn’s inner magnetosphere, J. Geophys. Res., 113, A07215, doi:10.1029/2008JA013166.Google Scholar
Chenette, D. L., Conlon, T. F. and Simpson, J. A. (1974), Bursts of relativistic electrons from Jupiter observed in interplanetary space with the time variation of planetary rotation period, J. Geophys. Res., 79(25), 35513558.Google Scholar
Chen, Y., Hill, T. W., Rymer, A. M. et al. (2010), Rate of radial transport of plasma in Saturn’s inner magnetosphere, J. Geophys. Res., 115, A10211, doi:10.1029/ 2010JA015412.Google Scholar
Clarke, K.E., André, N., Andrews, D. J. et al. (2006), Cassini observations of planetary-period oscillations of Saturn’s magnetopause, Geophys. Res. Lett., 33, L23104, doi:10.1029/2006GL027821.Google Scholar
Clarke, K. E., D. J. Andrews, A. J. Coates, et al. (2010), Magnetospheric period oscillations in Saturn’s bow shock, J. Geophys. Res., 115, A05202, doi:10.1029/2009JA015164.Google Scholar
Connerney, J. E. P., Acuña, M. H. and Ness, N. F. (1983), Currents in Saturn’s magnetosphere, J. Geophys. Res., 88, 8779.Google Scholar
Cowley, S. W. H., Wright, D. M., Bunce, E. J. et al. (2006), Cassini observations of planetary-period magnetic field oscillations in Saturn’s magnetosphere: Doppler shifts and phase motion, Geophys. Res. Lett., 33, L07104, doi:10.1029/2005GL025522.Google Scholar
Cowley, S. W. H. and Provan, G. (2013), Saturn’s magnetospheric planetary period oscillations, neutral atmospheric circulation, and thunderstorm activity: Implications, or otherwise, for physical links, J. Geophys. Res., 118, 724607261, doi:10.1002/2013JA019200.CrossRefGoogle Scholar
Cowley, S. W. H. and Provan, G. (2015), Planetary period oscillations in Saturn’s magnetosphere: Comments on the relation between post-equinox periods determined from magnetic field and SKR emission data, Ann. Geophys., accepted for publication.Google Scholar
Cowley, S. W. H, Provan, G. and Andrews, D. G. (2015), Comment on “Magnetic phase structure of Saturn’s 10.7-hour oscillations” by Yates et al., J. Geophys. Res., accepted for publication, doi:10.1002/2015JA021351.Google Scholar
Crary, F. J., Clarke, J. T., Dougherty, M. K. et al. (2005), Solar wind dynamic pressure and electric field as the main factors controlling Saturn’s aurora, Nature, 433, 720722, doi:10.1038/nature03333.Google Scholar
D’Aversa, E., Bellucci, G., Nicholson, P. D. et al. (2010), The spectrum of a Saturn ring spoke from Cassini/VIMS, Geophys. Res. Lett., 37, 1, doi:10.1029/2009GL041427.Google Scholar
Davies, M. E., V. K. Abalakin, M. Bursa, et al. (1986), Report of the IAU/IAG/COSPAR Working Group on Cartographic Coordinates and Rotational Elements of the Planets and Satellites: 1985, Celest. Mech. 39, 103113.CrossRefGoogle Scholar
Davis, L. and Smith, E. J. (1990), A model of Saturn’s magnetic field based on all available data, J. Geophys. Res., 95, 15257.CrossRefGoogle Scholar
Desch, M. D. (1982), Evidence for solar wind control of Saturn radio emission, Geophys. Res. Lett., 87 (A5), 45494554.Google Scholar
Desch, M. D. and Kaiser, M. L. (1981), Voyager measurement of the rotation period of Saturn’s magnetic field, Geophys. Res. Lett., 8, 253256.Google Scholar
Desch, M. D. and Rucker, H. O. (1983), The relationship between Saturn kilometric radiation and the solar wind, J. Geophys. Res., 88, 89999006.Google Scholar
