Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-14T18:43:51.429Z Has data issue: false hasContentIssue false

9 - Salt Marsh Sediments as Recorders of Holocene Relative Sea-Level Change

from Part II - Marsh Dynamics

Published online by Cambridge University Press:  19 June 2021

Duncan M. FitzGerald
Affiliation:
Boston University
Zoe J. Hughes
Affiliation:
Boston University
Get access

Summary

Early geoscientists recognized that salt marsh sediment overlying terrestrial deposits (e.g., soil containing the preserved, in-situ stumps of freshwater trees) represented submergence of the older, buried landscape at a time in the past (e.g., Bartram, 1791; Lyell, 1849). After the development of radiocarbon dating in the late 1940s (e.g., Libby 1961) it became possible to determine when salt marsh sediment was deposited and sea-level research began to focus first on building and then on interpreting Holocene relative sea level (RSL) curves (e.g., Bradley, 1953; Redfield and Rubin, 1962; Bloom and Stuiver, 1963; van de Plassche et al. 1989; Gehrels et al. 1996; Shennan and Horton, 2002). Conceptually relative sea level (RSL) is the elevation of the sea surface relative to the land surface at a specific location and averaged over a period of time to negate the influence of tides and seasonal to annual variability. For example, RSL measured by tide gauges is often expressed as a monthly or annual average, while RSL reconstructions from coastal sediment are inherently time averaged over several years to decades. A variety of physical processes acting on local-to-global spatial scales and on temporal scales from minutes to millennia can cause RSL to change across space and through time. Therefore, measured or reconstructed RSL is specific to a time and place and is often the net outcome of multiple processes acting simultaneously. Proxy-based RSL reconstructions generated by interrogation of salt marsh sediment preserved in the coastal stratigraphic record are valuable in advancing our understanding of Holocene climate (e.g., Kemp et al. 2011), the structure of Earth’s interior (e.g., the viscosity and structure of the mantle; e.g., Shennan and Horton, 2002; Engelhart et al. 2011a), and of physical driving mechanisms of past, present, and future sea-level change (e.g., Kopp et al. 2016).

Type
Chapter
Information
Salt Marshes
Function, Dynamics, and Stresses
, pp. 225 - 256
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, J. R. L. 1990. Constraints on measurements of sea-level movements from salt-marsh accretion rates. Journal of the Geological Society of London, 147: 57.CrossRefGoogle Scholar
Allen, J. R. L. 2000. Morphodynamics of Holocene salt marshes: a review sketch from the Atlantic and Southern North Sea coasts of Europe. Quaternary Science Reviews, 19: 11551231.Google Scholar
Aretxabaleta, A. L., Ganju, N. K., Butman, B., and Signell, R. P. 2017. Observations and a linear model of water level in an interconnected inlet-bay system. Journal of Geophysical Research Oceans, 122: 27602780.Google Scholar
Atwater, B. F., Nelson, A. R., Clague, J. J., Carver, G. A., Bobrowsky, P. T., Bourgeois, J., and Darienzo, M. E. 1995. Summary of coastal geologic evidence for past great earthquakes at the Cascadia subduction zone. Earthquake Spectra, 11: 118.Google Scholar
Avnaim-Katav, S., Gehrels, W. R., Brown, L. N., Fard, E., and MacDonald, G. M. 2017. Distributions of salt-marsh foraminifera along the coast of SW California, USA: implications for sea-level reconstructions. Marine Micropalaeontology, 131: 2543.Google Scholar
