Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-22T21:06:14.029Z Has data issue: false hasContentIssue false

Part IV - Truncation and Stopping Rules

Published online by Cambridge University Press:  01 June 2023

Klaus Fiedler
Affiliation:
Universität Heidelberg
Peter Juslin
Affiliation:
Uppsala Universitet, Sweden
Jerker Denrell
Affiliation:
University of Warwick
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Anderson, J. R., Bothell, D., & Byrne, M. D. et al. (2004). An integrated theory of the mind. Psychological Review, 111(4), 1036.CrossRefGoogle ScholarPubMed
Baumann, C., Singmann, H., Gershman, S. J., & von Helversen, B. (2020). A linear threshold model for optimal stopping behavior. Proceedings of the National Academy of Sciences, 117(23), 1275012755. https://doi.org/10.1073/pnas.2002312117Google Scholar
Busemeyer, J. R., & Townsend, J. T. (1993). Decision field theory: A dynamic cognitive approach to decision making. Psychological Review, 100, 432459. https://doi.org/10.1037/0033-295x.100.3.432Google Scholar
Dutt, V., & Gonzalez, C. (2015). Accounting for outcome and process measures in dynamic decision-making tasks through model calibration. Pittsburgh: Carnegie Mellon University. https://doi.org/10.11588/jddm.2015.1.17663Google Scholar
Erev, I., Ert, E., & Roth, A. E. et al. (2010). A choice prediction competition for choices from experience and from description. Journal of Behavioral Decision Making, 23, 1547. https://doi:10.1002/bdm.683Google Scholar
Gonzalez, C. (2013). The boundaries of instance-based learning theory for explaining decisions from experience. In Chandrasekhar Pammi, V. S. & Srinivasan, N. (Eds.), Progress in brain research (Vol. 202, pp. 7398). Amsterdam: Elsevier. https://doi.org/10.1016/b978-0-444-62604-2.00005-8Google Scholar
Gonzalez, C., Ben‐Asher, N., Martin, J. M., & Dutt, V. (2015). A cognitive model of dynamic cooperation with varied interdependency information. Cognitive Science, 39(3), 457495. https://doi.org/10.1111/cogs.12170Google Scholar
Gonzalez, C., & Dutt, V. (2011). Instance-based learning: Integrating sampling and repeated decisions from experience. Psychological Review, 118(4), 523551. https://doi:10.1037/a0024558Google Scholar
Gonzalez, C., & Dutt, V. (2016). Exploration and exploitation during information search and consequential choice Journal of Dynamic Decision Making, 2(2),18.Google Scholar
Gonzalez, C., Lerch, J. F., & Lebiere, C. (2003). Instance-based learning in dynamic decision making. Cognitive Science, 27(4), 591635. https://doi:10.1016/S0364-0213(03)00031-4Google Scholar
Gonzalez, C., & Mehlhorn, K. (2016). Framing from experience: Cognitive processes and predictions of risky choice. Cognitive Science, 40(5), 11631191. https://doi.org/10.1111/cogs.12268Google Scholar
Guan, M., Stokes, R., Vandekerckhove, J., & Lee, M. D. (2020). A cognitive modeling analysis of risk in sequential choice tasks. Judgment and Decision Making, 15(5), 823850. https://doi.org/10.31234/osf.io/evzp9Google Scholar
Hau, R., Pleskac, T. J., Kiefer, J., & Hertwig, R. (2008). The description–experience gap in risky choice: The role of sample size and experienced probabilities. Journal of Behavioral Decision Making, 21(5), 493518. https://doi.org/10.1002/bdm.598Google Scholar
Hertwig, R. (2015). Decisions from experience. The Wiley Blackwell handbook of judgment and decision making, 2, 239267. https://doi.org/10.1002/9781118468333.ch8Google Scholar
Hertwig, R., Barron, G., Weber, E. U., & Erev, I. (2004). Decisions from experience and the effect of rare events in risky choice. Psychological Science, 15, 534539. https://doi:10.1111/j.0956-7976.2004.00715.xGoogle Scholar
Hertwig, R., & Erev, I. (2009). The description–experience gap in risky choice. Trends in Cognitive Sciences, 13(12), 517523. https://doi:10.1016/j.tics.2009.09.004Google Scholar
