Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-995ml Total loading time: 0 Render date: 2024-03-28T08:00:50.547Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 August 2014

Masoud Mohseni
Affiliation:
Google
Yasser Omar
Affiliation:
Instituto de Telecomunicações
Gregory S. Engel
Affiliation:
University of Chicago
Martin B. Plenio
Affiliation:
Universität Ulm, Germany
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramavicius, D., and Mukamel, S. 2010. Quantum oscillatory exciton migration in photosynthetic reaction centers. Journal of Chemical Physics, 133, 064510.Google Scholar
Abramavicius, D., Ma, Y.-Z., Graham, M. W., Valkunas, L., and Fleming, G. R. 2009. Dephasing in semiconducting single-walled carbon nanotubes induced by exciton-exciton annihilation. Physical Review B, 79, 195445.Google Scholar
Adams, D. M., Brus, L., Chidsey, C. E. D., Creager, S., Creutz, C., Kagan, C. R., Kamat, P. V., Lieberman, M., Lindsay, S., Marcus, R. A., Metzger, R. M., Michel-Beyerle, M. E., Miller, J. R., Newton, M. D., Rolison, D. R., Sankey, O., Schanze, K. S., Yardley, J., and Zhu, X. 2003. Charge transfer on the nanoscale: current status. Journal of Physical Chemistry B, 107, 6668-6697.Google Scholar
Adolphs, J., and Renger, T. 2006. How proteins trigger excitation energy transfer in the FMO complex of green sulfur bacteria. Biophysical Journal, 91, 2778-2797.Google Scholar
Agranovich, V. M., and Galanin, M. D. 1982. Modern Problems in Condensed Matter Sciences: Vol.3, Electronic Excitation Energy Transfer in Condensed Matter.Amsterdam: North-Holland.
Agranovich, V. M., and Hochstrasser, E. R. M. 1982. Modern Problems in Condensed Matter Sciences: Vol.4, Spectroscopy and excitation dynamics of condensed molecular systems.Amsterdam: North-Holland.
Ahmad, M., Galland, P., Ritz, T., Wiltschko, R., and Wiltschko, W. 2007. Magnetic intensity affects cryptochrome-dependent responses in Arabidopsis thaliana. Planta, 225, 615-624.Google Scholar
Aida, T., Meijer, E. W., and Stupp, S.I. 2012. Functional supramolecular polymers. Science, 335(6070), 813-817.Google Scholar
Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., and Walter, P. 2008. Molecular Biology of the Cell. Fifth edn. New York: Garland Science, Taylor & Francis.
Alden, R. G., Parson, W. W., Chu, Z. T., and Warshel, A. 1996. Orientation of theOH dipole of tyrosine (M)210 and its effect on electrostatic energies in photosynthetic bacterial reaction centers. Journal of Physical Chemistry, 100(41), 16761-16770.Google Scholar
Alicki, R., and Lendi, K. 1987. Quantum Dynamical Semigroups and Applications.Berlin: Springer-Verlag.
Alivisatos, A. P. 1996. Semiconductor clusters, nanocrystals, and quantum dots. Science, 271, 933-937.Google Scholar
Allemann, R. K., and Scrutton, N. S. 2009. Quantum Tunnelling in Enzyme-Catalysed Reactions.Cambridge: Royal Society of Chemistry Publishing.
Andresen, E. R., and Hamm, P. 2009. Site-specific difference 2D-IR spectroscopy of bacteriorhodopsin. Journal of Physical Chemistry B, 113, 6520-6527.Google Scholar
Andrews, D. L., and Demidov, A. A. (eds). 1999. Resonance Energy Transfer.Chichester: John Wiley & Sons.
Andrews, D. L., Crutchet, C., and Scholes, G. D. 2011. Resonance energy transfer: Beyond the limits. Lasers and Photonics Reviews, 5, 114.Google Scholar
Aratani, N., Cho, H. S., Ahn, T. K., Cho, S., Kim, D., Sumi, H., and Osuka, A. 2003. Efficient excitation energy transfer in long meso-meso linked Zn(II) porphyrin arrays bearing a 5,15-bisphenylethynylated Zn(II) porphyrin acceptor. Journal of the American Chemical Society, 125, 9668.Google Scholar
Arlt, T., Schmidt, S., Kaiser, W., Lauterwasser, C., Meyer, M., Scheer, H., and Zinth, W. 1993. The accessory bacteriochlorophyll–a real electron carrierin primary photosynthesis. Proceedings of the National Academy of Sciences, USA, 90(24), 11757-11761.Google Scholar
Arndt, M., Nairz, O., Vos-Andreae, J., Keller, C., van derZouw, G., andZeilinger, A. 1999. Wave-particle duality of C-60 molecules. Nature, 401, 680-682.Google Scholar
Arnett, D. C., Moser, C. C., Dutton, P. L., and Scherer, N. F. 1999. The first events in photosynthesis: electronic coupling and energy transfer dynamics in the photosynthetic reaction center from Rhodobacter sphaeroides. Journal of Physical Chemistry B, 103(11), 2014-2032.Google Scholar
Atkins, P., and de Paula, J. 2002. Atkin's Physical Chemistry.New York: Oxford University Press.
Atkins, P., and dePaula, J. 2009. Physical Chemistry. Ninth edn. Oxford: Oxford University Press.
Atkins, P. W., and Friedman, R. S. 1999. Molecular Quantum Mechanics.Oxford: Oxford University Press.
Axt, V. M., and Mukamel, S. 1988. Nonlinear optics of semiconductor and molecular nanostructures; a common perspective. Reviews of Modern Physics, 70, 145-174.Google Scholar
Bagryansky, V. A., Usov, O. M., Borovkov, V. I., Kobzeva, T. V., and Molin, Yu. N. 2000. Quantum beats in recombination of spin-correlated radical ion pairs with equivalent protons. Chemical Physics Letters, 255, 237-245.Google Scholar
Bagryansky, V. A., Borovkov, V. I., and Molin, Y. N. 2007. Quantum beats in radical pairs. Russian Chemical Reviews, 76, 493-506.Google Scholar
Balaban, T. S., Tamiaki, H., and Holzwarth, A. R. 2005. Chlorins programmed for self-assembly. Topics in Current Chemistry, 258, 1.Google Scholar
Balabin, I. A., and Onuchic, J. N. 2000. Dynamically controlled protein tunneling paths in photosynthetic reaction centers. Science, 290, 114-117.Google Scholar
Balabin, I. A., Beratan, D. N., and Skourtis, S. S. 2008. The persistence of structure over fluctuations in biological electron-transfer reactions. Physical Review Letters, 101, 158102.Google Scholar
Balasubramanian, G., Chan, I. Y., Kolesov, R., Al-Hmoud, M., Tisler, J., Shin, C., Kim, C., Wojcik, A., Hemmer, P. R., Krueger, A., Hanke, T., Leitenstorfer, A., Bratschitsch, R., Jelezko, F., and Wrachtrup, J. 2008. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature, 455(7213), 648-651.Google Scholar
Balzani, V., Piotrowiak, P., Rodgers, M. A. J., Mattay, J., and Astruc, D. (eds). 2001. Electron Transfer in Chemistry Vols. I-V.Weinheim: Wiley-VCH.
Batchelor, S. N., Kay, C. W. M., McLauchlan, K. A., and Shkrob, I. A. 1993. Time-resolved and modulation methods in the study of the effects of magnetic fields on the yields of free-radical reactions. Journal of Physical Chemistry, 97, 13250-13258.Google Scholar
Beason, R. C., and Semm, P. 1996. Does the avian ophthalmic nerve carry magnetic navigational information?Journal of Experimental Biology, 199, 1241-1244.Google Scholar
Beekman, L. M. P., van Stokkum, I. H. M., Monshouwer, R., Rijnders, A. J., McGlynn, P., Visschers, R. W., Jones, M. R., and van Grondelle, R. 1996. Primary electron transfer in membrane-bound reaction centers with mutations at the M210 position. Journal of Physical Chemistry, 100(17), 7256-7268.Google Scholar
Beja, O., Aravind, L., Koonin, E. V., Suzuki, M. T., Hadd, A., Nguyen, L. P., Jovanovich, S. B., Gates, C. M., Feldman, R. A., Spudich, J. L., Spudich, E. N., and DeLong, E. F. 2000. Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science, 289, 1902-1906.Google Scholar
Beljonne, D., Hennebicq, E., Daniel, C., Herz, L. M., Silva, C., Scholes, G. D., Hoeben, F. J. M., Jonkheijm, P., Schenning, A. P. H. J., Meskers, S. C. J., Phillips, R. T., Friend, R. H., and Meijer, E. W. 2005. Excitation migration along oligophenylenevinylene-based chiral stacks: delocalization effects on transport dynamics. Journal of Physical Chemistry B, 109, 10594.Google Scholar
Ben-Shem, A., Frolow, F., and Nelson, N. 2003. Crystal structure of plant photosystem I. Nature, 426(6967), 630-635.Google Scholar
Bendall, D. S. (ed). 1996. Protein Electron Transfer.Oxford, UK: BIOS Scientific Publishers.
Bennett, C. H., and DiVincenzo, D. P. 2000. Quantum Information and Computation. Nature, 404, 247-255.Google Scholar
Beratan, D. N., Betts, J. N., and Onuchic, J. N. 1991. Protein electron transfer rates set by bridging secondary and tertiary structure. Science, 252, 1285-1288.Google Scholar
Beratan, D. N., Skourtis, S. S., Balabin, I. A., Balaeff, A., Keinan, S., Venkatramani, R., and D., Xiao. 2009. Steering electrons on moving pathways. Accounts of Chemical Research, 42, 1669-1678.Google Scholar
Berg, J. M., Tymoczko, J. L., and Stryer, L. 2002. Biochemistry. 5th edn. New York: W. J. Freeman.
Berneche, S., and Roux, B. 2001. Energetics of ion conduction through the K+ channel. Nature, 414, 73-77.Google Scholar
Bezanill, F., and Armstrong, C. M. 1972. Negative conductance caused by entry of sodium and cesium ions into potassium channels of squid axons. Journal of General Physiology, 60, 588-608.Google Scholar
Birge, R. R. 1990. Nature of the primary photochemical event in rhodopsin and bacteriorhodopsin. Biochimica et Biophysica Acta, 1016, 293-323.Google Scholar
Birks, E. J. B. 1976. Excited States of Biological Molecules.London: John Wiley & Sons.