Barlow, N. L. M., Long, A. J., Saher, M. H., Gehrels, W. R., Garnett, M. H., and Scaife, R. G. 2014. Salt-marsh reconstructions of relative sea-level change in the North Atlantic during the last 2000 years. Quaternary Science Reviews, 99: 116.Google Scholar
Barlow, N. L. M., Shennan, I., Long, A. J., Gehrels, W. R., Saher, M., Woodroffe, S. A., and Hillier, C. 2013. Salt marshes as late Holocene tide gauges. Global and Planetary Change, 106: 90110.Google Scholar
Barnett, R. L., Garneau, M., and Bernatchez, P. 2016. Salt-marsh sea-level indicators and transfer function development for the Magdalen Islands in the Gulf of St. Lawrence, Canada. Marine Micropaleontology, 122: 1326.Google Scholar
Barnett, R. L., Gehrels, W. R., Charman, D. J., Saher, M. H., and Marshall, W. A. 2015. Late Holocene sea-level change in Arctic Norway. Quaternary Science Reviews, 107: 214230.Google Scholar
Barnett, R. L., Newton, T. L., Charman, D. J., and Gehrels, W. R. 2017. Salt-marsh testate amoebae as precise and widespread indicators of sea-level change. Earth Science Reviews, 164: 193207.Google Scholar
Bartram, W. 1791. Travels through North and South Carolina, Georgia, East and West Florida. Philadelphia, James and Johnson.Google Scholar
Bloom, A. L., and Stuiver, M. 1963. Submergence of the Connecticut coast. Science, 139: 332334.CrossRefGoogle ScholarPubMed
Bradley, W. H. 1953. Age of intertidal tree stumps at Robinhood, Maine. American Journal of Science, 251: 543546.CrossRefGoogle Scholar
Brain, M. J., Kemp, A. C., Hawkes, A. D., Engelhart, S. E., Vane, C. H., Cahill, N., Hill, T. D., Donnelly, J. P., and Horton, B. P. 2017. Exploring mechanisms of compaction in salt-marsh sediments using Common Era relative sea-level reconstructions. Quaternary Science Reviews, 167: 96111.CrossRefGoogle Scholar
Brain, M. J., Kemp, A. C., Horton, B. P., Culver, S. J., Parnell, A. C., and Cahill, N. 2015. Quantifying the contribution of sediment compaction to late Holocene salt-marsh sea-level reconstructions, North Carolina, USA. Quaternary Research, 83: 4151.Google Scholar
Cahill, N., Kemp, A. C., Horton, B. P., and Parnell, A. C. 2016. A Bayesian hierarchical model for reconstructing relative sea level: from raw data to rates of change. Climate of the Past, 12: 525542.Google Scholar
Callard, S. L., Gehrels, W. R., Morrison, B. V. and Grenfell, H. R. 2011. Suitability of salt-marsh foraminifera as proxy indicators of sea level in Tasmania. Marine Micropaleontology, 79: 121131.CrossRefGoogle Scholar
Chapman, V. J. 1940. Succession on the New England salt marshes. Ecology, 21: 279282.Google Scholar
Charman, D. J., Roe, H. M., and Gehrels, W. R. 2002. Modern distribution of saltmarsh testate amoebae: regional variability of zonation and response to environmental variables. Journal of Quaternary Science, 17: 387409.Google Scholar
Donnelly, J. P., Cleary, P., Newby, P., and Ettinger, R. 2004. Coupling instrumental and geological records of sea-level change: evidence from southern New England of an increase in the rate of sea-level rise in the 19th century. Geophysical Research Letters, 30, doi:10.1029/2003GL017801.Google Scholar
Edwards, R., and Wright, A. 2015. Foraminifera. In: Shennan, I., Long, A. J., and Horton, B. P., eds., Handbook of Sea-Level Research, Wiley, Chichester, pp. 191217.Google Scholar
Edwards, R. J., van de Plassche, O., Gehrels, W. R., and Wright, A. J. 2004. Assessing sea-level data from Connecticut, USA, using a foraminiferal transfer function for tide level. Marine Micropalaeontology, 51: 239255.Google Scholar
Eleuterius, L. N. 1976. The distribution of Juncus roemerianus in the salt marshes of North America. Chesapeake Science, 17: 289292.CrossRefGoogle Scholar
Engelhart, S. E., Horton, B. P., and Kemp, A. C. 2011b. Holocene sea-level changes along the United States’ Atlantic Coast. Oceanography, 24: 7079.Google Scholar