Dessler, A. J. (1986), Differential rotation of the magnetic fields of the gaseous planets, Geophys. Res. Lett., 12 (3), 299302.Google Scholar
Dyudina, U. A., Ingersoll, A. P., Ewald, S. P. et al. (2016), Saturn’s aurora observed by the Cassini camera at visible wavelengths, Icarus, 263, 3243, doi:10.1016/j.icarus. 2015.05.022.Google Scholar
Espinosa, S. A., and Dougherty, M. K. (2000), Periodic perturbations in Saturn’s magnetic field, Geophys. Res. Lett., 27(17), 27852788, doi:10.1029/2000GL000048.Google Scholar
Espinosa, S. A., Southwood, D. J. and Dougherty, M. K. (2003a), Reanalysis of Saturn’s magnetospheric field data view of spin-periodic perturbations, J. Geophys. Res., 108(A2), 1085, doi:10.1029/2001JA005083.Google Scholar
Espinosa, S. A., Southwood, D. J. and Dougherty, M. K. (2003b), How can Saturn impose its rotation period in a noncorotating magnetosphere?, J. Geophys. Res., 108(A2), 1086, doi:10.1029/2001JA005084.Google Scholar
Farmer, A. J. and Goldreich, P. (2001), Spoke formation under moving plasma clouds, Icarus, 179(2), 535548, doi:10.1016/j.icarus.2005.07.025.Google Scholar
Fischer, G., Gurnett, D. A., Kurth, W. S. et al. (2015), Saturn kilometric radiation periodicity after equinox, Icarus, 254, 7291, doi:10.1016/j.icarus.2015.03.014.Google Scholar
Fischer, G., Kurth, W. S., Gurnett, D. A. et al. (2011), A giant thunderstorm on Saturn, Nature, 475, 7577, doi:10.1038/nature10205.Google Scholar
Franklin, F. A., Colombi, G. and Cook, A. F. (1982), A possible link between the rotation of Saturn and its ring structure, Nature, 295, 128130.Google Scholar
Galopeau, P. H. M. and Lecacheux, A. (2000), Variations of Saturn’s radio rotation period measured at kilometer wavelengths, J. Geophys. Res., 105(A6), 13,08913,102.Google Scholar
Giampieri, G., Dougherty, M. K., Smith, E. J. et al. (2006), A regular period for Saturn’s magnetic field that may track its internal rotation, Nature, 441, 6264, doi:10.1038/nature04750.CrossRefGoogle ScholarPubMed
Godfrey, D. A. (1988), A hexagonal feature around Saturn’s north pole, Icarus, 76, 335356.Google Scholar
Godfrey, D. A. (1990), The rotation period of Saturn’s polar hexagon, Science, 247, 12061208.Google Scholar
Goertz, C. K. and Morfill, G. (1983), A model for the formation of spokes in Saturn’s rings, Icarus, 53, 219229.Google Scholar
Goldreich, P. and Farmer, A. J. (2007), Spontaneous axisymmetry breaking of the external magnetic field at Saturn, J. Geophys. Res., 112, A05225, doi:10.1029/2006JA012163.Google Scholar
Grün, E., Goertz, C. K., Morfill, G. E. et al. (1992), Statistics of Saturn’s spokes, Icarus, 99, 191201.Google Scholar
Grün, E., Morfill, G. E., Terrile, R. J. et al. (1983), The evolution of spokes in Saturn’s B ring, Icarus, 54, 227252.Google Scholar
Gurnett, D. A., Groene, J. B., Persoon, A. M. et al. (2010), The reversal of the rotational modulation rates of the north and south components of Saturn kilometric radiation near equinox, Geophys. Res. Lett., 37, L24101, doi:10.1029/2010GL045796.Google Scholar
Gurnett, D. A., Kurth, W. S., Hospodarsky, G. B. et al. (2005), Radio and plasma wave observations at Saturn from Cassini’s approach and first orbit, Science, 307, 12551259.Google Scholar
Gurnett, D. A., Lecacheux, A., Kurth, W. S. et al. (2009a), Discovery of a north-south asymmetry in Saturn’s radio rotation period, Geophys. Res. Lett., 36, L16102, doi:10.1029/2009GL039621.Google Scholar
