Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-7tdvq Total loading time: 0 Render date: 2024-08-08T17:13:49.894Z Has data issue: false hasContentIssue false

16 - Detection

from Part II - Applications to wireless communications

Published online by Cambridge University Press:  07 October 2011

Romain Couillet
Affiliation:
ST-Ericsson, Sophia Antipolis, France
Mérouane Debbah
Affiliation:
École Supérieure d'Électricité, Gif sur Yvette, France
Get access

Summary

In this chapter, we now address a quite different problem than the performance evaluation of data transmissions in large dimensional communication channel models. The present chapter, along with Chapter 17, deals with practical signal processing techniques to solve problems involving (possibly large dimensional) random matrix models. Specifically in this chapter, we will first address the question of signal sensing using multi-dimensional sensor arrays.

Cognitive radios and sensor networks

A renewed motivation for large dimensional signal sensing has been recently triggered by the cognitive radio incentive, which, according to some, may be thought of as the next information-theoretic revolution after the original work of Shannon [Shannon, 1948] and the introduction of multiple antenna systems by Foshini [Foschini and Gans, 1998] and Telatar [Telatar, 1999]. In addition to the theoretical expression of the point-to-point noisy channel capacity in [Shannon, 1948], Shannon made us realize that, in order to achieve high rate of information transfer, increasing the transmission bandwidth is largely preferred over increasing the transmission power. Therefore, to ensure high rate communications with a finite power budget, we have to consider frequency multiplexing. This constituted the first and most important revolution in modern telecommunications and most notably wireless communications, which led today to an almost complete saturation of all possible transmission frequencies. By “all possible,” we mean those frequencies that can effciently carry information (high frequencies tend to be rapidly attenuated when propagating in the atmosphere) and be adequately processed by analog and digital devices (again, high frequency carriers require expensive and sometimes even physically infeasible radio front-ends).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×