Engelhart, S. E., Horton, B. P., Nelson, A. R., Hawkes, A. D., Witter, R. C., Wang, K., Wang, P.-L., and Vane, C. H. 2013. Testing the use of microfossils to reconstruct great earthquakes at Cascadia. Geology, 41: 10671070.Google Scholar
Engelhart, S. E., Peltier, W. R., and Horton, B. P. 2011a. Holocene relative sea- level changes and glacial isostatic adjustment of the U.S. Atlantic coast. Geology, 39: 751754.CrossRefGoogle Scholar
Engelhart, S. E., Vacchi, M., Horton, B. P., Nelson, A. R., and Kopp, R. E. 2015. A sea-level database for the Pacific coast of central North America. Quaternary Science Reviews, 113: 7892.Google Scholar
Fatela, F., Taborda, R. 2002. Confidence limits of species proportions in microfossil assemblages. Marine Micropaleontology, 45: 169174.Google Scholar
French, J. R., Spencer, T., Murray, A. L., and Arnold, N. S. 1995. Geostatistical analysis of sediment deposition in two small tidal wetlands. Journal of Coastal Research, 11: 308321.Google Scholar
Gehrels, W. R. 1994. Determining relative sea-level change from salt-marsh foraminifera and plant zones on the coast of Maine, U.S.A. Journal of Coastal Research, 10: 9901009.Google Scholar
Gehrels, W. R. 1999. Middle and late Holocene sea-level changes in eastern Maine reconstructed from foraminiferal saltmarsh stratigraphy and AMS 14C dates on basal peat. Quaternary Research, 52: 350359.Google Scholar
Gehrels, W. R. 2000. Using foraminiferal transfer functions to produce high-resolution sea-level records from saltmarsh deposits, Maine, USA. The Holocene, 10: 367376.CrossRefGoogle Scholar
Gehrels, W. R. 2002. Intertidal foraminifera as palaeoenvironmental indicators. In: Haslett, S. K., ed., Quaternary Environmental Micropalaeontology, Arnold Publishers, New York, pp. 91114.Google Scholar
Gehrels, W. R., and Belknap, D. F. 1993. Neotectonic history of eastern Maine evaluated from historic sea-level data and 14C dates on salt-marsh peats. Geology, 21: 615618.Google Scholar
Gehrels, W. R., Belknap, D. F., and Kelley, J. T. 1996. Integrated high-precision analyses of Holocene relative sea-level changes: Lessons from the coast of Maine. Geological Society of America Bulletin, 108: 10731088.2.3.CO;2>CrossRefGoogle Scholar
Gehrels, W. R., Callard, S. L., Moss, P. T., Marshall, W. A., Blaauw, M., Hunter, J., Milton, J. A., and Garnett, M. H. 2012. Nineteenth and twentieth century sea-level changes in Tasmania and New Zealand. Earth and Planetary Science Letters, 315–316: 94102.Google Scholar
Gehrels, W. R., Kirby, J. R., Prokoph, A., Newnham, R. M., Achterberg, E. P., Evans, E. H., Black, S., and Scott, D. B. 2005. Onset of recent rapid sea-level rise in the western Atlantic Ocean. Quaternary Science Reviews, 24: 20832100.Google Scholar
Gehrels, W. R., Marshall, W. A., Gehrels, M. J., Larsen, G., Kirby, J. R., Eiriksson, J., Heinemeier, J., and Shimmield, T. 2006. Rapid sea-level rise in the North Atlantic Ocean since the first half of the 19th century. The Holocene, 16: 948964. Erratum, The Holocene 17: 419-420.Google Scholar
Gehrels, W. R., Roe, H. M., and Charman, D. J. 2001. Foraminifera, testate amoebae and diatoms as sea-level indicators in UK saltmarshes: a quantitative multiproxy approach. Journal of Quaternary Science, 16: 201220.Google Scholar
Gehrels, W. R., and Shennan, I. 2015. Sea level in time and space: revolutions and inconvenient truths. Journal of Quaternary Science, 30: 131143.Google Scholar
Gerlach, M. J., Engelhart, S. E., Kemp, A. C., Moyer, R. P., Smoak, J. M., Bernhardt, C. E., and Cahill, N. 2017. Reconstructing Common Era relative sea-level change on the Gulf Coast of Florida. Marine Geology, 390: 254269.Google Scholar