Gurnett, D. A., Persoon, A. M., Groene, J. B. et al. (2009b), A north-south difference in the rotation rate of auroral hiss at Saturn: Comparison to Saturn’s kilometric radio emission, Geophys. Res. Lett., 36, L21108, doi:10.1029/2009GL040774.Google Scholar
Hedman, M. M., Burns, J. A., Tiscareno, M. W. et al. (2009), Organizing some very tenuous things: Resonant structures in Saturn’s faint rings, Icarus, 202, 260279, doi:10.1016/j.icarus.2009.02.016.Google Scholar
Hedman, M. M. and Nicholson, P. D. (2013), Kronoseismology: Using density waves in Saturn’s C ring to probe the planet’s interior, Astron. J., 146, 12, doi:10.1088/0004–6256/146 /1/12.Google Scholar
Hedman, M. M. and Nicholson, P. D. (2014), More Kronoseismology with Saturn’s rings, MNRAS, 444, 13691388.Google Scholar
Helled, R., Galanti, E. and Kaspi, Y. (2015), Saturn’s fast spin determined from its gravitational field and oblateness, Nature, 250, 202204, doi:10.1038/nature14278.Google Scholar
Helled, R., Schubert, G. and Anderson, J. D. (2009), Jupiter and Saturn rotation periods, Planet. Space Sci., 57, 14671473, doi:10.1016/j.pss.2009.07.008.Google Scholar
Higgins, C. A., Carr, T. D., Reyes, F. et al. (1997), A redefinition of Jupiter’s rotation period, J. Geophys. Res., 102, 2203322042, doi:10.1029/97JA02090.Google Scholar
Hill, T. W., Jaggi, A., Wolf, R. A. et al. (2014), Generation of a global longitudinal asymmetry in Saturn’s magnetosphere, paper # SM23D-09 presented at Fall AGU meeting, San Francisco, CA, Dec. 16.Google Scholar
Hill, T. W., Rymer, A. M., Burch, J. L. et al. (2005), Evidence for rotationally driven plasma transport in Saturn’s magnetosphere, Geophys. Res. Lett., 32, L14S10, doi:10.1029/ 2005GL022620.Google Scholar
Howard, R. (1984), Solar rotation, Ann. Rev. Astron. Astrophys., 22, 131155.Google Scholar
Hunt, G. J., Cowley, S. W. H., Provan, G. et al. (2014), Field-aligned currents in Saturn’s southern nightside magnetosphere: Sub-corotation and planetary period oscillation components, J. Geophys. Res., 119, doi:10.1002/2014JA020506.Google Scholar
Hunt, G. J., Cowley, S. W. H., Provan, G. (2015), Field-aligned currents in Saturn’s northern nightside magnetosphere: Evidence for inter-hemispheric current flow associated with planetary period oscillations, J. Geophys. Res. Space Physics., 120, doi.10.1002/2015JA021454.Google Scholar
Jia, X. and Kivelson, M. G. (2012), Driving Saturn’s magnetospheric periodicities from the upper atmosphere/ionosphere: Magnetotail response to dual sources, J. Geophys. Res., 117, A11219, doi:10.1029/2012JA018183.Google Scholar
Jia, X., Kivelson, M. G. and Gombosi, T. T. (2012), Driving Saturn’s magnetosphere periodicities from the upper atmosphere/ionosphere, J. Geophys. Res., 117, A04215, doi:10.1029/ 2011JA017367.Google Scholar
Kane, M., Mitchell, D. G., Carbary, J. F. et al. (2014), Plasma convection in the nightside magnetosphere of Saturn determined from energetic ion anisotropies, Planet. Space Sci., 91, 113, doi:10.1016/j.pss.2013.10.001.Google Scholar
Kennelly, T. J., Leisner, J. S., Hospodarsky, G. B. et al. (2013), Ordering of injection evens within Saturnian SLS longitude and local time, J. Geophys. Res., 118, 17, doi:10.1002/jgra.50152.Google Scholar
Khurana, K. K. (1992), A generalized hinged-magnetodisk model of Jupiter’s nightside current sheet, J. Geophys. Res., 97(A5), 62696276.Google Scholar