Biskup, T., Schleicher, E., Okafuji, A., Link, G., Hitomi, K., Getzoff, E. D., and Weber, S. 2009. Direct observation of a photoinduced radical pair in a cryptochrome blue-light photoreceptor. Angewandte Chemie – International Edition in English, 48,404407.Google Scholar
Bittl, R., and Kothe, G. 1991. Transient EPR of radical pairs in photosynthetic reaction centers – prediction of quantum beats. Chemical Physics Letters, 177, 547-553.Google Scholar
Bittner, E. R., Madalan, A., Czader, A., and Roman, G. 2012. Quantum origins of molecular recognition and olfaction in Drosophila. The Journal of Chemical Physics, 137(22), 22A551.Google Scholar
Blankenship, R. E. 2002. Molecular Mechanisms of Photosynthesis.Oxford, UK: Blackwell Science.
Blankenship, R. E., M. D., Tiede, Barber, J., Brudvig, G. W., Fleming, G., Ghirardi, M., Gunner, M. R., Junge, W., Kramer, D. M., Melis, A., Moore, T. A., Moser, C. C., Nocera, D. G., Nozik, A. J., Ort, D. R., Parson, W. W., Prince, R. C., and Sayre, R. T. 2011. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science, 13, 805-809.Google Scholar
Bonacic-Koutecky, V., Kohler, J., and Michl, J. 1984. Prediction of structural and environmental effect on the S1-S0 energy gap and jump probability in double-bond cis-trans photoisomerization. A general rule. Chemical Physics Letters, 104, 440-443.Google Scholar
Bopp, M. A., Sytnik, A., Howard, T. D., Cogdell, R. J., and Hochstrasser, R. M. 1999. The dynamics of structural deformations of immobilized single light-harvesting complexes. Proceedings of the National Academy of Sciences, USA, 96(20), 11271-11276.Google Scholar
Bouly, J.-P., Schleicher, E., Dionisio-Sese, M., Vandenbussche, F., Van Der Straeten, D., Bakrim, N., Meier, S., Batschauer, A., Galland, P., Bittl, R., and Ahmad, M. 2007. Cryptochrome blue light photoreceptors are activated through interconversion of flavin redox states. Journal of Biological Chemistry, 282, 9383-9391.Google Scholar
Bouwmeester, D., Ekert, A., and Zeilinger, A. (eds). 2000. The Physics of Quantum Information.Berlin: Springer Verlag.
Boxer, S. G. 1996. Stark spectroscopy of photosynthetic systems. Pages 177-189 in: Hoff, J. Amesz, and J., A. (eds), Biophysical Techniques in Photosynthesis.Kluwer Academic Publishers.
Bradforth, S. E., Jimenez, R., van Mourik, F., van Grondelle, R., and Fleming, G. R. 1995. Excitation transfer in the core light-harvesting complex (LH-1) of Rhodobacter sphaeroides – an ultrafast fluorescence depolarization and annihilation study. Journal of Physical Chemistry, 99(43), 16179-16191.Google Scholar
Bradler, K., Wilde, M. M., Vinjanampathy, S., and Uskov, D. B. 2010. Identifying the quantum correlations in light-harvesting complexes. Physical Review A, 82, 062310.Google Scholar
Brautigam, C. A., Smith, B. S., Ma, Z., Palnitkar, M., Tomchick, D. R., Machius, M., and Deisenhofer, J. 2004. Structure of the photolyase-likedomain of cryptochrome 1 from Arabidopsis thaliana. Proceedings of the National Academy of Sciences, USA, 101, 12142-12147.Google Scholar
Brecht, M., Radics, V., Nieder, J. B., and Bittl, R. 2009. Protein dynamics-induced variation of excitation energy transfer pathways. Proceedings of the National Academy of Sciences, USA, 106, 11857-11861.Google Scholar
Brettel, K., and Byrdin, M. 2010. Reaction mechanisms of DNA photolyase. Current Opinion in Structural BMogy 20, 693-701.Google Scholar
Breuer, H. P., and Petruccione, F. 2002. The Theory of Open Quantum Systems. New York: Oxford Univerity Press.
Breuer, H.-P., Laine, E. M., and Piilo, J. 2009. Measure for the degree of non-Markovian behavior of quantum processes in open systems. Physical Review Letters, 103, 210401.Google Scholar
Briegel, H. J., and Popescu, S. 2013. Intramolecular refrigeration in enzymes. Proceedings of the Royal Society A, 469, 20110290.Google Scholar
Brinks, D., Stefani, F. D., Kulzer, F., Hildner, R., Taminiau, T. H., Avlasevich, Y., Müllen, K., and van Hulst, N. F. 2010. Visualizing and controlling vibrational wave packets of single molecules. Nature, 465, 905.Google Scholar
Brixner, T., Mančai, T., Stiopkin, I. V., and Fleming, G. R. 2004. Phase-stabilized two- dimensional electronic spectroscopy. Journal of Chemical Physics, 121(9), 4221.Google Scholar
Brixner, T., Stenger, J., Vaswani, H. M., Cho, M., Blankenship, R. E., and Fleming, G. R. 2005. Two-dimensional spectroscopy of electronic couplings in photosynthesis. Nature, 434, 625-628.Google Scholar
Brocklehurst, B. 1976. Spin correlation in geminatere combination of radicalions in hydrocarbons. 1. Theory of magnetic-field effect. Journal of the Chemical Society, Faraday Transactions II, 72, 1869-1884.Google Scholar
Brocklehurst, B. 2002. Magnetic fields and radical reactions: recent developments and their role in Nature. Chemical Society Reviews, 31, 301-311.Google Scholar
Brookes, J. C. 2008. A microscopic model of signal transduction mechanisms: olfaction. Ph.D. thesis, University College London.
Brookes, J. C. 2010. Science in perception: what can our sense of smell tell us about ourselves and the world around us?Philosophical Transactions of the Royal Society of London A. (Mathematical, Physical and Engineering Sciences), 368, 3491-3502.Google Scholar
Brookes, J. C., Hartoutsiou, F., Horsfield, A. P., and Stoneham, A. M. 2007. Could humans recognize odor by phonon assisted tunneling?Physical Review Letters, 98, 038101.Google Scholar
Browne, W. R., and Feringa, B. L. 2006. Making molecular machines work. Nature Nanotechnology, 1, 25-35.Google Scholar
Brus, L. 1991. Quantum crystallites and nonlinear optics. Applied Physics A, 53, 465-474.Google Scholar
Bryant, D. A., Costas, A. M. G., Maresca, J. A., Chew, A. G. M., Klatt, C. G., Bate-son, M. M., Tallon, L. J., Hostetler, J., Nelson, W. C., Heidelberg, J. F., and Ward, D. M. 2007. Candidatus Chloracidobacterium thermophilum: an aerobic phototrophic acidobacterium. Science, 317(5837), 523-526.Google Scholar
Butkus, V., Zigmantas, D., Valkunas, L., and Abramavicius, D. 2012. Vibrational vs. electronic coherences in 2D spectrum of molecular systems. Chemical Physics Letters, 545, 40-43.Google Scholar
Byler, D. M., and Susi, H. 1986. Examination of the secondary structure of protiens by deconvolved FTIR spectra. Biopolymers, 25, 469-487.Google Scholar
Cai, J.-M. 2011. Quantum Probe and Design for a Chemical Compass with Magnetic Nano-structures. Physical Review Letters, 106(10).Google Scholar
Cai, J.-M., Popescu, S., and Briegel, H. J. 2010a. Dynamical entanglement in oscillating molecules and potential biological implications. Physical Review E, 82, 021921.Google Scholar
Cai, J.-M., Guerreschi, J. J., and Briegel, H. J. 2010b. Quantum control and entanglement in a chemical compass. Physical Review Letters, 104, 220502.Google Scholar
Caldeira, A. O., and Leggett, A. J. 1983. Path integral approach to quantum Brownianmotion. Physica A, 121, 587.Google Scholar
Calderbank, A. R., and Shor, P. W. 1996. Good quantum error-correcting codes exist. Physical Review A, 54, 1098.Google Scholar
Calsamiglia, J., Hartmann, L., Dür, W., and Briegel, H. J. 2005. Spin gases: quantum entanglement driven by classical kinematics. Physical Review Letters, 95, 180502.Google Scholar
Camara-Artigas, A., Blankenship, R. E., andAllen, J. P. 2003. The structure of the FMO protein from Chlorobium tepidum at 2.2 angstrom resolution. Photosynthesis Research, 75, 49.Google Scholar
Canfield, J. M., Belford, R. L., Debrunner, P. G., and Schulten, K. 1994. A perturbation theory treatment of oscillating magnetic fields in the radical pair mechanism. Chemical Physics, 182, 1-18.Google Scholar
Canfield, J. M., Belford, R. L., Debrunner, P. G., and Schulten, K. 1995. A perturbation treatment of oscillating magnetic fields in the radical pair mechanism using the Liou- ville equation. Chemical Physics, 195, 59-69.Google Scholar
Canfield, J. M., Belford, R. L., Debrunner, P. G., and Schulten, K. 1995a. A perturbation theory treatment of oscillating magnetic fields in the radical pair mechanism – erratum. Chemical Physics, 191, 347.Google Scholar
Canters, G. W., and Vijgenboom, E. (eds). 1997. Biological Electron Transfer Chains: Genetics, Composition and Mode of Operation.Dordrecht: Kluwer.