Hertwig, R., & Pleskac, T. J. (2010). Decisions from experience: Why small samples? Cognition, 115, 225237. https://doi.org/10.1016/j.cognition.2009.12.009Google Scholar
Lebiere, C. (1999). A blending process for aggregate retrievals. In Proceedings of the 6th ACT-R Workshop. Fairfax, VA: George Mason University,Google Scholar
Lejarraga, T., Dutt, V., & Gonzalez, C. (2012). Instance‐based learning: A general model of repeated binary choice. Journal of Behavioral Decision Making, 25(2), 143153. https://doi.org/10.1037/e722992011-088Google Scholar
Lejarraga, T., & Gonzalez, C. (2011). Effects of feedback and complexity on repeated decisions from description. Organizational Behavior and Human Decision Processes, 116(2), 286295. https://doi.org/10.1016/j.obhdp.2011.05.001Google Scholar
Lejarraga, T., Hertwig, R., & Gonzalez, C. (2012). How choice ecology influences search in decisions from experience. Cognition, 124(3), 334342. https://doi.org/10.1016/j.cognition.2012.06.002Google Scholar
Lejarraga, T., Lejarraga, J., & Gonzalez, C. (2014). Decisions from experience: How groups and individuals adapt to change. Memory & Cognition, 42(8), 13841397. https://doi.org/10.3758/s13421-014-0445-7Google Scholar
March, J. G., & Simon, H. A. (1958). Organizations. New York: Wiley,Google Scholar
Markant, D., Pleskac, T. J., Diederich, A., Pachur, T., & Hertwig, R. (2015). Modeling choice and search in decisions from experience: A sequential sampling approach. In 37th annual meeting of the Cognitive Science Society (pp. 15121517). Cognitive Science Society.Google Scholar
Simon, H. (1957). A behavioral model of rational choice. Models of man, social and rational: Mathematical essays on rational human behavior in a social setting (pp. 241269). New York: Wiley.Google Scholar
Srivastava, N., Müller-Trede, J., Schrater, P. R., & Vul, E. (2016). Modeling sampling duration in decisions from experience. In Proceedings of the 38th Annual Meeting of the Cognitive Science Society.Google Scholar
Tversky, A., & Kahneman, D. (1992). Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk and Uncertainty, 5(4), 297323.CrossRefGoogle Scholar
Wulff, D. U., Mergenthaler-Canseco, M., & Hertwig, R. (2018). A meta-analytic review of two modes of learning and the description–experience gap. Psychological bulletin, 144(2), 140. https://doi.org/10.1037/bul0000115Google Scholar

References

Ajzen, I., & Fishbein, M. (1975). A Bayesian analysis of attribution processes. Psychological Bulletin, 82(2), 261277. https://doi.org/10.1037/h0076477Google Scholar
Alves, H., Unkelbach, C., Burghardt, J., Koch, A. S., Krüger, T., & Becker, V. D. (2015). A density explanation of valence asymmetries in recognition memory. Memory & Cognition, 43(6), 896909. https://doi.org/10.3758/s13421-015-0515-5CrossRefGoogle ScholarPubMed
Asch, S. E. (1946). Forming impressions of personality. Journal of Abnormal and Social Psychology, 41, 258290. http://dx.doi.org/10.1037/h0055756Google Scholar
Busemeyer, J. R., & Townsend, J. T. (1993). Decision field theory: A dynamic-cognitive approach to decision making in an uncertain environment. Psychological Review, 100(3), 432459. doi:10.1037//0033-295X.100.3.432Google Scholar
Coenen, A., & Gureckis, T. M. (2016). The distorting effect of deciding to stop sampling. Proceedings of the 38th Annual Conference of the Cognitive Science Society.Google Scholar
De Finetti, B. (1937). La prévision: Ses lois logiques, ses sources subjectives [Foresight: Its logical laws, its subjective sources]. Annales de l’Institut Henri Poincaré, 17, 168.Google Scholar
Denrell, J. (2005). Why most people disapprove of me: Experience sampling in impression formation. Psychological Review, 112(4), 951978. https://doi.org/10.1037/0033-295X.112.4.951CrossRefGoogle ScholarPubMed