Khurana, K. K. and Kivelson, M. G. (1989), On Jovian plasma sheet structure, J. Geophys. Res. 94(A9), 1179111803.Google Scholar
Kidder, A., Winglee, R. M. and Harnett, E. M. (2009), Regulation of the centrifugal interchange cycle in Saturn’s inner magnetosphere, J. Geophys. Res., 114, A02205, doi:10.1029/ 2008JA013100.Google Scholar
Kimura, T., Lamy, L., Tao, C. et al. (2013), Long-term modulations of Saturn’s auroral radio emissions by the solar wind and seasonal variations controlled by the solar ultraviolet flux, J. Geophys. Res. Space Physics, 118, 7019–2035, doi:10.1002/ 2013JA018833.Google Scholar
Kivelson, M. G. (2014), Planetary magnetodiscs: Some unanswered questions, Space Sci. Rev., doi:10.1007/s11214-014–0046-6.Google Scholar
Kivelson, M. and Jia, X. (2014), Control of periodic variations in Saturn’s magnetosphere by compressional waves, J. Geophys. Res., 119, doi:10.1002/2014JA020258.Google Scholar
Kivelson, M. G., Jia, X. and Gombosi, T. I. (2011), A vortex in Saturn’s upper atmosphere as the driver of electromagnetic periodicities at Saturn: Magnetospheric and ionospheric responses, EPSC Abstracts, 6, EPSC-DPS2011–58.Google Scholar
Krimigis, S. M., Mitchell, D. G., Hamilton, D. C. et al. (2005), Dynamics of Saturn’s magnetosphere from MIMI during Cassini’s orbital insertion, Science, 397, 12701273, doi:10.1126/science.1105978.Google Scholar
Kronberg, E. A., Glassmeier, K.-H., Woch, J. et al. (2007), A possible intrinsic mechanism for the quasi-periodic dynamics of the Jovian magnetosphere, J. Geophys. Res., 112, A05203, doi:10.1029/2006JA011994.Google Scholar
Kurth, W. S., Averkamp, T. F., Gurnett, D. A. et al. (2008), An update to a Saturn longitude system based on kilometric radio emissions, J. Geophys. Res., 113, A05222, doi:10.1029/2007JA012861.Google Scholar
Kurth, W. S., Gurnett, D. A., Clarke, J. T. et al. (2005), An Earth-like correspondence between Saturn’s auroral features and radio emission, Nature, 433, 722725, doi:10.1038/nature03334.CrossRefGoogle ScholarPubMed
Kurth, W. S., Lecacheux, A., Averkamp, T. F., et al. (2007), A Saturnian longitude system based on a variable kilometric radiation period, Geophys. Res. Lett., 34, L02201, doi:10.1029/2006GL028336.Google Scholar
Lamy, L., Zarka, P., Cecconi, B. et al. (2008), Saturn kilometric radiation: Average and statistical properties, J. Geophys. Res., 113, A07201, doi:10.1029/2007JA012900.Google Scholar
Lamy, L., Zarka, P., Cecconi, B. et al. (2010a), Auroral kilometric radiation diurnal, semi-diurnal, and shorter-term modulations disentangled by Cassini/RPWS, J. Geophys. Res., 115, A09221, doi:10.1029/2010JA015434.Google Scholar
Lamy, L., Schippers, P., Zarka, P. et al. (2010b), Properties of Saturn kilometric radiation measured within its source region, Geophys. Res. Lett., 37, L12104.Google Scholar
Lamy, L. (2011), Variability of southern and northern SKR periodicities, in Planetary Radio Emissions VII, edited by Rucker, H.O., Kurth, W.S., Louarn, P., and Fischer, G., pp. 39050, Austrian Academy of Sciences, Vienna, Austria.Google Scholar
Lecacheux, A., Galopeau, P. and Aubier, M. (1997), Re-visiting Saturnian radiation with Ulysses/URAP, in Planetary Radio Emissions IV, ed. by Rucker, H. O., Bauer, S. J., and Lecacheux, A., pp. 313325, Austrian Acad. of Sci. Press, Vienna.Google Scholar
Liu, X., Hill, T. W., Wolf, R. A. et al. (2010), Numerical simulation of plasma transport in Saturn’s inner magnetosphere using the Rice Convection Model, J. Geophys. Res., 115, A12252, doi:10.1029/2010JA015859.Google Scholar