Cao, J. 1997. A phase-space study of Bloch-Redfield theory. Journal of Chemical Physics, 107, 8.Google Scholar
Cao, J., and Silbey, R. J. 2009. Optimal trapping of excitation energy transfer. Journal of Physical Chemistry A, 113, 13826.Google Scholar
Caram, J. R., and Engel, G. S. 2011. Extracting dynamics of excitonic coherences in congested spectra of photosynthetic light harvesting antenna complexes. Faraday Discussions, 153, 93.Google Scholar
Caram, J. R., Lewis, N. H. C., Fidler, A. F., and Engel, G. S. 2012. Signatures of correlated excitonic dynamics in two dimensional spectroscopy of the Fenna-Matthews-Olson photosynthetic complex. Journal of Chemical Physics, 136, 104505.Google Scholar
Carter, S. G., Chen, Z., and Cundiff, S. T. 2007. Echo peak-shift spectroscopy of non-Markovian exciton dynamics in quantum wells. Physical Review B, 76, 121303.Google Scholar
Caruso, F., Chin, A. W., Datta, A., Huelga, S. F., and Plenio, M. B. 2009. Highly efficient energy excitation transfer inlight-harvestingcomplexes: the fundamental role of noise-assisted transport. Journal of Chemical Physics, 131, 105106.Google Scholar
Caruso, F., Chin, A., Datta, A., Huelga, S., and Plenio, M. B. 2010. Entanglement and entangling power of the dynamics in light-harvesting complexes. Physical Review A, 81, 062346.Google Scholar
Castiglione, P. 2000. Diffusion coefficients as function of Kubo number in random fields. J. Phys. A: Math. Gen., 33, 197.Google Scholar
Catlow, C. R. A., and Stoneham, A. M. 1983. Ionicity in solids. Journal of Physical Chemistry, 16, 4321-4338.Google Scholar
Chachisvilis, M., Pullerits, T., Jones, M. R., Hunter, C. N., and Sundstrom, V. 1994. Vibrational dynamics in the light-harvesting complexes of the photosynthetic bacterium Rhodobacter sphaeroides. Chemical Physics Letters, 224(3-4), 345-351.Google Scholar
Chen, C.-H., Liu, K.-Y., Sudhakar, S., Lim, T.-S., Fann, W., Hsu, C.-P., and Luh, T.Y. 2005. Efficient light harvesting and energy transfer in organic-inorganic hybrid multichromophoric materials. Journal of Physical Chemistry B, 109, 17887.Google Scholar
Chen, X., Discher, B. M., Pilloud, D. L., Gibney, B. R., Moser, C. C., and Dutton, P. L. 2002. De novo design of a cytochrome b maquette for electron transfer and coupled reactions on electrodes. The Journal of Physical Chemistry B, 106(3), 617-624.Google Scholar
Cheng, Y. C., and Fleming, G. R. 2008. Coherence quantum beats in two-dimensional electronic spectroscopy. Journal of Physical Chemistry A, 112, 4254-4260.Google Scholar
Cheng, Y.-C., and Fleming, G. R. 2009. Dynamics of light harvesting in photosynthesis. Annual Review of Physical Chemistry, 60, 241.Google Scholar
Cheng, Y. C., and Silbey, R. J. 2006. Coherence in the B800 ring of purple bacteria LH2. Physical Review Letters, 96, 028103.Google Scholar
Cheng, Y.-C., and Silbey, R. J. 2008. A unified theory for charge-carrier transport in organic crystals. Journal of Chemical Physics, 128, 114713.Google Scholar
Cheng, Y.-C., Engel, G. S., and Fleming, G. R. 2007. Elucidation of population and coherence dynamics using cross-peaks in two-dimensional electronic spectroscopy. Chemical Physics, 341, 285.Google Scholar
Chernyak, V., Zhang, W. M., and Mukamel, S. 1998. Multidimensional femtosecond spectroscopies of molecular aggregates and semiconductor nanostructures: the nonlinear exciton equations. Journal of Chemical Physics, 109, 9587.Google Scholar
Chin, A. W., Rivas, A., Huelga, S. F., and Plenio, M. B. 2010a. Exact mapping between system-reservoir quantum models and semi-infinite discrete chains using orthogonal polynomials. Journal of Mathematical Physics, 510, 092109.Google Scholar
Chin, A. W., Datta, A., Caruso, F., Huelga, S. F., and Plenio, M. B. 2010b. Noise-assisted energy transfer in quantum networks and light-harvesting complexes. New Journal of Physics, 12, 065002.Google Scholar
Chin, A. W., Huelga, S. F., and Plenio, M. B. 2011. Chain representations of open quantum systems and their numerical simulation with time-adapative density matrix renormalisation group methods. Pages 115-144 in: Würfel, U., Thorwart, M., Weber, E. R., and Jagadish, Ch. (eds), Semiconductors and Semimetals, vol. 85. Burlington: Academic Press.
Chin, A. W., Huelga, S. F., and Plenio, M. B. 2012. Coherence and decoherencein biological system: principles of noise assisted transport and the origin of long-lived coherences. Philosophical Transactions of the Royal Society A, 370, 3638-3657.Google Scholar
Chin, A. W., Prior, J., Rosenbach, R., Huelga, S. F., and Plenio, M. B. 2013. The role of non-equilibrium vibrational structures in electronic coherence and recoherence in pigment-protein complexes. Nature Physics, 9, 113-118.Google Scholar
Cho, M. 2009. Two-Dimensional Optical Spectroscopy.Boca Raton: CRC Press.
Cho, M., Scherer, N. F., Fleming, G. R., and Mukamel, S. 1992. Photon echoes and related four-wave-mixing spectroscopies using phase-locked pulses. Journal of Chemical Physics, 96, 5618.Google Scholar
Cho, M., Yu, J.-Y., Joo, T., Nagasawa, Y., Passino, S. A., and Fleming, G. R. 1996. The integrated photon echo and solvation dynamics. Journal of Physical Chemistry, 100, 11944.Google Scholar
Cho, M., Vaswani, H. M., Brixner, T., Stenger, J., and Fleming, G. R. 2005. Exciton analysis in 2 Delectronic spectroscopy. Journal of Physical Chemistry B, 109, 10542-10556.Google Scholar
Choi, M.-D. 1975. Completely positive linear maps on complex matrices. Linear Algebra and its Applications, 10, 285-290.Google Scholar
Christensson, N., Milota, F., Hauer, J., Sperling, J., Bixner, O., Nemeth, A., and Kauffmann, H. F. 2011. High frequency vibrational modulations in two-dimensional electronic spectra and their resemblance to electronic coherence signatures. Journal of Physical Chemistry B, 115, 5383-5391.Google Scholar
Christensson, N., Kauffmann, H. F., Pullerits, T., and Mancal, T. 2012. Origin of long-lived coherences inlight-harvesting complexes. Journal of Physical Chemistry B, 116, 7449.Google Scholar
Cintolesi, F., Ritz, T., Kay, C. W. M., Timmel, C. R., and Hore, P. J. 2003. Anisotropic recombination of an immobilized photoinduced radical pair in a 50-μT magnetic field: a model avian photomagnetoreceptor. Chemical Physics, 294, 707-718.Google Scholar
Ciobanu, M., Kincaid, H. A., Jennings, G. K., and Cliffel, D. E. 2005. Photosystem I Patterning Imaged by Scanning Electrochemical Microscopy. Langmuir, 21(2), 692-698.Google Scholar
Codgell, R. J., Southall, J., Gardiner, A. T., Law, C. J., Gall, A., Roszak, A. W., and Isaacs, N. W. 2006a. How purple photosynthetic bacteria harvest solar energy. Comptes Rendus Chimie, 9(2), 201-206.Google Scholar
Cogdell, R. J., Gali, A., and Kohler, J. 2006b. The architecture and function of the light-harvesting apparatus of purple bacteria: from single molecules to in vivo membranes. Quarterly Reviews of Biophysics, 39, 227.Google Scholar
Collini, E., Wong, C. Y., Wilk, K. E., Curmi, P. M. G., Brumer, P., and Scholes, G. D. 2010. Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature, 463, 644-648.Google Scholar
Cowan, M. L., Ogilvie, J. P., and Miller, R. J. D. 2004. Two-dimensional spectroscopyusing diffractive optics based phased-locked photon echoes. Chemical Physics Letters, 386, 184.Google Scholar
Craig, D. P., and Thirunamachandran, T. 1984. Molecular Quantum Electrodynamics: An Introduction to Radiation-Molecule Interactions.London: Academic Press.
Daizadeh, I., Medvedev, E. S., and Stuchebrukhov, A. A. 1997. Effect of protein dynamics on biological electron transfer. Proceedings of the National Academy of Sciences, USA, 94, 3703-3708.Google Scholar
Daley, A. J., Kollath, C., Schollwock, U., and Vidal, G. 2004. Time-dependent density-matrix renormalization-group using adaptive effective Hilbert spaces. Journal of Statistical Mechanics: Theory and Experiment, P04005.Google Scholar
Damjanović, A., Ritz, T., and Schulten, K. 1999. Energy transfer between carotenoids and bacteriochlorophylls in light-harvesting complex II of purple bacteria. Physical Review E, 59, 3293-3311.Google Scholar
Damjanović, A., Kosztin, I., Kleinekathofer, U., and Schulten, K. 2002. Excitons in a photosynthetic light-harvesting system: a combined molecular dynamics, quantum chemistry, and polaron model study. Physical Review E, 65(Mar), 031919.Google Scholar
Das, R., Kiley, P. J., Segal, M., Norville, J., Yu, A. A., Wang, L., Trammell, S. A., Reddick, L. E., Kumar, R., Stellacci, F., Lebedev, N., Schnur, J., Bruce, B. D., Zhang, S., and Baldo, M. 2004. Integration of photosynthetic protein molecular complexes in solid-state electronic devices. Nano Letters, 4, 1079.Google Scholar
Davies, P. 2004. Does quantum mechanics play a non-trivial role in life?Biosystems, 78, 69-79.Google Scholar
Davydov, A. S. 1982. Biology and Quantum Mechanics.Oxford: Pergamon Press.