Desender, K., Boldt, A., & Yeung, N. (2018). Subjective confidence predicts information seeking in decision making. Psychological Science, 29(5), 761778. https://doi.org/10.1177/0956797617744771Google Scholar
Dieckmann, A., & Rieskamp, J. (2007). The influence of information redundancy on probabilistic inferences. Memory & Cognition, 35(7), 18011813. https://doi.org/10.3758/BF03193511CrossRefGoogle ScholarPubMed
Dougherty, M. R. P. (2001). Integration of the ecological and error models of overconfidence using a multiple-trace memory model. Journal of Experimental Psychology: General, 130(4), 579599. https://doi.org/10.1037/0096-3445.130.4.579Google Scholar
Edwards, W. (1965). Optimal strategies for seeking information: Models for statistics, choice reaction times, and human information processing. Journal of Mathematical Psychology, 2(2), 312329. https://doi.org/10.1016/0022-2496(65)90007-6CrossRefGoogle Scholar
Erev, I., Wallsten, T. S., & Budescu, D. V. (1994). Simultaneous over- and underconfidence: The role of error in judgment processes. Psychological Review, 101(3), 519527. https://doi.org/10.1037/0033-295X.101.3.519Google Scholar
Fiedler, K. (2000). Beware of samples! A cognitive-ecological sampling approach to judgment biases. Psychological Review, 107(4), 659676. https://doi.org/10.1037/0033-295X.107.4.659Google Scholar
Fiedler, K., & Wänke, M. (2009). The cognitive-ecological approach to rationality in social psychology. Social Cognition, 27(5), 699732. https://doi.org/10.1521/soco.2009.27.5.699Google Scholar
Frey, R., Hertwig, R., & Rieskamp, J. (2014). Fear shapes information acquisition in decisions from experience. Cognition, 132(1), 9099. https://doi.org/10.1016/j.cognition.2014.03.009Google Scholar
Galton, F. (1894). Natural inheritance. Macmillan.Google Scholar
Gino, F., Brooks, A. W., & Schweitzer, M. E. (2012). Anxiety, advice, and the ability to discern: Feeling anxious motivates individuals to seek and use advice. Journal of Personality and Social Psychology, 102(3), 497512. https://doi.org/10.1037/a0026413Google Scholar
Hadar, L., & Fox, C. R. (2009). Information asymmetry in decision from description versus decision from experience. Judgment and Decision Making, 4, 317325.Google Scholar
Hertwig, R., & Pleskac, T. J. (2010). Decisions from experience: Why small samples? Cognition, 115, 225237. http://dx.doi.org/10.1016/j.cognition.2009.12.009Google Scholar
Juslin, P., & Olsson, H. (1997). Thurstonian and Brunswikian origins of uncertainty in judgment: A sampling model of confidence in sensory discrimination. Psychological Review, 104(2), 344366. https://doi.org/10.1037/0033-295X.104.2.344CrossRefGoogle ScholarPubMed
Juslin, P., Olsson, H., & Björkman, M. (1997). Brunswikian and Thurstonian origins of bias in probability assessment: On the interpretation of stochastic components of judgment. Journal of Behavioral Decision Making, 10(3), 189209. https://doi.org/10.1002/(SICI)1099-0771(199709)10:3<189::AID-BDM258>3.0.CO;2-4Google Scholar
Koch, A., Alves, H., Krüger, T., & Unkelbach, C. (2016). A general valence asymmetry in similarity: Good is more alike than bad. Journal of Experimental Psychology: Learning, Memory, and Cognition, 42(8), 11711192. https://doi.org/10.1037/xlm0000243Google Scholar
Kutzner, F. L., & Fiedler, K. (2015). No correlation, no evidence for attention shift in category learning: Different mechanisms behind illusory correlations and the inverse base-rate effect. Journal of Experimental Psychology: General, 144(1), 5875. https://doi.org/10.1037/a0038462Google Scholar
Lejarraga, T., Hertwig, R., & Gonzalez, C. (2012). How choice ecology influences search in decisions from experience. Cognition, 124(3), 334342. https://doi.org/10.1016/j.cognition.2012.06.002Google Scholar
Levy, L. H. (1967). The effects of variance on personality impression formation. Journal of Personality, 35(2), 179193. https://doi.org/10.1111/j.1467-6494.1967.tb01423.xGoogle Scholar
