Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-x5cpj Total loading time: 0 Render date: 2024-08-01T14:33:10.030Z Has data issue: false hasContentIssue false

1 - Conditional Heteroskedasticity Models with Pearson Disturbances

Published online by Cambridge University Press:  22 September 2009

Garry D. A. Phillips
Affiliation:
Cardiff University
Elias Tzavalis
Affiliation:
University of Athens, Greece
Get access

Summary

Introduction

The Autoregressive Conditional Heteroskedasticity (ARCH) model was introduced by Engle (1982). In this model the conditional variance of the errors is assumed to be a function of the squared past errors. Engle derives the Maximum Likelihood (ML) estimator for the ARCH model under the assumption that the conditional density of the error term is normal. Bollerslev (1986), suggested the Generalized Autoregressive Conditional Heteroskedasticity model (GARCH) in which the conditional variance of the errors is assumed to be a function of its lagged values and the squared past errors. Bollerslev derives the Maximum Likelihood (ML) estimator for the GARCH model under the assumption that the conditional density of the error term is normal. The ARCH and GARCH models are useful in modelling economic phenomena, mainly in the theory of finance (see e.g., Bollerslev et al. 1992 and Engle, 2002). In the above models the conditional density of the error term is assumed to be normal but in the applications with actual data, distributions other than the normal have been observed with fatter tails or with skewness significantly different from zero. For this reason, in particular applications with real data, other distributions have been used. Bollerslev (1987) used the Student's t distribution to model the monthly returns composite index. Baillie and Bollerslev (1989) also used the Student's t distribution while Hsieh (1989) chose the mixture Normal–Lognormal to model daily foreign-exchange rates.

Type
Chapter
Information
The Refinement of Econometric Estimation and Test Procedures
Finite Sample and Asymptotic Analysis
, pp. 1 - 33
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×