Dawlaty, J. M., Ishizaki, A., De, A. K., and Fleming, G. R. 2012. Microscopic quantum coherence in a photosynthetic-light-harvesting antenna. Philosophical Transactions of the Royal Society of London A. (Mathematical, Physical and Engineering Sciences), 370, 3672-3691.Google Scholar
De Rossi, U., Moll, J., Spieles, M., Bach, G., Dähne, S., Kriwanek, J., and Lisk, M. 1995. Control of the J-aggregation phenomenon by variation of the N-alkyl-substituents. Journal fur Praktische Chemie/Chemiker-Zeitung, 337(1), 203-208.Google Scholar
De Rossi, U., Dähne, S., Meskers, S. C. J., and Dekkers, H. P. J. M. 1996. Spontane Bildung von optischer Aktivität in J-Aggregaten mit Davydov-Aufspaltung. Angewandte Chemie, 108(7), 827-830.Google Scholar
Decatur, S. M. 2006. Elucidation of residue-level structure and dynamics of polypeptides via isotopp-edited infrared spectroscopy. Accounts of Chemical Research, 39, 169-175.Google Scholar
Decoursey, T. E. 2003. Voltage-gated proton channels and other proton transfer pathways. Physiology Reviews, 83, 475-579.Google Scholar
Deisenhofer, J., Epp, O., Miki, K., Huber, R., and Michel, H. 1984. X-Ray structure-analysis of a membrane-protein complex – electron-density map at 3 Åresolution and a model of the chromophores of the photosynthetic reaction center from Rhodopseudomonas- viridis. Journal of Molecular Biology, 180(2), 385-398.Google Scholar
Deisenhofer, J., Epp, O., Mikki, K., Huber, R., and Michel, H. 1985. Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3 A resolution. Nature, 318, 618-624.Google Scholar
Deisenhofer, J., Epp, O., Sinning, I., and Michel, H. 1995. Crystallographic refinement at 2.3 Aresolution and refined model of the photosynthetic reaction centre from rhodopseudomonas viridis. Journal of Molecular Biology, 246(3), 429-457.Google Scholar
Dekker, J. P., and van Grondelle, R. 2000. Primary charge separation in photosystem II. Photosynthesis Research, 63(3), 195-208.Google Scholar
del Rey, M., Chin, A. W., Huelga, S. F., and Plenio, M. B. 2013. The phonon-antennae for efficient transport. Journal of Physical Chemistry Letters, 4, 903-907.Google Scholar
Derebe, M. G., Sauer, D. B., Zeng, W., Alam, A., Shi, N., andJiang, Y. 2011. Tuning theion selectivity of tetrameric cation channels by changing the number of ion binding sites. Proceedings of the National Academy of Sciences of the United States of America, 108(2), 598-602.Google Scholar
Desouter-Lecomte, M., and Lorquet, J. C. 1979. Nonadiabatic interactions in unimolecular decay. IV. Transition probability as a function of the Massey parameter. Journal of Chemical Physics, 71, 4391(13 pages).Google Scholar
Devault, D., and Chance, B. 1966. Studies of photosynthesis using apulsedlaser. I. Temperature dependence of cytochrome oxidation rate in chromatium. Evidence for tunneling. Biophysical Journal, 6(6), 825-847.Google Scholar
Devault, D., Parkes, J. H., and Chance, B. 1967. Electron tunnelling in cytochromes. Nature, 215(5101), 642-644.Google Scholar
Dexter, D. L. 1953. A theory of sensitized luminescence in solids. Journal of Chemical Physics, 21, 836.Google Scholar
Didraga, C., Pugzlys, A., Hania, P. R., von Berlepsch, H., Duppen, K., and Knoester, J. 2004. Structure, spectroscopy, and microscopic model of tubular carbocya-nine dye aggregates. The Journal of Physical Chemistry B, 108(39), 14976-14985.Google Scholar
Diner, B. A., Schlodder, E., Nixon, P. J., Coleman, W. J., Rappaport, F., Lavergne, J., Vermaas, W. F. J., and Chisholm, D. A. 2001. Site-directed mutations at D1-His198 and D2-His197 of photosystem II in Synechocystis PCC 6803: sites of primarycharge separation and cation triplet stabilization. Biochemistry, 40, 9265-9281.Google Scholar
Dirac, P. A. M. 1927. The quantum theory of emission and absorption of radiation. Proceedings of the Royal Society of London A. (Mathematical, Physical and Engineering Sciences), 114, 243.Google Scholar
Dominy, J. M., Shabani, A., and Lidar, D. A. 2013. A general framework for complete positivity. arXiv: 1312.0908.
Doyle, D. A., Cabral, J. M., Pfuetzner, R. A., Kuo, A. L., Gulbis, J. M., Cohen, S. L., Chait, B. T., and R., MacKinnon. 1998. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science, 280, 69-77.Google Scholar
Dresselhaus, M. S., Dresselhaus, G., and Eklund, P. C. 1996. Science of Fullerenes and Carbon Nanotubes.San Diego: Academic Press.
Dreyer, J., Moran, A. M., and Mukamel, S. 2003. Tensor components in three pulse vibrational echoes of rigid dipeptide. Bulletin of the Korean Chemical Society, 24, 1091.Google Scholar
Dunlap, D. H., and Krenke, V. M. 1986. Dynamic localization of a charged-particlemoving under the influence of an electric field. Physical Review B, 34, 3625-3633.Google Scholar
Durrant, J. R., Klug, D. R., Kwa, S. L. S., van Grondelle, R., Porter, G., and Dekker, J. P. 1995. A multimer model for P680, the primary electron-donor of photosystem-II. Proceedings of the National Academy of Sciences, USA, 92(11), 4798-4802.Google Scholar
Dutton, P. L., and Moser, C. C. 2011. Engineering enzymes. Faraday Discussions, 148, 443-448.Google Scholar
Dyson, G. M. 1938. The scientific basis of odour. Journal of the Society of Chemical Industry, 57, 647-651.Google Scholar
Dzuba, S. A., Bosch, M. K., and Hoff, A. J. 1996. Electron spin echo detection of quantum beats and double-quantum coherence in spin-correlated radical pairs of protonated photosynthetic reaction centers. Chemical Physics Letters, 248, 427-433.Google Scholar
Edelstein, A. 2007. Advances in magnetometry. Journal of Physics: Condensed Matter, 19, 165217.Google Scholar
Efimova, O., and Hore, P. J. 2008. Role of exchange and dipolar interactions in the radical pair model of the avian magnetic compass. Biophysical Journal, 94, 1565-1574.Google Scholar
Egorov, S. A., Everitt, K. F., and Skinner, J. L. 1999. Quantum dynamics and vibrational relaxation. Journal of Physical Chemistry A, 103(47), 9494-9499.Google Scholar
Einstein, A., Podolsky, B., and Rosen, B. 1935. Can quantum-mechanical description of physical reality be considered complete?Physical Review, 47, 777-780.Google Scholar
Eisele, D. M. 2010. Optical, Structural and Redox Properties of Nanotubular J-aggregates of Amphiphilic Cyanine Dyes.Aachen: Shaker Verlag.
Eisele, D. M., Knoester, J., Kirstein, S., Rabe, J. P., and Vanden Bout, D. A. 2009. Uniform exciton fluorescence from individual molecular nanotubes immobilized on solid substrates. Nature Nanotechnology, 4(10), 658-663.Google Scholar
Eisele, D. M., Cone, C. W., Bloemsma, E. A., Vlaming, S. M., van der Kwaak, C. G. F., Silbey, R. J., Bawendi, M. G., Knoester, J., Rabe, J. P., and Vanden Bout, D. A. 2012. Utilizing redox-chemistry to elucidate thenature of exciton transitions in supramolecular dye nanotubes. Nature Chemistry, 4.Google Scholar
El-Naggar, M. Y., Gorby, Y. A., Xia, W., and Nealson, K. H. 2008. The molecular density of states in bacterial nanowires. Biophysical Journal, 95, L10-L12.Google Scholar
El-Naggar, M. Y., Wanger, G., Leung, K. M., Yuzvinsky, T. D., Southam, G., Yang, J., Lau, W. M., Nealson, K. H., and Gorby, Y. A. 2010. Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1. Proceedings of the National Academy of Sciences, USA, 107, 18127-18131.Google Scholar
Elliott, R. J., and Loudon, R. 1959. Theory of fine structure on the absorption edge in semiconductors. Journal of Physics and Chemistry of Solids, 8, 382-388.Google Scholar
Elliott, R. J., and Loudon, R. 1960. Group theory of scattering processes in crystals. Journal of Physics and Chemistry of Solids, 15, 196.Google Scholar
Endo, M., Wang, H., Fujitsuka, M., and Majima, T. 2006. Pyrene-stacked nanostructures constructed in the recombinant tobacco mosaic virus rod scaffold. Chemdstry – A European Journal, 12, 3735.Google Scholar
Endo, M., Fujitsuka, M., and Majima, T. 2007. Porphyrin light-harvesting array sconstructed in the recombinant tobacco mosaic scaffold. Chemistry - A European Journal, 13, 8660.Google Scholar
Engel, G. S., Calhoun, T. R., Read, E. L., Ahn, T. K., Mancal, T., Cheng, Y. C., Blankenship, R. E., and Fleming, G. R. 2007. Evidence for wave like energy transfer through quantum coherence in photosynthetic systems. Nature, 446, 782-786.Google Scholar
Escalante, M., Maury, P., Bruinink, C. M., van der Werf, K., Olsen, J. D., Timney, J. A., Huskens, J., Hunter, C. N., Subramaniam, V., and Otto, C. 2008. Directed assembly of functional light harvesting antenna complexes onto chemically patterned surfaces. Nanotechnology, 19, 025101.Google Scholar