Parducci, A. (1965). Category judgment: A range-frequency model. Psychological Review, 72(6), 407418. https://doi.org/10.1037/h0022602Google Scholar
Peterson, W. W. T. G., Birdsall, T., & Fox, W. (1954). The theory of signal detectability. Transactions of the IRE Professional Group on Information Theory, 4(4), 171212.Google Scholar
Pleskac, T. J., & Busemeyer, J. R. (2010). Two-stage dynamic signal detection: A theory of choice, decision time, and confidence. Psychological Review, 117(3), 864901. doi:10.1037/A0019737Google Scholar
Prager, J., & Fiedler, K. (2021a). Forming impressions from self-truncated samples of traits: Interplay of Thurstonian and Brunswikian sampling effects. Journal of Personality and Social Psychology, 121(3), 474497. https://doi.org/10.1037/pspa0000274.suppGoogle Scholar
Prager, J., & Fiedler, K. (2021b). Small-group homogeneity: A crucial ingredient to inter-group sampling and impression formation. Unpublished manuscript, Heidelberg University.Google Scholar
Prager, J., Krueger, J. I., & Fiedler, K. (2018). Towards a deeper understanding of impression formation: New insights gained from a cognitive-ecological perspective. Journal of Personality and Social Psychology, 115(3), 379397. https://doi.org/10.1037/pspa0000123Google Scholar
Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85(2), 59108. https://doi.org/10.1037/0033-295X.85.2.59Google Scholar
Reeder, G. D., & Brewer, M. B. (1979). A schematic model of dispositional attribution in interpersonal perception. Psychological Review, 86(1), 6179. https://doi.org/10.1037/0033-295X.86.1.61Google Scholar
Rothbart, M., & Park, B. (1986). On the confirmability and disconfirmability of trait concepts. Journal of Personality and Social Psychology, 50(1), 131142. https://doi.org/10.1037/0022-3514.50.1.131Google Scholar
Schwarz, N., & Clore, G. L. (1983). Mood, misattribution, and judgments of well-being: Informative and directive functions of affective states. Journal of Personality and Social Psychology, 45(3), 513523. https://doi.org/10.1037/0022-3514.45.3.513Google Scholar
Skowronski, J. J., & Carlston, D. E. (1987). Social judgment and social memory: The role of cue diagnosticity in negativity, positivity, and extremity biases. Journal of Personality and Social Psychology, 52(4), 689699. https://doi.org/10.1037/0022-3514.52.4.689Google Scholar
Skowronski, J. J., & Carlston, D. E. (1989). Negativity and extremity biases in impression formation: A review of explanations. Psychological Bulletin, 105(1), 131142. https://doi.org/10.1037/0033-2909.105.1.131Google Scholar
Soll, J. B. (1999). Intuitive theories of information: Beliefs about the value of redundancy. Cognitive Psychology, 38(2), 317346. https://doi.org/10.1006/cogp.1998.0699Google Scholar
Stewart, N., Chater, N., & Brown, G. D. A. (2006). Decision by sampling. Cognitive Psychology, 53(1), 126. https://doi.org/10.1016/j.cogpsych.2005.10.003Google Scholar
Tanner, W. P., Jr., & Swets, J. A. (1954). A decision-making theory of visual detection. Psychological Review, 61(6), 401409. https://doi.org/10.1037/h0058700Google Scholar
Thurstone, L. L. (1927a). A law of comparative judgment. Psychological Review, 34(4), 273286. https://doi.org/10.1037/h0070288Google Scholar
Thurstone, L. L. (1927b). Psychophysical analysis. American Journal of Psychology, 38, 368389. https://doi.org/10.2307/1415006Google Scholar
Trope, Y., & Bassok, M. (1982). Confirmatory and diagnosing strategies in social information gathering. Journal of Personality and Social Psychology, 43(1), 2234. https://doi.org/10.1037/0022-3514.43.1.22Google Scholar
Unkelbach, C., Fiedler, K., Bayer, M., Stegmüller, M., & Danner, D. (2008). Why positive information is processed faster: The density hypothesis. Journal of Personality and Social Psychology, 95(1), 3649. https://doi.org/10.1037/0022-3514.95.1.36Google Scholar