Liu, X. and Hill, T. W. (2012), Effects of finite plasma pressure on centrifugally driven convection in Saturn’s inner magnetosphere, J. Geophys. Res., 117, A07216, doi:10.1029/2012JA017827.Google Scholar
Marley, M. S. and Porco, C. C. (1993), Planetary acoustic mode seismology: Saturn’s rings, Icarus, 106, 508524.Google Scholar
Mauk, B. H., J. Saur, D. G. Mitchell, et al. (2005), Energetic particle injections in Saturn’s magnetosphere, Geophys. Res. Lett., 32, L14S05, doi:10.1029/2005GL022485.Google Scholar
McIntyre, M. E. and Shepherd, T. G. (1987), An exact local conservation theorem for finite-amplitude disturbances to non-parallel shear flows, with remarks on Hamiltonian structure and Arnol’d’s stability theorem, J. Fluid Mech, 181(1), 527565.Google Scholar
Mitchell, D. G., Brandt, P. C., Roelof, E. C. et al. (2005), Energetic ion acceleration in Saturn’s magnetotail: Substorms at Saturn? Geophys. Res. Lett., 32, L20S01, doi:10.1029/2005GL022647.Google Scholar
Mitchell, D. G., Kurth, W. S., Hospodarsky, G. B. et al. (2009), Ion conics and electron beams associated with auroral processes on Saturn, J. Geophys. Res., 114, A02212, doi:10.1029/2008JA013621.Google Scholar
Mitchell, D. G., Carbary, J. F., Bunce, E. J. et al. (2014), Recurrent pulsations in Saturn’s high latitude magnetosphere, Icarus, 263, 94100, doi:10.1016/j.icarus.2014.10.028.Google Scholar
Mitchell, C. J., Porco, C. C., Dones, H. L. et al. (2013), The behavior of spokes in Saturn’s B ring, Icarus, 225, 446474, doi:10.1016/j.icarus.2013.02.011.Google Scholar
Morioka, A., Miyoshi, Y., Kurita, S. et al. (2013), Universal time control of AKR: Earth is a spin-modulated variable radio source, J. Geophys. Res. Space Physics, 118, 11231131, doi:10.1002/jgra.50180.Google Scholar
Nichols, J. D., Cecconi, B., Clarke, J. T. et al. (2010a), Variation of Saturn’s UV aurora with SKR phase, Geophys. Res. Lett., 37, L15102.Google Scholar
Nichols, J. D., Clarke, J. T., Cowley, S. W. H. et al. (2008), Oscillation of Saturn’s southern auroral oval, Geophys. Res. Lett., 113, A11205, doi:10.1029/2008JA013444.Google Scholar
Nichols, J. D., Cowley, S. W. H. and Lamy, L. (2010b), Dawn-dusk oscillation of Saturn’s conjugate auroral ovals, Geophys. Res. Lett., 37, 24, L24102.Google Scholar
Panchenko, M., Khodachenko, M. L., Kislyakov, A. G. (2009), Daily variations of auroral kilometric radiation observed by STEREO, Geophys. Res. Lett., 36, L06102, doi:10.1029/ 2008GL037042.CrossRefGoogle Scholar
Paranicas, C., Mitchell, D. G., Roelof, E. C. et al. (2005), Periodic intensity variations in global ENA images of Saturn, Geophys. Res. Lett., 32, L21101, doi:10.1029/2005GL023656.Google Scholar
Paranicas, C., Mitchell, D. G., Roelof, E. C. (2007), Energetic electrons injected into Saturn’s neutral gas cloud, Geophys. Res. Lett., 34, L02109, doi:10.1029/ 2006GL028676.Google Scholar
Parker, E. (1958), Dynamics of the interplanetary gas and magnetic fields, Ap. J., 128, 664676.Google Scholar
Paterno, L. (2010), The solar differential rotation: A historical review, Astrophys. Space Sci., 328, 269277.Google Scholar
Porco, C. C. and Danielson, G. E. (1982), The periodic variation of spokes in Saturn’s rings, Astron. J., 87(2), 826833.Google Scholar