Eveson, R. W., Timmel, C. R., Brocklehurst, B., Hore, P. J., and McLauchlan, K. A. 2000. The effects of weak magnetic fields on radical recombination reactions in micelles. International Journal of Radiation Biology, 76, 1509-1522.Google Scholar
Falkenberg, G., Fleissner, G., Schuchardt, K., Kuehbacher, M., Thalau, P., Mouritsen, H., Heyers, D., Wellenreuther, G., and Fleissner, G. 2010. Avian magnetoreception: elaborate iron mineral containing dendrites in the upper beak seem to be a common feature of birds. PLoS ONE, 5, e9231.Google Scholar
Fan, C., Wang, S., Hong, J. W., Bazan, G. C., Plaxco, K. W., and Heeger, A. J. 2003. Beyond superquenching: hyper-efficient energy transfer from conjugated polymers to gold nanoparticles. Proceedings of the National Academy of Sciences, USA, 100, 6297.Google Scholar
Fang, C., Senes, A., Cristian, L., DeGrado, W. F., and Hochstrasser, R. M. 2006. Amide vibrations are delocalized across the hydrophobic interface of a transmembrane helix dimer. Proceedings of the National Academy of Sciences of the United States of America, 103, 16740-16745.Google Scholar
Fassioli, F., and Olaya-Castro, A. 2010. Distribution of entanglement in light-harvesting complexes and their quantum efficiency. New Journal of Physics, 12, 085006.Google Scholar
Faul, C. F. J., and Antonietti, M. 2003. Ionic self-assembly: facile synthesis of supramolecular materials. Advanced Materials, 15, 673.Google Scholar
Feenders, G., Liedvogel, M., Rivas, M., Zapka, M., Horita, H., Hara, E., Wada, K., Mouritsen, H., and Jarvis, E. D. 2008. Molecular mapping of movement-associated areas in the avian brain: a motor theory for vocal learning origin. PLoS ONE, 3, e1768.Google Scholar
Fenna, R. E., and Matthews, B. W. 1975. Chlorophyll arrangement in a bacteriochlorophyll protein from Chlorobium limicola. Nature, 258, 573.Google Scholar
Ferreira, K. N., Iverson, T. M., Maghlaoui, K., Barber, J., and Iwata, S. 2004. Architecture of the photosynthetic oxygen-evolving center. Nature, 303, 1831-1838.Google Scholar
Feynman, R. P., and Vernon, F. L. 1963. The theory of a general quantum system interacting with a linear dissipative system. Annals of Physics (N. Y.), 24, 118.Google Scholar
Fidler, A. F., Harel, E., and Engel, G. S. 2010. Dissecting hidden couplings using fifth-order three-dimensional electronic spectroscopy. Journal of Physical Chemistry Letters, 1, 2876.Google Scholar
Fidler, A. F., Harel, E., Long, P. D., and Engel, G. S. 2012. Two-Dimensional spectroscopy can distinguish between decoherence and dephasing of zero-quantum coherences. Journal of Physical Chemistry A, 116, 282.Google Scholar
Figge, M. T., Mostovoy, M., and Knoester, J. 2001. Peierls transition with acoustic phonons and solitwistons in carbon nanotubes. Physical Review Letters, 86, 4572.Google Scholar
Fleissner, G., Holtkamp-Rötzler, E., Hanzlik, M., Winklhofer, M., Fleissner, G., Petersen, N., and Wiltschko, W. 2003. Ultrastructural analysis of a putative magnetoreceptor in the beak of homing pigeons. Journal of Comparative Neurology, 458, 350-360.Google Scholar
Fleissner, G., Stahl, B., Thalau, P., Falkenberg, G., and Fleissner, G. 2007. A novel concept of Fe-mineral based magnetoreception: histological and physicochemical data from the upper beak of homing pigeons. Naturwissenschaften, 94, 631-642.Google Scholar
Fleming, G. R., and Cho, M. 1996. Chromophore-solvent dynamics. Annual Review of Physical Chemistry, 47, 109.Google Scholar
Fleming, G. R., Martin, J. L., and Breton, J. 1988. Rates of primary electron-transfer in photosynthetic reaction centers and their mechanistic implications. Nature, 333(6169), 190-192.Google Scholar
Flynn, C. P., and Stoneham, A. M. 1970. Quantum theory of diffusion with application to light interstitials in metals. Physical Review B, 1, 3966-3987.Google Scholar
Förster, T. 1948. Zwischenmolekulare Energiewanderung und Fluoreszenz. Annals of Physics (Berlin), 2, 55.Google Scholar
Förster, T. 1965. Modern Quantum Chemistry, Part III. New York: Academic Press.
Fraenkel-Conrat, H., and Williams, R. C. 1955. Reconstitution of active tobacco mosaic virus from its inactive protein and nucleic acid components. Proceedings of the National Academy Sciences, USA, 41, 690.Google Scholar
Franck, J., and Teller, E. 1938. Migration and photochemical action of excitation energy in crystals. The Journal of Chemical Physics, 6, 861.Google Scholar
Franco, M. I., Turin, L., Mershin, A., and Skoulakis, E. M. C. 2011. Molecular vibration-sensing component in Drosophila melanogaster olfaction. Proceedings of the National Academy of Sciences, USA, 108, 3797-3802.Google Scholar
Frauenfelder, H., Wolynes, P. G., and Austin, R. H. 1999. Biological physics. Reviews of Modern Physics, 71, S419.Google Scholar
Fredrickson, J. K., Romine, M. F., Beliaev, A. S., Auchtung, J. M., Driscoll, M. E., Gardner, T. S., Nealson, K. H., Osterman, A. L., Pinchuk, G., Reed, J. L., Rodionov, D. A., Rodrigues, J. L. M., Saffarini, D. A., Serres, M. H., Spormann, A. M., Zhulin, I. B., and Tiedje, J. M. 2008. Towards environmental systems biology of Shewanella. Nature Reviews Microbiology, 6, 592-603.Google Scholar
Freiberg, A., Ratsep, M., Timpmann, K., Trinkunas, G., and Woodbury, N. W. 2003. Self-trapped excitons in LH2 antenna complexes between 5 K and ambient temperature. Journal of Physical Chemistry B, 107(41), 11510-11519.Google Scholar
Freire, R., Munro, U., Rogers, L. J., Sagasser, S., Wiltschko, R., and Wiltschko, W. 2008. Different responses in two strains of chickens (Gallus gallus) in a magnetic orientation test. Animal Cognition, 11, 547-552.Google Scholar
Frenkel, J. A. 1931. On the transformation of light into heat in solids. II. Physical Review, 37(10), 1276.Google Scholar
Frigaard, N.-U., Li, H., Milks, K. J., and Bryant, D. A. 2004. Nine mutants of Chloro-bium tepidum each unable to synthesize a different chlorosome protein still assemble functional chlorosomes. Journal of Bacteriology, 186(3), 646-653.Google Scholar
Frutos, L. M., Andruniow, T., Santoro, F., Ferre, N., and Olivucci, M. 2007. Tracking the excited-state time evoluation of the visual pigment with multiconfigurational quantum chemistry. Proceedings of the National Academy of Science USA, 104, 4464-4469.Google Scholar
Fujimoto, K., Hayashi, S., Hasegawa, J., and Nakatsuji, H. 2007. Theoretical studies on the color-tuning mechanism in retinal proteins. Journal of Chemical Theory and Computation, 3, 605-618.Google Scholar
Fujimoto, K., Hasegawa, J., and Nakatsuji, H. 2009. Color tuning mechanism of humanred, green, and blue cone pigments: SAC-CI theoretical study. Bulletin of the Chemical Society of Japan, 82, 1140-1148.Google Scholar
Fujimoto, K. J., Asai, K., and Hasegawa, J. 2010. Theoretical study of the opsin shift of deprotonated retinal Schiff base in the M state of bacteriorhodopsin. Physical Chemistry Chemical Physics, 12, 13107-13116.Google Scholar
Gaab, K. M., and Bardeen, C. J. 2004a. The effects of connectivity, coherence, and trapping on energy transfer in simple light-harvesting systems studied using the Haken-Strobl model with diagonal disorder. The Journal of Chemical Physics, 121, 7813.Google Scholar
Gaab, K. M., and Bardeen, C. J. 2004b. Wavelength and temperature dependence of the fem-tosecond pump-probeanisotropies in the conjugated polymer MEH-PPV: implications for energy-transfer dynamics. Journal of Physical Chemistry B, 108, 4619.Google Scholar
Gadsby, D. C. 2009. Ion channels versus ion pumps: the principal difference, in principle. Nature Reviews Molecular Cell Biology, 10, 344-352.Google Scholar
Gai, F., Hasson, K. C., McDonald, J. C., and Anfinrud, P. A. 1998. Chemical dynamics in proteins: the photoisomerization of retinal in bacteriorhodopsin. Science, 279, 1886-1891.Google Scholar
Galland, C., Högele, A., Türeci, H. E., and Imamoğlu, A. 2008. Non-Markovian decoher-ence of localized nanotube excitons by acoustic phonons. Physical Review Letters, 101, 067402.Google Scholar
Gammaitoni, L., Hänggi, P., Jung, P., and Marchesoni, F. 1998. Stochastic resonance. Reviews of Modern Physics, 70(1), 223-287.Google Scholar
Gane, S., Georganakis, D., Maniati, K., Vamvakias, M., Ragoussis, N., Skoulakis, E. M. C., and Turin, L. 2013. Molecular vibration-sensing component in human olfaction. PLoS One, 8, e55780.Google Scholar
Ganim, Z., and Tokmakoff, A. 2006. Spectral signatures of heterogeneous protein ensembles revealed by MD simulations of 2D-IR spectra. Biophysical Journal, 91, 2636-2646.Google Scholar
Ganim, Z., Chung, H. S., Smith, A. W., Deflores, L. P., Jones, K. C., and Tokmakoff, A. 2008. Amide I two-dimensional infrared spectroscopy of proteins. Accounts of Chemical Research, 41, 432-441.Google Scholar