Wulff, D. U., Hills, T. T., & Hertwig, R. (2015). How short- and long-run aspirations impact search and choice in decisions from experience. Cognition, 144, 2937. https://doi.org/10.1016/j.cognition.2015.07.006Google Scholar

References

Balci, F., Simen, P., & Niyogi, R., et al. (2011). Acquisition of decision making criteria: Reward rate ultimately beats accuracy. Attention, Perception, and Psychophysics, 73(2), 640657. https://doi.org/10.3758/s13414-010-0049-7Google Scholar
Connolly, T., & Serre, P. (1984). Information search in judgment tasks: The effects of unequal cue validity and cost. Organizational Behavior and Human Performance, 34(3), 387401. https://doi.org/10.1016/0030-5073(84)90045-XGoogle Scholar
Denrell, J. & Le Mens, G. (2023) The hot stove effect. In Fiedler, Klaus, Juslin, Peter, & Denrell, Jerker (Eds.), Sampling in judgment and decision making (pp. 90111). Cambridge: Cambridge University Press.Google Scholar
Denrell, J., & March, J. G. (2001). Adaptation as information restriction: The hot stove effect. Organization Science, 12(5), 523538. https://doi.org/10.1287/orsc.12.5.523.10092Google Scholar
Dhami, M. K., Hertwig, R., & Hoffrage, U. (2004). The role of representative design in an ecological approach to cognition. Psychological Bulletin, 130(6), 959988. https://doi.org/10.1037/0033-2909.130.6.959Google Scholar
Edwards, W. (1965). Optimal strategies for seeking information: Models for statistics, choice reaction-times, and human information-processing. Journal of Mathematical Psychology, 2(2), 312. https://doi.org/10.1016/0022-2496(65)90007-6Google Scholar
Evans, N. J., Bennett, A. J., & Brown, S. D. (2019). Optimal or not: Depends on the task. Psychonomic Bulletin and Review, 26(3), 10271034. https://doi.org/10.3758/s13423-018-1536-4Google Scholar
Evans, N. J., & Brown, S. D. (2017). People adopt optimal policies in simple decision-making, after practice and guidance. Psychonomic Bulletin and Review, 24(2), 597606. https://doi.org/10.3758/s13423-016-1135-1Google Scholar
Fiedler, K., McCaughey, L., Prager, J., Eichberger, J., & Schnell, K. (2021). Speed–accuracy trade-offs in sample-based decisions. Journal of Experimental Psychology: General, 150(6), 12031224, https://doi.org/10.1037/xge0000986Google Scholar
Fiedler, K., Prager, J., & McCaughey, L (in press). Metacognitive Myopia: A Major Obstacle on the Way to Rationality. Current Directions in Psychological Science, 311333.Google Scholar
Fischhoff, B., Slovic, P., & Lichtenstein, S. (1979). Subjective sensitivity analysis. Organizational Behavior and Human Performance, 23(3), 339359. https://doi.org/10.1016/0030-5073(79)90002-3Google Scholar
Fried, L. S., & Peterson, C. R. (1969). Information seeking: Optional versus fixed stopping. Journal of Experimental Psychology, 80(3), 525529. https://doi.org/10.1037/h0027484Google Scholar
Gigerenzer, G. (2004). Striking a blow for sanity in theories of rationality. In Augier, M. & March, J. G. (Eds.), Models of a man: Essays in memory of Herbert A. Simon (pp. 389409). Cambridge, MA: MITGoogle Scholar
Gigerenzer, G., & Goldstein, D. G. (1996). Reasoning the fast and frugal way: Models of bounded rationality. Psychological Review, 103, 650669.Google Scholar
Goldstein, D. G., & Gigerenzer, G. (2002). Models of ecological rationality: The recognition heuristic. Psychological Review, 109(1), 75.CrossRefGoogle ScholarPubMed
Harris, C. A., & Custers, R. (2023). Biased preferences through exploitation. In Fiedler, Klaus, Juslin, Peter, & Denrell, Jerker (Eds.), Sampling in judgment and decision making (pp. 0000). Cambridge: Cambridge University Press.Google Scholar
Hausfeld, J., & Resnjanskij, S. (2018) Risky decisions and the opportunity costs of time. Ifo Working Paper No. 269. Munich: Ifo Institute.Google Scholar