Provan, G., Andrews, D. J., Arridge, C. S. et al. (2012), Dual periodicities in planetary-period magnetic field oscillations in Saturn’s tail, J. Geophys. Res., 117, A01209, doi:10.1029/2011JA017104.Google Scholar
Provan, G, Andrews, D. J., Cecconi, B. et al. (2011), Magnetospheric period magnetic field oscillations at Saturn: Equatorial phase ‘jitter’ produced by superposition of southern- and northern-period oscillations, J. Geophys. Res., 116, A04225.Google Scholar
Provan, G., Cowley, S. W. H., Sandhu, J. et al. (2013), Planetary period magnetic field oscillations in Saturn’s magnetosphere: Postequinox abrupt non-monotonic transitions to northern system dominance, J. Geophys. Res., 118, 32433264, doi:10.1002/jgra.50186.Google Scholar
Provan, G., Lamy, L., Cowley, S. W. H. et al. (2014), Planetary period oscillations in Saturn’s magnetosphere: Comparison of magnetic oscillations and SKR modulations in the post-equinox interval, J. Geophys. Res., 119, 73807401, doi:10.1002/ 2014JA020011.Google Scholar
Provan, G., Tao, C., Cowley, S. W. H. et al. (2015), Planetary period oscillations in Saturn’s magnetosphere: Examining the relationship between abrupt changes in behavior and solar wind-induced magnetospheric compressions and expansions, J. Geophys. Res. Space Physics, 120, doi:10.1002/2015JA021642.Google Scholar
Read, P. L., Dowling, T. E., and Schubert, G. (2009), Saturn’s rotation period from its atmospheric planetary-configuration, Nature, 460, 608610, doi:10.1038/nature08194.Google Scholar
Roussos, E., Krupp, N., Mitchell, D. G. et al. (2015), Quasi-periodic injections of relativistic electrons in Saturn’s outer magnetosphere, Icarus, 263, 101116, doi:10.1016/ j.icarus.2015.04.017.Google Scholar
Rymer, A. M., Mitchell, D. G., Hill, T. W. et al. (2013), Saturn’s magnetospheric refresh rate, Geophys. Res. Lett., 40, 15, doi:10.1002/ grl.50530.Google Scholar
Sánchez-Lavega, A. (2005), How long is the day on Saturn?, Science, 307, 12231224, doi:10.1126/scence.1104956.Google Scholar
Sánchez-Lavega, A., Rojas, J. F., Acarreta, J. R. et al. (1997), New observations and studies of Saturn’s long-lived North Polar Spot, Icarus, 128, 322334.Google Scholar
Sánchez-Lavega, A., Rojas, J. F. and Sada, P. (2000), Saturn’s zonal winds at cloud level, Icarus, 145, 405420, doi:10.1006/icar.2000.6449.CrossRefGoogle Scholar
Sánchez-Lavega, A., del Rio-Gazrelurrutia, T., Hueso, R. et al. (2014), The long-term steady motion of Saturn’s hexagon and the stability of its enclosed jet stream under seasonal changes, Geophys. Res. Lett., 41, 14251431, doi:10.1002/2013GL059078.Google Scholar
Sandel, B. R. and Dessler, A. J. (1988), Dual periodicity of the Jovan magnetosphere, J. Geophys. Res., 93, 54875504.Google Scholar
Seidelman, P. K., Abalakin, V. K., Bursa, M. et al. (2002), Report of the IAU/IAG working group on cartographic coordinates and rotational elements of the planets and satellites: 2000, Celest. Mech. Dyn. Astr., 82, 83110.Google Scholar
Seidelmann, P. K., Archinal, B. A., A’hearn, M. F. et al. (2007), Report of the IAU/IAG working group on cartographic coordinates and rotational elements: 2006, Celest. Mech. Dyn. Astr., 98, 155180, doi:10.1007/s10569-007–9-72-y.Google Scholar
Shu, F. H. (1984), Waves in planetary rings, in Planetary Rings, ed. Greenberg, R. and Brahic, A., University of Arizona Press, Tucson, AZ, pp. 513561.Google Scholar