González, J. L. and Törnqvist, T. E. 2009. A new Late Holocene sea-level record from the Mississippi Delta: Evidence for a climate/sea level connection? Quaternary Science Reviews, 28, 17371749.Google Scholar
Goslin, J., Sansjofre, P., Van Vliet-Lanoë, B., and Delacourt, C. 2017. Carbon stable isotope δ13C) and elemental TOC, TN) geochemistry in saltmarsh surface sediments Western Brittany, France): a useful tool for reconstructing Holocene relative sea-level. Journal of Quaternary Science, 32: 9891007.CrossRefGoogle Scholar
Guilbault, J. -P., Clague, J. J., and Lapointe, M. 1995. Amount of subsidence during a late Holocene earthquake – evidence from fossil tidal marsh foraminifera at Vancouver Island, west coast of Canada. Palaeogeography, Palaeoclimatology, Palaeoecology, 118: 4971.CrossRefGoogle Scholar
Hawkes, A. D., Horton, B. P., Nelson, A. R., and Hill, D. F. 2010. The application of intertidal foraminifera to reconstruct coastal subsidence during the giant Cascadia earthquake of AD 1700 in Oregon, USA. Quaternary International, 221: 116140.Google Scholar
Hawkes, A. D., Horton, B. P., Nelson, A. R., Vane, C. H., and Sawai, Y. 2011. Coastal subsidence in Oregon, USA, during the giant Cascadia earthquake of AD 1700. Quaternary Science Reviews, 30: 364376.Google Scholar
Horton, B. P. 1999. The distribution of contemporary intertidal foraminifera at Cowpen Marsh, Tees Estuary,UK: implications for studies of Holocene sea-level changes. Palaeogeography, Palaeoclimatology, Palaeoecology, 149: 127149.Google Scholar
Horton, B. P., and Edwards, R. J. 2006. Quantifying Holocene sea level change using intertidal foraminifera: lessons from the British Isles. Retrieved from http://repository.upenn.edu/ees_papers/50.Google Scholar
Horton, B. P., Edwards, R. J., and Lloyd, J. M. 1999. A foraminiferal-based transfer function: Implications for sea- level studies. Journal of Foraminiferal Research, 29: 117129.Google Scholar
Horton, B. P., Milker, Y., Dura, T., Wang, K., Bridgeland, W. T., Brophy, L., Ewald, M., et al. 2017. Microfossil measures of rapid sea-level rise: timing of response of two microfossil groups to a sudden tidal-flooding experiment in Cascadia. Geology, 45: 535538.Google Scholar
Imbrie, J., and Kipp, N. G. 1971. A new micropaleontological method for quantitative paleoclimatology: Application to a late Pleistocene Caribbean core. In: Turekian, K. K., ed., The Late Cenozoic Glacial Ages, Yale University Press, New Haven, pp. 71181.Google Scholar
Jelgersma, S. 1961. Holocene sea-level changes in the Netherlands. Mededelingen Geologische Stichting C-IV, 7: 1100.Google Scholar
Kaye, C. A., and Barghoorn, E. S. 1964. Late Quaternary sea-level change and crustal rise at Boston, Massachusetts, with notes on the autocompaction of peat. Geological Society of America Bulletin, 75: 6380.Google Scholar
Kemp, A. C., Cahill, N., Engelhart, S. E., Hawkes, A. E., and Wang, K. 2018. Revising estimates of spatially variable subsidence during the A.D. 1700 Cascadia earthquake using a Bayesian foraminiferal transfer function. Bulletin of the Seismological Society of America, 108: 654673.Google Scholar
Kemp, A. C., Engelhart, S. E., Culver, S. J., Nelson, A., Briggs, R. W., and Haeussler, P. J. 2013. Modern salt-marsh and tidal-flat foraminifera from Sitkinak and Simeonof Islands, southwestern Alaska. Journal of Foraminiferal Research, 43: 8898.Google Scholar
Kemp, A. C., Horton, B. P., Culver, S. J., Corbett, D. R., van de Plassche, O., Gehrels, W. R., Douglas, B. C., and Parnell, A. C. 2009. Timing and magnitude of recent accelerated sea-level rise (North Carolina, United States). Geology, 37: 10351038.Google Scholar