Hershman, R. L., & Levine, J. R. (1970). Deviations from optimum information-purchase strategies in human decision-making. Organizational Behavior and Human Performance, 5(4), 313329. https://doi.org/10.1016/0030-5073(70)90023-1Google Scholar
Hsee, C. K., & Zhang, J. (2010). General evaluability theory. Perspectives on Psychological Science, 5(4), 343355. https://doi.org/10.1177/1745691610374586Google Scholar
Jarvstad, A., Rushton, S. K., Warren, P. A., & Hahn, U. (2012). Knowing when to move on: Cognitive and perceptual decisions in time. Psychological Science, 23(6), 589597. https://doi.org/10.1177/0956797611426579Google Scholar
Larrick, R. P., & Soll, J. B. (2008). The MPG illusion. Science, 320, 15931594. http://dx.doi.org/10.1126/science.1154983Google Scholar
McCaughey, L., Prager, J., & Fiedler, K (2022). Rivals reloaded: Adapting tosample-based speed–accuracy trade-offs through competitive pressure. Manuscript submitted for publication.Google Scholar
McCaughey, L., Prager, J., & Fiedler, K. (2022). Adapting to information search costs in sample-based decisions. Manuscript in preparation.Google Scholar
Madan, C. R., Spetch, M. L., & Ludvig, E. A. (2015). Rapid makes risky: Time pressure increases risk seeking in decisions from experience. Journal of Cognitive Psychology, 5911(June), 18. https://doi.org/10.1080/20445911.2015.1055274Google Scholar
Navarro, D. J., Newell, B. R., & Schulze, C. (2016). Learning and choosing in an uncertain world: An investigation of the explore–exploit dilemma in static and dynamic environments. Cognitive Psychology, 85, 4377. https://doi.org/10.1016/j.cogpsych.2016.01.001Google Scholar
Payne, J. W., Bettman, J. R., & Luce, M. F. (1996). When time is money: Decision behavior under opportunity–cost time pressure. Organizational Behavior and Human Decision Processes, 66(2), 131152. https://doi.org/10.1006/obhd.1996.0044Google Scholar
Phillips, N. D., Hertwig, R., Kareev, Y., & Avrahami, J. (2014). Rivals in the dark: How competition influences search in decisions under uncertainty. Cognition, 133(1), 104119. https://doi.org/10.1016/j.cognition.2014.06.006Google Scholar
Pitz, G. F. (1968). Information seeking when available information is limited. Journal of Experimental Psychology, 76(1), 2534. https://doi.org/10.1037/h0025302Google Scholar
Pitz, G. F., Reinhold, H., & Scott Geller, E. (1969). Strategies of information seeking in deferred decision making. Organizational Behavior and Human Performance, 4(1), 119. https://doi.org/10.1016/0030-5073(69)90028-2Google Scholar
Rieskamp, J., & Hoffrage, U. (2008). Inferences under time pressure: How opportunity costs affect strategy selection. Acta Psychologica, 127(2), 258276. https://doi.org/10.1016/j.actpsy.2007.05.004Google Scholar
Sedlmeier, P., Hertwig, R., & Gigerenzer, G. (1998). Are judgment of the positional frequencies of letters systematically biased due to availability? Journal of Experimental Psychology: Learning Memory, and Cognition, 24(3), 754770. https://doi.org/10.1037/0278-7393.24.3.754Google Scholar
Slovic, P., & Lichtenstein, S. (1971). Comparison of Bayesian and regression approaches to the study of information processing in judgment. Organizational Behavior and Human Performance, 6(6), 649744. https://doi.org/10.1016/0030-5073(71)90033-XGoogle Scholar
Snapper, K. J., & Peterson, C. R. (1971). Information seeking and data diagnosticity. Journal of Experimental Psychology, 87(3), 429433. https://doi.org/10.1037/h0030557Google Scholar
Svenson, O., & Eriksson, G. (2017). Mental models of driving and speed: Biases, choices and reality. Transport Reviews, 37, 653666. http://dx.doi.org/10.1080/01441647.2017.1289278Google Scholar
Todd, P. M., & Gigerenzer, G. (2007). Environments that make us smart: Ecological rationality. Current Directions in Psychological Science, 16(3), 167171. https://doi.org/10.1111/j.1467-8721.2007.00497.xGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×