Ganim, Z., Jones, K. C., and Tokmakoff, A. 2010. Insulin dimer dissociation and unfolding revealed by amide I two-dimensional infrared spectroscopy. Physical Chemistry Chemical Physics, 12, 3579-3588.Google Scholar
Ganim, Z., Tokmakoff, A., and Vaziri, A. 2011. Vibrational Excitons in Ionophores; Experimental probes for quantum coherence-assisted ion transport and selectivity in ion channels. New Journal of Physics, 13, 113030.Google Scholar
Gauger, E., Rieper, E., Morton, J. J. L., Benjamin, S. C., and Vedral, V. 2011. Sustained quantum coherence and entanglement in the avian compass. Physical Review Letters, 106, 040503.Google Scholar
Gegear, R. J., Casselman, A., Waddell, S., and Reppert, S. M. 2008. Cryptochromemediates light-dependent magnetosensitivity in Drosophila. Nature, 454, 1014-1018.Google Scholar
Gegear, R. J., Foley, L. E., Casselman, A., and Reppert, S. M. 2010. Animal cryptochromes mediate magnetoreception by an unconventional photochemical mechanism. Nature, 463, 804-807.Google Scholar
Gilmore, J., and McKenzie, R. H. 2005. Spin-boson models for quantum decoherence of electronic excitations of biomolecules and quantum dots in a solvent. Journal of Physics: Condensed Matter, 17, 1735.Google Scholar
Gilmore, J., and McKenzie, R. H. 2008. Quantum dynamics of electronic excitations in biomolecular chromophores: role of the protein environment and solvent. Journal of Chemical Physics, 112, 2162.Google Scholar
Ginsberg, N. S., Cheng, Y. C., and Fleming, G. R. 2009. Two-dimensional electronic spectroscopy of molecular aggregates. Accounts of Chemical Research, 42(9), 1352-1363.Google Scholar
Giovani, B., Byrdin, M., Ahmad, M., and Brettel, K. 2003. Light-induced electronic transfer in a cryptochrome blue-light photoreceptor. Nature Structural Biology, 10, 489-490.Google Scholar
Giovannetti, V., Lloyd, S., and Maccone, L. 2011. Advances in quantummetrology. Nature Photonics, 5(4), 222-229.Google Scholar
Gisin, N., and Thew, R. 2007. Quantum communication. Nature Photonics, 1(3), 165-171.Google Scholar
Gonzalez-Luque, R., Garavelli, G., Bernardi, F., Merchan, M., Robb, M. A., and Olivucci, M. 2000. Computational evidence in favor of a two-state, two-mode model of the retinal chromophore photoisomerization. Proceedings of the National Academy of Science USA, 97, 9379-9384.Google Scholar
Gorby, Y. A., Yanina, S., McLean, J. S., Rosso, K. M., Moyles, D., Dohnalkova, A., Beveridge, T. J., Chang, I. S., Kim, B. H., Kim, K. S.Culley, D. E., Reed, S. B., Romine, M. F., Saffarini, D. A., Hill, E. A., Shi, L., Elias, D. A., Kennedy, D. W., Pinchuk, G., Watanabe, K., Ishi, S., Logan, B., Nealson, K. H., and K. J., Fredrickson 2006. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proceedings of the National Academy of Sciences, USA, 103, 11358-11363.Google Scholar
Gorini, V., Kossakowski, A., and Sudarshan, E. C. G. 1976. Completely positive semigroups of N-level systems. Journal of Mathematical Physics, 17, 821.Google Scholar
Gouaux, E., and MacKinnon, R. 2005. Principles of selective ion transport in channels and pumps. Science, 310, 1461-1465.Google Scholar
Goychuk, I., and Hanggi, P. 2005. Quantum dynamics in strong fluctuating fields. Advances in Physics, 54, 52.Google Scholar
Graham, M. W., Ma, Y.-Z., and Fleming, G. R. 2008. Femtosecond photon echo spectroscopy of semiconducting single-walled carbon nanotubes. Nano Letters, 8, 3936-3941.Google Scholar
Graham, M. W., Calhoun, T. R., Green, A. A., Hersam, M. C., and Fleming, G. R. 2012. Two-dimensional electronic spectroscopy reveals the dynamics of phonon-mediated excitation pathways in semiconducting single-walled carbon nanotubes. Nano Letters, 12, 813-819.Google Scholar
Gralnick, J. A., and Newman, D. K. 2007. Extracellular respiration. Molecular Microbiology, 65, 1-11.Google Scholar
Grätzel, M. 2001. Photo electrochemical cells. Nature, 414(6861), 338-344.Google Scholar
Gray, H. B., and Winkler, J. R. 2005. Long-range electron transfer. Proceedings of the National Academy of Sciences, USA, 102, 3534-3539.Google Scholar
Gray, H. B., and Winkler, J. R. 2003. Electron tunneling through proteins. Quarterly Reviews of Biophysics, 36, 341-372.Google Scholar
Gray, H. B., and Winkler, J. R. 2009. Electron flow through proteins. Chemical Physics Letters, 483, 1-9.Google Scholar
Grigoryants, V. M., Tadjikov, B. M., Usov, O. M., and Molin, Y. N. 1995. Phase-shift of quantum oscillations in the recombination luminescence of spin-correlated radical-ion pairs. Chemical Physics Letters, 246, 392-398.Google Scholar
Groblacher, S., Hammerer, K., Vanner, M. R., and Aspelmeyer, M. 2009. Observation of strong coupling between a micromechanical resonator and an optical cavity field. Nature, 460, 724-727.Google Scholar
Groenhof, G., Schäfer, L. V., Boggio-Pasqua, M., and Robb, M. A. 2009. Handbook of Molecular Biophysics. Methods and Applications. Weinheim: Wiley-VCH.
Gronheid, R., Hofkens, J., Köhn, F., Weil, T., Reuther, E., Müllen, K., and Schryver, F. C. De. 2002. Intramolecular Forster energy transfer in a dendritic system at the single molecule level. Journal of the American Chemical Society, 124, 2418.Google Scholar
Groot, M. L., Pawlowicz, N. P., van Wilderen, L. J. G. W., Breton, J., van Stokkum, I. H. M., and vanGrondelle, R. 2005. Initial electron donor and acceptor inisolated photosystem II reaction centers identified with femtosecond mid-IR spectroscopy. Proceedings of the National Academy of Sciences, USA, 102(37), 13087-13092.Google Scholar
Grover, M. 1971. Exciton migration in molecular crystals. Journal of Chemical Physics, 54, 4843.Google Scholar
Grynberg, G., Aspect, A., and Fabre, C. 2010. Introduction to Quantum Optics: From the Semi-classical Approach to Quantized Light.Cambridge, UK: Cambridge University Press.
Guenzler, H., and Gremlich, H.-U. 2002. IR Spectroscopy: An Introduction.Weinheim: Wiley-VCH.
Guerreschi, G. G., Cai, J.-M., Popescu, S., and Briegel, H. J. 2012. Persistent dynamic entanglement from classical motion: how bio-molecular machines can generate nontrivial quantum states. New Journal of Physics, 14, 053043.Google Scholar
Gulbinas, V., Karpicz, R., Augulis, R., and Rotomskis, R. 2007. Exciton relaxation in nanotubular TPPS—4 aggregates in water solution and in polymeric matrix. Chemical Physics, 332, 255.Google Scholar
Gunn, J. R., and Dawson, K. A. 1989. Microscopic model of amphiphilic assembly. Journal of Chemical Physics, 91, 6393-6403.Google Scholar
Guo, S., and Kim, J. 2010. Dissecting the molecular mechanism of drosophila odorant receptors through activity modeling and comparative analysis. Proteins, 78, 381-399.Google Scholar
Gust, D., Moore, T. A., and Moore, A. L. 2001. Mimicking photosynthetic solar energy transduction. Accounts of Chemical Research, 34(1), 40-48.Google Scholar
Gust, D., Moore, T. A., and Moore, A. L. 2009. Solar fuels via artificial photosynthesis. Accounts of Chemical Research, 42(12), 1890-1898.Google Scholar
Gwan, J. F., and Baumgaertner, A. 2007. Cooperativetransport in a potassium ion channel. Journal of Chemical Physics, 127, 045103.Google Scholar
Ha, T., Enderle, T., Ogletree, D. F., Chemla, D. S., Selvin, P. R., and Weiss, S. 1996. Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. Proceedings of the National Academy of Sciences, USA, 93, 6264.Google Scholar
Haken, H., and Strobl, G. 1973. An exactly solvable model for coherent and incoherent exciton motion. Zeitschrift fur Physik, 262, 135.Google Scholar
Hall, L. T., Hill, C. D., Cole, J. H., Städler, B., Caruso, F., Mulvaney, P., Wrachtrup, J., and Hollenberg, L. C. L. 2010. Monitoring ion channel function in real time through quantum decoherence. Proceedings of the National Academy of Sciences of the United States of America, 107, 18777-18782.Google Scholar
Hameroff, S. 1998. Quantum computation in brain microtubules? The Penrose-Hameroff ‘Orch OR’ model of consciousness. Philosophical Transactions of the Royal Society of London A. (Mathematical, Physical and Engineering Sciences), 356, 1869-1896.Google Scholar
Hameroff, S., Craddock, T. J. A., and Tuszynski, J. A. 2010. “Memory bytes”-molecular match for CaMKII phosphorylation encoding of microtubule lattices. Journal of Inte-grative Neuroscience, 9, 253-267.Google Scholar
Hameroff, S. R. 2006. The entwined mysteries of anesthesia and consciousness – is there a common underlying mechanism?Anesthesiology, 105, 400-412.Google Scholar
Hamm, P. 2006. Three-dimensional-IR spectroscopy: beyond the two-point frequency fluctuation correlation function. Journal of Chemical Physics, 124, 124506.Google Scholar
Hamm, P., and Zanni, M. 2011. Concepts and Methods of 2D Infrared Spectroscopy.Cambridge: Cambridge University Press.