Kemp, A. C., Horton, B. P., Donnelly, J. P., Mann, M. E., Vermeer, M., and Rahmstorf, S. 2011. Climate related sea-level variations over the past two millennia. Proceedings of the National Academy of Sciences of the USA, 108: 1101711022.Google Scholar
Kemp, A. C., Horton, B. P., Nikitina, D., Vane, C. H., Potapova, M., Weber-Bruya, E., Culver, S. J., Repkina, T., and Hill, D. F. 2017a. The distribution and utility of sea-level indicators in Eurasian sub-Arctic salt marshes White Sea, Russia Boreas, 46: 562584.Google Scholar
Kemp, A. C., Kegel, J. J., Culver, S. J., Barber, D. C., Mallinson, D. J., Leorri, E., Bernhardt, C. E., Cahill, N., et al. 2017b. Extended late Holocene relative sea-level histories for North Carolina, USA. Quaternary Science Reviews, 160: 1330.Google Scholar
Kemp, A. C., Sommerfield, C. K., Vane, C. H., Horton, B. P., Chenery, S., Anisfeld, S., and Nikitina, D. 2012. Use of lead isotopes for developing chronologies in recent salt-marsh sediments. Quaternary Geochronology, 12: 4049.Google Scholar
Kemp, A. C., Telford, R. J. 2015. Transfer functions. In: Shennan, I., Long, A. J., and Horton, B. P., eds. Handbook of Sea-Level Research, Wiley, Chichester, pp. 470499.CrossRefGoogle Scholar
Kemp, A. C., Vane, C. H., Horton, B. P., Engelhart, S. E., and Nikitina, D. 2012. Application of stable carbon isotopes for reconstructing salt-marsh floral zones and relative sea level, New Jersey, USA. Journal of Quaternary Science, 27: 404414.Google Scholar
Kemp, A. C., Wright, A. J., Barnett, R. L., Hawkes, A. D., Charman, D. J., Sameshima, C., King, A. N., et al. 2017c. Utilty of salt-marsh foraminifera, testate amoebae and bulk-sediment δ13C values as sea-level indicators in Newfoundland, Canada. Marine Micropaleontology, 130: 4359.Google Scholar
Kemp, A. C., Wright, A. J., Edwards, R. J., Barnett, R. L., Brain, M. J., Kopp, R. E., Cahill, N., et al. 2018. Relative sea-level change in Newfoundland, Canada during the past ~3000 years. Quaternary Science Reviews, 201: 89110.CrossRefGoogle Scholar
Kirwan, M. L., Temmerman, S., Skeehan, E. E., Guntenspergen, G. R., and Fagherazzi, S. 2016. Overestimation of marsh vulnerability to sea level rise. Nature Climate Change, 6: 253260.Google Scholar
Kopp, R. E., Kemp, A. C., Bittermann, K., Horton, B. P., Donnelly, J. P., Gehrels, W. R., Hay, , et al. 2016. Temperature-driven global sea-level variability in the Common Era. Proceedings of the Natural Academy of Sciences of the United States of America, 113: E1434E1441.Google Scholar
Lamb, A. L., Wilson, G. P., and Leng, M. L. 2006. A review of coastal palaeoclimate and relative sea-level reconstructions using δ13C and C/N ratios in organic material. Earth-Science Reviews, 75: 2957.Google Scholar
Le Coze, F., and Hayward, B. 2017. Entzia macrescens Brady, 1870 In: Hayward, B. W., Le Coze, F., and Gross, O. World Foraminifera Database. Accessed at www.marinespecies.org/foraminifera/aphia.php?p=taxdetails&id=742429 on 2017-10-26.Google Scholar
Libby, W. F. 1961. Radiocarbon dating. Science, 133: 621629.CrossRefGoogle ScholarPubMed
Long, A. J., Barlow, N. L. M., Gehrels, W. R., Saher, M. H., Woodworth, P. L., Scaife, R. G., Brain, M. J., and Cahill, N. 2014. Contrasting records of sea-level change in the eastern and western North Atlantic during the last 300 years. Earth and Planetary Science Letters, 388: 110122.Google Scholar
Lyell, C. 1849. A Second Visit to the United States of North America, in Two Volumes. Volume 1. New York, Harper and Brothers.Google Scholar
Marshall, W. A., Gehrels, W. R., Garnett, M. H., Freeman, S. P. H. T., Maden, C., and Xu, S. 2007. The use of “bomb spike” calibration and high-precision AMS 14C analyses to date salt-marsh sediments deposited during the past three centuries. Quaternary Research, 68: 325337.Google Scholar