Smith, C. G. A. (2006), Periodic modulations of gas giant magnetospheres by the neutral upper atmosphere, Ann. Geophys., 24, 27092717, doi:10.5195/angeo-24–2709-2006.Google Scholar
Smith, C. G. A. (2011), A Saturnian cam current system driven by asymmetric thermospheric heating, M.N.R.A.S., 410, 23152328, doi:10.1111/j.1365–2966.2010.17602.x.Google Scholar
Smith, C. G. A. (2014), On the nature and location of the proposed twin vortex systems in Saturn’s polar upper atmosphere, J. Geophys. Res., 119, doi:10.1002/2014JA019934.Google Scholar
Southwood, D. J. and Kivelson, M. G. (2007), Saturnian magnetospheric dynamics: Elucidation of a camshaft model, J. Geophys. Res., 112, A12222, doi:10.1029/2007JA012254.Google Scholar
Southwood, D. J. and Kivelson, M. G. (2009), The source of Saturn’s periodic radio emission, J. Geophys. Res., 114, A09201, doi:10.1029/2008JA013800.Google Scholar
Southwood, D. J. (2011), Direct evidence of differences in magnetic rotation rate between Saturn’s northern and southern polar regions, J. Geophys. Res., 116. A01201, doi:10.1029/2010JA016070.Google Scholar
Southwood, D. J. and Cowley, S. W. H. (2014), The origin of Saturn’s magnetic periodicities: Northern and southern current systems, J. Geophys. Res., 119, doi:10.1002/ 2013JA019632.Google Scholar
Stevenson, J. D. (1982), Are Saturn’s rings a seismograph for planetary inertial oscillations? EOS, Trans AGU, 63, 1020.Google Scholar
Szego, K., Nemeth, Z., Foldy, L. et al. (2013), Dual periodicities in the flapping of Saturn’s magnetodisk, J. Geophys. Res., 118, 28832887, doi:10.1002/ jgra.50316.Google Scholar
Thomsen, M. F., Reisenfeld, D. B., Delapp, D. M. et al. (2010), Survey of ion plasma parameters in Saturn’s magnetosphere, J. Geophys. Res., 115, A10220, doi:10.1029/2010JA015267.Google Scholar
Warwick, J. W., J. B. Pearce, D. R. Evans, et al. (1981), Planetary radio astronomy observations from Voyager 1 near Saturn, Science, 212, 239243, doi:10.1126/science.212.4491.239.Google Scholar
Wilson, R. J., Tokar, R. L., Henderson, M. G. et al. (2008), Cassini Plasma Spectrometer thermal ion measurements in Saturn’s inner magnetosphere, J. Geophys. Res., 113, A12218, doi:10.1029/2008JA013486.Google Scholar
Wilson, R. J., Tokar, R. L., and Henderson, M. G. (2009), Thermal ion flow in Saturn’s inner magnetosphere measured by the Cassini plasma spectrometer: a signature of the Enceladus torus?, Geophys. Res. Lett., 36, L23104, doi:10.1029GL040225.Google Scholar
Winglee, R. M., Kidder, A., Harnett, E. et al. (2013), Generation of periodic signatures at Saturn through Titan’s interaction with the centrifugal interchange instability, J. Geophys. Res., 118, 117, doi:10.1002/jgra.50379.Google Scholar
Yang, Y. S., Wolf, R. A., Spiro, R. W. et al. (1994), Numerical simulation of torus-driven plasma transport in the Jovian magnetosphere, J. Geophys. Res., 99, 87558770.Google Scholar
Yates, J. N., Southwood, D. J. and Kivelson, M. K. (2015), Magnetic phase structure of Saturn’s 10.7 h oscillations, J. Geophys. Res., 120, 26312648, doi:10.1002/2014JA020629.Google Scholar
Ye, S.-Y., Gurnett, D. A., Groene, J. B. et al. (2010), Dual periodicities in the rotational modulation of Saturn narrowband emissions, J. Geophys. Res., 115, A12258, doi:10.1029/2010JA015780.Google Scholar
Zarka, P., Lamy, L., Cecconi, B. et al. (2007), Modulation of Saturn’s radio clock by solar wind speed, Nature, 450, 265267.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×