Hamm, P., Lim, M. H., and Hochstrasser, R. M. 1998. Structure of the amide I band of peptides measured by femtosecond nonlinear-infrared spectroscopy. Journal of Physical Chemistry B, 102, 6123-6138.Google Scholar
Hänggi, P, and Jung, P. 1995. Colored noise in dynamical systems. Advances in Chemical Physics, 89, 239-326.Google Scholar
Hänggi, P., Jung, P., Zerbe, C., and Moss, F. 1993. Can colored noise improve stochastic resonance?Journal of Statistical Physics, 70(1), 25-47.Google Scholar
Harris, R. A., and Silbey, R. J. 1985. Dynamics of an asymmetric tunneling system interacting with a heat bath. Journal of Chemical Physics, 83, 1069.Google Scholar
Harris, S.-R., Henbest, K. B., Maeda, K., Pannell, J. R., Timmel, C. R., Hore, P. J., and Okamoto, H. 2009. Effect of magnetic fields on cryptochrome-dependent responses in Arabidopsis thaliana. Journal of the Royal Society Interface, 6, 1193-1205.Google Scholar
Hartmann, L., Calsamiglia, J., Dür, W., and Briegel, H. J. 2005. Spin gases as microscopic models for non-Markovian decoherence. Physical Review A, 72, 052107.Google Scholar
Hartmann, L., Dür, W., and Briegel, H. J. 2006. Steady state entanglement in open and noisy quantum systems at high temperature. Physical Review A, 74, 052304.Google Scholar
Hartmann, L., Dür, W., and Briegel, H. J. 2007. Entanglement and its dynamics in open, dissipative systems. New Journal of Physics, 9, 230.Google Scholar
Hau, H. H. and Gralnick, J. A. 2007. Ecology and biotechnology of the Genus Shewanella. Annual Review of Microbiology, 61, 237-258.Google Scholar
Haugland, R. P., Yguerabide, J., and Stryer, L. 1969. Dependence of the kinetics of singlet– singlet energy transfer on spectral overlap. Proceedings of the National Academy of Sciences, USA, 63, 23.Google Scholar
Hayashi, S., Tajkhorshid, E., Pebay-Peyroula, E., Royant, A., Landau, E. M., Navarro, J., and Schulten, K. 2001. Structural determinants of spectral tuning in retinal proteins -bacteriorhodopsin vs. sensory rhodopsin II. Journal of Physical Chemistry B, 105, 10124-10131.Google Scholar
Hayashi, S., Tajkhorshid, E., and Schulten, K. 2003. Molecular dynamics simulation of bacteriorhodopsin photoisomerization using ab initio forces for the excited chromophore. Biophysical Journal, 85, 1440.Google Scholar
Hayashi, S., Tajkhorshid, E., and Schulten, K. 2009. Photochemical reaction dynamics of the primary event of vision studied by means of a hybrid molecular simulation. Biophysical Journal, 96, 403-416.Google Scholar
Hayes, D., and Engel, G. S. 2011. Extracting the excitonic Hamiltonian of the Fenna-Matthews-Olson complex using three-dimensional third-order electronic spectroscopy. Biophysical Journal, 100, 2043.Google Scholar
Hayes, D., Panitchayangkoon, G., Fransted, K. A., Caram, J. R., Wen, J., Freed, K. F., and Engel, G. S. 2010. Dynamics of electronic dephasing in the Fenna-Matthews-Olson complex. New Journal of Physics, 12, 065042.Google Scholar
Hayes, D., Wen, J. Z., Panitchayangkoon, G., Blankenship, R. E., and Engel, G. S. 2011. Robustness of electronic coherence in the Fenna-Matthews-Olsoncomplexto vibronic and structural modifications. Faraday Discuss, 150, 459.Google Scholar
Hayward, S., and Go, N. 1995. Collective variable description of native protein dynamics. Annual Review of Physical Chemistry, 46, 223-250.Google Scholar
He, X.-F. 1991. Excitons in anisotropic solids: the model of fractional-dimensional space. Physical Review B, 43, 2063-2069.Google Scholar
Heeger, A. J., Kivelson, S., Schrieffer, J. R., and Su, W. P. 1988. Solitons in conducting polymers. Reviews of Modern Physics, 60, 781-850.Google Scholar
Hein, M., Dür, W., Eisert, J., Raussendorf, R., Van den Nest, M., and Briegel, H. J. 2006. Entanglement in graph states and its applications. In: Zoller, P., Casati, G., Shepelyansky, D., and Benenti, G. (eds), Proceedings International School of Physics Enrico Fermi on quantum computers, algorithms and chaos (Varenna, Italy'), vol. 162.
Hemelrijk, P. W., Kwa, S. L. S., Vangrondelle, R., and Dekker, J. P. 1992. Spectroscopic properties of LHC-II, the main light-harvesting chlorophyll-a/b protein complex from chloroplast membranes. Biochimica et Biophysica Acta, 1098(2), 159-166.Google Scholar
Henbest, K. B., Kukura, P., Rodgers, C. T., Hore, P. J., and Timmel, C. R. 2004. Radio frequency magnetic field effects on radical recombination reaction: a diagnostic test for the radical pair mechanism. Journal of the American Chemical Society, 126, 8102-8103.Google Scholar
Henbest, K. B., Athanassiades, E., Maeda, K., Kuprov, I., Hore, P. J., and Timmel, C. R. 2006. Photoionization of TMPD in DMSO solution: mechanism and magnetic field effects. Molecular Physics, 104, 1789-1794.Google Scholar
Henbest, K. B., Maeda, K., Hore, P. J., Joshi, M., Bacher, A., Bittl, R., Weber, S., Timmel, C. R., and Schleicher, E. 2008. Magnetic-field effect on the photo activation reaction of Escherichia coli DNA photolyase. Proceedings of the National Academy of Sciences, USA, 105, 14395-14399.Google Scholar
Heyduk, T. 2002. Recent advances in FRET: distance determination in protein-DNA complexes. Current Opinion in Biotechnology, 13, 292.Google Scholar
Heyers, D., Manns, M., Luksch, H., Güntürkün, O., and Mouritsen, H. 2007. A visual pathway links brain structures active during magnetic compass orientation in migratory birds. PLoS ONE, 2, e937.Google Scholar
Hill, E., and Ritz, T. 2010. Can disordered radical pair systems provide a basis foramagnetic compass in animals?Journal of the Royal Society Interface, 7, S265-S271.Google Scholar
Hille, B. 2001. Ion Channels of Excitable Membranes. Third edn. Sunderland, Massachusetts: Sinauer.
Hillisch, A., Lorenz, M., and Diekmann, S. 2001. Recent advances in FRET: distance determination in protein-DNA complexes. Current Opinion in Structural Biology, 11, 201.Google Scholar
Hindin, E., Forties, R. A., Loewe, R. S., Ambroise, A., Kirmaier, C., Bocian, D., Lindsey, J. S., Holten, D., and Knox, R. S. 2004. Excited-state energy flow in covalently linked multiporphyrin arrays: the essential contribution of energy transfer between nonadjacent chromophores. Journal of Physical Chemistry B, 108, 12821.Google Scholar
Hoang, N., Schleicher, E., Kacprzak, S., Bouly, J.-P., Picot, M., Wu, W., Berndt, A., Wolf, E., Bittl, R., and Ahmad, M. 2008. Human and Drosophila cryptochromes are light activated by flavin photoreduction in living cells. PLoS Biology, 6, 1559-1569.Google Scholar
Hochstrasser, R. M. 2001. Two-dimensional IR-spectroscopy: polarization anisotropy effects. Chemical Physics, 266, 273.Google Scholar
Hochstrasser, R. M. 2007. Two-dimensional spectroscopy at infrared and optical frequencies. Proceedings of the National Academy of Sciences of the United States of America, 104, 14190-14196.Google Scholar
Hoffmann, M., Wanko, M., Strodel, P., König, P. H., Frauenheim, T., Schulten, K., Thiel, W., Tajkhorshid, E., and Elstner, M. 2006. Color tuning in rhodopsins: the mechanism for the spectral shift between bacteriorhodopsin and sensory rhodopsin II. Journal of the American Chemical Society, 128, 10808-10818.Google Scholar
Hogben, H. J., Efimova, O., Wagner-Rundell, N., Timmel, C. R., and Hore, P. J. 2009. Possible involvement of superoxide and dioxygen with cryptochrome in avian mag-netoreception: Origin of Zeeman resonances observed by in vivo EPR spectroscopy. Chemical Physics Letters, 490, 118-122.Google Scholar
Hogben, H. J., Biskup, T., and Hore, P. J. 2012. Entanglement and sources of magnetic anisotropy in radical pair-based avian magnetoreceptors. Physical Review Letters, 109, 220501.Google Scholar
Holstein, T. 1959a. Studies of polaron motion: part I. The molecular-crystal model. Annals of Physics, 8, 325.Google Scholar
Holstein, T. 1959b. Studies of polaron motion: part II. The “small” polaron. Annals of Physics, 8, 343.Google Scholar
Holt, N. E., Fleming, G. R., and Niyogi, K. K. 2004. Toward an understanding of the mechanism of nonphotochemical quenching in green plants. Biochemistry, 43(26), 8281-8289.Google Scholar
Holthaus, M., and Hone, D. W. 1996. Localization effects in ac-driven tight-binding lattices. Philosophical Magazine B – Physics of Condensed Matter Statistical Mechanics Electronic Optical and Magnetic Properties, 74, 105-137.Google Scholar
Holzapfel, W., Finkele, U., Kaiser, W., Oesterhelt, D., Scheer, H., Stilz, H. U., and Zinth, W. 1989. Observation of abacteriochlorophyll anion radical during the primary charge separation in a reaction center. Chemical Physics Letters, 160(1), 1-7.Google Scholar
Holzapfel, W., Finkele, U., Kaiser, W., Oesterhelt, D., Scheer, H., Stilz, H. U., and Zinth, W. 1990. Initial electron-transfer in the reaction center from Rhodobacter sphaeroides. Proceedings of the National Academy of Sciences, USA, 87(13), 5168-5172.Google Scholar
Holzwarth, A. R. 2004. Light absorption and harvesting. Molecular to Global Photosynthesis,43-115.Google Scholar
Hopfield, J. J. 1974. Electron transfer between biological molecules by thermally activated tunneling. Proceedings of the National Academy of Sciences, USA, 71, 3640-3644.Google Scholar
Horodecki, M., Shor, P. W., and Ruskai, M. B. 2003. General entanglement breaking channels. Reviews in Mathematical Physics, 15, 629.Google Scholar
Horodecki, R., Horodecki, P., Horodecki, M., and Horodecki, K. 2009. Quantum entanglement. Reviews of Modern Physics, 81, 865-942.Google Scholar
Hossein-Nejad, H., and Scholes, G. D. 2010. Energy transfer, entanglement and decoherence in a molecular dimer interacting with a phonon bath. New Journal of Physics, 12, 065045.Google Scholar
Hossein-Nejad, H., Curutchet, C., Kubica, A., and Scholes, G. D. 2011. Delocalization-enhanced long-range energy transfer between cryptophyte algae PE545 antenna proteins. Journal of Physical Chemistry B, 115, 5243.Google Scholar
Hsiao, J.-S., Krueger, B., Wagner, W., Johonson, T. E., Delaney, J. K., Mazuerall, D., Fleming, G. R., Lindsey, J. S., Bocian, D. F., and Donohoe, R. J. 1996. Solublesynthetic multiporphyrin arrays. 2. Photodynamics of energy-transfer processes. Journal of the American Chemical Society, 118, 11181.Google Scholar
Hsu, C.-P. 2009. The electronic couplings in electron transfer and excitation energy transfer. Accounts of Chemical Research, 42, 509-518.Google Scholar
Hu, X., and Schulten, K. 1997. How nature harvests sunlight. Physics Today, 50, 28-34.Google Scholar
Hu, X., and Schulten, K. 1998. A model for the light-harvesting complex I (B875) of rhodobacter sphaeroides. Biophysical Journal, 75, 683-694.Google Scholar
Hu, X., Damjanović, A., Ritz, T., and Schulten, K. 1998. Architecture and function of the light harvesting apparatus of purple bacteria. Proceedings of the National Academyof Sciences, USA, 95, 5935-5941.Google Scholar
Hu, X., Ritz, T., Damjanovic, A., Autenrieth, F., and Schulten, K. 2002. Photosynthetic apparatus of purple bacteria. Quarterly Reiews of Biophysics, 35(1), 1-62.Google Scholar
Haug, H., and Koch, S. W. 2004. Quantum Theory of the Optical and Electronic Properties of Semiconductors. Fourth edn. Singapore: World Scientific.