Mudge, B. F. 1858. The salt marsh formations of Lynn. Proceedings of the Essex Institute, 2: 117119.Google Scholar
Murray, J. W. 1982. Benthic foraminifera: the variability of living, dead or total assemblages in the interpretation of palaeoecology. Journal of Micropalaeontology, 1: 137140.Google Scholar
Nelson, A. R., Shennan, I., and Long, A. J. 1995. Identifying coseismic subsidence in tidal-wetland stratigraphic sequences at the Cascadia subduction zone of western North America. Journal of Geophysical Research, 101: 61156135.Google Scholar
Nikitina, D. L., Kemp, A. C., Horton, B. P., Vane, C. H., van de Plassche, O., and Engelhart, S. E. 2014. Storm erosion during the past 2000 years along the north shore of Delaware Bay, USA. Geomorphology, 208: 160172.Google Scholar
Parnell, A. C., and Gehrels, W. R. 2015. Using chronological models in late Holocene sea level reconstructions from saltmarsh sediments. In: Shennan, I., Long, A. J., and Horton, B. P., eds. Handbook of Sea-Level Research, Wiley, Chichester, pp. 500513.Google Scholar
Patterson, R. T., and Fishbein, E. 1989. Re-examination of the statistical methods used to determine the number of point counts needed for micropaleontological quantitative research. Journal of Palaeontology, 63: 245248.Google Scholar
Payne, R. J., and Mitchell, E. A. D. 2009. How many is enough? Determining optimal count totals for ecological and palaeoecological studies of testate amoebae. Journal of Paleolimnology, 42: 483495.Google Scholar
Piecuch, C. G., Bittermann, K., Kemp, A. C., Ponte, R. M., Little, C. M., Engelhart, S. E., and Lentz, S. J. 2018. River-discharge effects on United States Atlantic and Gulf coast sea-level changes. Proceedings of the National Academy of Sciences of the USA, 30: 77297734.CrossRefGoogle Scholar
Redfield, A. C. 1959. The Barnstable marsh. In Ragotzkie, R. A., Pomeroy, L. R., Teal, J. M., and Scott, D. C., eds., Proceedings, Salt marsh Conference, May 25–28, 1958, Sapelo Island, Athens, Georgia, University of Georgia, pp. 3742.Google Scholar
Redfield, A. C. 1972. Development of a New England salt marsh. Ecological Monographs, 42: 210237.Google Scholar
Redfield, A. C., and Rubin, M. 1962. The age of salt marsh peat and its relations to recent change in sea level at Barnstable, Massachusetts. Proceedings of the National Academy of Sciences of the USA, 48: 17281735.CrossRefGoogle ScholarPubMed
Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Bronk Ramsey, C., Buck, C. E., et al. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon, 55: 18691887.Google Scholar
Roe, H. M., Charman, D. J., and Gehrels, W. R. 2002. Fossil testate amoebae in coastal deposits in the UK: implications for studies of sea-level change. Journal of Quaternary Science, 17: 411429.Google Scholar
Sachs, H. M. 1977. Paleoecological transfer functions. Annual Review of Earth and Planetary Sciences, 5: 159178.Google Scholar
Saher, M. H., Gehrels, W. R., Barlow, N. L. M., Long, A. J., Haigh, I. D., and Blaauw, M. 2015. A 600-year multiproxy record of sea-level change and the influence of the North Atlantic Oscillation. Quaternary Science Reviews, 108: 2336.Google Scholar
Scott, D. B., and Medioli, F. S. 1978. Vertical zonations of marsh foraminifera as accurate indicators of former sea-levels. Nature, 272: 528531.CrossRefGoogle Scholar
Scott, D. B., and Medioli, F. S. 1980a. Quantitative studies of marsh foraminifera distribution in Nova Scotia: implications for sea-level studies. Cushman Foundation for Foraminiferal Research Special Publication, 17: 158.Google Scholar
Shaler, N. S. 1886. Preliminary report on sea-coast swamps of the eastern United States. US Geological Survey 6th Annual Report, pp. 353–398.Google Scholar
Shennan, I., and Horton, B. 2002. Holocene land- and sea-level changes in Great Britain. Journal of Quaternary Science, 17: 511526.Google Scholar
Shennan, I., Long, A.J., and Horton, B.P., eds. 2015. Handbook of Sea-Level Research, Wiley, Chichester.Google Scholar
Streif, H. 1979. Cyclic formation of coastal deposits and their indications of vertical sea-level changes. Oceanus, 5: 303306.Google Scholar
Strachan, K. L., Hill, T. R., Finch, J. M., and Barnett, R. L. 2015. Vertical zonation of foraminifera assemblages in Galpins Salt Marsh, South Africa. Journal of Foraminiferal Research, 45: 2941.Google Scholar
Szkornik, K., Gehrels, W. R., and Murray, A. S. 2008. Aeolian sand movement and relative sea-level rise in Ho Bugt, western Denmark, during the Little Ice Age. The Holocene, 18: 951965.Google Scholar
Törnqvist, T. E., van Ree, M. H. M., van 't Veer, R., and van Geel, B. 1998. Improving methodology for high-resolution reconstruction of sea-level rise and neotectonics by paleoecological analysis and AMS 14C dating of basal peats. Quaternary Research, 49: 7285.Google Scholar
Vacchi, M., Engelhart, S. E., Nikitina, D., Ashe, E. L., Peltier, W. R., Roy, K., Kopp, R. E., and Horton, B. P. 2018. Postglacial relative sea-level histories along the eastern Canadian coastline. Quaternary Science Reviews, 201: 124146.Google Scholar
Vacchi, M., Marriner, N., Morhange, C., Spada, G., Fontana, A., and Rovere, A. 2016. Multiproxy assessment of Holocene relative sea-level changes in the western Mediterranean: sea-level variability and improvements in the definition of the isostatic signal. Earth-Science Reviews, 155: 172197.Google Scholar
Van de Plassche, O. 2000. North Atlantic climate-ocean variations and sea level in Long Island Sounds, Connecticut, since 500 cal yr AD. Quaternary Research, 53: 8997.Google Scholar
Van de Plassche, O., Mook, W. G., and Bloom, A. L. 1989. Submergence of coastal Connecticut 6000-3000 14C) years B.P. Marine Geology, 86: 349354.Google Scholar
Van de Plassche, O., Wright, A. J., van der Borg, K., and de Jong, A. F. M. 2004. On the erosive trail of a 14th and 15th century hurricane in Connecticut USA) salt marshes. Radiocarbon, 46: 775784.Google Scholar
Van der Wal, D., and Pye, K. 2002. Patterns, rates and possible causes of saltmarsh erosion in the Greater Thames area UK. Geomorphology, 61: 373391.Google Scholar
Watcham, E. P., Shennan, I., and Barlow, N. L. M. 2013. Scale considerations in using diatoms as indicators of sea-level change: lessons from Alaska. Journal of Quaternary Science, 28: 165179.Google Scholar
Wells, B. W. 1928. Plant communities of the coastal plain of North Carolina and their successional relations. Ecology, 9: 230242.CrossRefGoogle Scholar
Wilson, G. P. 2017. On the application of contemporary bulk sediment organic carbon isotope and geochemical datasets for Holocene sea-level reconstruction in NW Europe. Geochimica et Cosmochimica Acta, 214: 191208.Google Scholar
Woodroffe, S. A. 2009. Testing models of mid to late Holocene sea-level change, North Queensland, Australia. Quaternary Science Reviews, 28: 24742488.Google Scholar
Wright, A. J., Edwards, R. J., and van de Plassche, O. 2011. Reassessing transfer-function performance in sea-level reconstruction based on benthic salt-marsh foraminifera from the Atlantic coast of NE North America. Marine Micropaleontology, 81: 4362.Google Scholar
Zoccorato, C., and Teatini, P. 2017. Numerical simulations of Holocene salt-marsh dynamics under the hypothesis of large soil deformations. Advances in Water Resources, 110: 107119.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×