Huang, K., and Rhys, A. 1950. Theory of light absorption and non-radiative transitions in F-centres. Proceedings of the Royal Society of London A. (Mathematical, Physical and Engineering Sciences), A204, 406423.
Huang, L., and Krauss, T. D. 2006. Quantized bimolecular Auger recombination of excitons in single-walled carbon nanotubes. Physical Review Letters, 96, 057407.Google Scholar
Hudson, B. S., Kohler, B. E., and Schulten, K. 1982. Excited States. vol. 6. New York: Academic Press.
Hughes, A. L. 1999. Adaptive Evolution oof Genes and Genomes.New York: Oxford University Press.
Hunter, C. N., Daldal, F., Thurnauer, M. C., and Beatty, J. T. (eds). 2009. The Purple Phototrophic Bacteria.Netherlands: Springer.
Ihalainen, J. A., Linnanto, J., Myllyperkio, P., van Stokkum, I. H. M., Ucker, B., Scheer, H., and Korppi-Tommola, J. E. I. 2001. Energy transfer in LH2 of Rho-dospirillum molischianum, studied by subpicosecond spectroscopy and configuration interaction exciton calculations. Journal of Physical Chemistry B, 105(40), 9849-9856.Google Scholar
Iozzi, M. F., Mennucci, B., Tomasi, J., and Cammi, R. 2004. Excitation energy transfer (EET) between molecules in condensed matter: a novel application of the polarizable continuum model (PCM). Journal of Chemical Physics, 120, 7029.Google Scholar
Ishizaki, A., and Fleming, G. R. 2009a. Theoretical examination of quantum coherence in a photosynthetic system at physiological temperature. Proceedings of the National Academy of Sciences, USA, 106, 17255-17260.Google Scholar
Ishizaki, A., and Fleming, G. R. 2009b. Unified treatment of quantum coherent and incoherent hopping dynamics in electronic energy transfer: reduced hierarchy equation approach. Journal of Chemical Physics, 130, 234111.Google Scholar
Ishizaki, A., and Fleming, G. R. 2010. Quantum superpositions in photosynthetic light harvesting: delocalization and entanglement. New Journal of Physics, 12, 055004.Google Scholar
Ishizaki, A., and Fleming, G. R. 2011. On the interpretation of quantum coherent beats observed in two-dimensional electronic spectra of photosynthetic light harvesting complexes. Journal of Physical Chemistry B, 115, 6227-6233.Google Scholar
Ishizaki, A., and Fleming, G. R. 2012. Quantum coherence in photosynthetic light harvesting. Annual Review of Condensed Matter Physics, 3, 333-361.Google Scholar
Ishizaki, A., and Tanimura, Y. 2005. Quantum dynamics of system strongly coupled to low-temperature colored noise bath: reduced hierarchy equations approach. Journal of the Physical Society of Japan, 74, 3131.Google Scholar
Ishizaki, A., Calhoun, T. R., Schlau-Cohen, G. S., and Fleming, G. R. 2010. Quantum coherence and its interplay with protein environments in photosynthetic electronic energy transfer. Physical Chemistry -Chemical Physics, 12, 7319.Google Scholar
Jackson, B., and Silbey, R. J. 1983. On the calculation of transfer rates between impurity states in solids. Journal of Chemical Physics, 78, 4193.Google Scholar
Jackson, M., and Mantsch, H. H. 1995. The use and misuse of FTIR spectroscopy in the determination of protein-structure. Critical Reviews in Biochemistry and Molecular Biology, 30, 95-120.Google Scholar
Jang, S. 2007. Generalization of the Förster resonance energy transfer theory for quantum mechanical modulation of the donor-acceptor coupling. Journal of Chemical Physics, 127, 174710.Google Scholar
Jang, S. 2009. Theory of coherent resonance energy transfer for coherent initial condition. Journal of Chemical Physics, 131, 164101.Google Scholar
Jang, S. 2011. Theory of multi chromophoric coherent resonance energy transfer: apolaronic quantum master equation approach. Journal of Chemical Physics, 135, 034105.Google Scholar
Jang, S., and Cheng, Y.-C. 2013. Resonance energy flow dynamics of coherently delocalized excitons in biological and macromolecular systems: Recent theoretical advances and open issues. WIREs Computational Molecular Science, 3, 84.Google Scholar
Jang, S., and Silbey, R. J. 2003. Single complex line shapes of the B850 band of LH2. Journal of Chemical Physics, 118, 9324.Google Scholar
Jang, S., Cao, J., and Silbey, R. J. 2002a. Fourth order quantum master equation and its Markovian bath limit. Journal of Chemical Physics, 116, 2705.Google Scholar
Jang, S., Jung, Y. J., and Silbey, R. J. 2002b. Nonequilibrium generalization of Forster Dexter theory for excitation energy transfer. Chemical Physics, 275, 319.Google Scholar
Jang, S., Jung, Y. J., and Silbey, R. J. 2002c. Nonequilibrium generalization of ForsterDexter theory for excitation energy transfer. Chemical Physics, 275, 319.Google Scholar
Jang, S., Newton, M. D., and Silbey, R. J. 2004. Multi chromophoric Forster resonance energy transfer. Physical Review Letters, 92, 218301.Google Scholar
Jang, S., Newton, M. D., and Silbey, R. J. 2007. Multi chromophoric Forster resonance energy transfer from B800 to B850 in the light harvesting complex 2: evidence for subtle energetic optimization by purple bacteria. Journal of Physical Chemistry B, 111, 6807.Google Scholar
Jang, S., Chen, Y.-C., Reichman, D. R., and Eaves, J. D. 2008. Theory of coherent resonance energy transfer. Journal of Chemical Physics, 129, 101104.Google Scholar
Janosi, L., Kosztin, I., and Damjanovic, A. 2006. Theoretical prediction of spectral and optical properties of bacteriochlorophylls in thermally disordered LH2 antenna complexes. Journal of Chemical Physics, 125(1), 014903.Google Scholar
Jelley, E. E. 1936. Spectral absorption and fluorescence of dyes in the molecular state. Nature, 138, 1009.Google Scholar
Jelley, E. E. 1937. Molecular, nematic and crystal states of I: I-Diethyl-Cyanine Chloride. Nature, 139, 631.Google Scholar
Jiang, X.-P., and Brumer, P. 1991. Creation and dynamics of molecular states prepared with coherent vs partially coherent pulses of light. Journal of Chemical Physics, 94, 5833-5843.Google Scholar
Jimenez, R., Dikshit, S., Bradforth, S. E., and Fleming, G. R. 1996. Electronic excitation transfer in the LH2 complex of rhodobacter sphaeroides. Journal of Physical Chemistry, 100, 6825.Google Scholar
Johnsen, S., and Lohmann, K. J. 2008. Magnetoreception in animals. Physics Today, 61, 29-35.Google Scholar
Jonas, D. M. 2003. Two-dimensional femtosecond spectroscopy. Annual Review of Physical Chemistry, 54, 425.Google Scholar
Jonas, D. M., Lang, M. J., Nagasawa, Y., Joo, T., and Fleming, G. R. 1996. Pump-probe polarization anisotropy study of femtosecond energy transfer with in the photosynthetic reaction center of Rhodobacter sphaeroides R26. Journal of Physical Chemistry, 100(30), 12660-12673.Google Scholar
Joo, T., Jia, Y., Yu, J.-Y., Lang, M. J., and Fleming, G. R. 1996. Third-order nonlinear time domain probes of solvation dynamics. Journal of Chemical Physics, 104, 6089.Google Scholar
Jortner, J. 1976. Temperature-dependent activation-energy for electron-transfer between biological molecules. Journal of Chemical Physics, 64(12), 4860-4867.Google Scholar
Jortner, J., and Bixon, M. 1999. Electron Transfer: From Isolated Molecules to Biomolecules. Advances in Chemical Physics, 106, 35-202.Google Scholar
Jortner, J., and Ratner, M. A. 1997. Molecular Electronics.Oxford: Blackwell Science.
Juzeliunas, G. and Andrews, D. L. 1994. Quantum electrodynamics of resonant energy transfer in condensed matter. Physical Review B, 49, 8751.Google Scholar
Kao, Y.-T., Tan, C., Song, S.-H., Oztürk, N., Li, J., Wang, L., Sancar, A., and Zhong, D. 2008. Ultrafast dynamics and anionic active states of the flavin cofactor in cryptochrome and photolyase. Journal of the American Chemical Society, 130, 7695-7701.Google Scholar
Katterle, M., Prokhorenko, V. I., Holzwarth, A. R., and Jesorka, A. 2007. An artificial supramolecular photosynthetic unit. Chemical Physics Letters, 447, 284.Google Scholar
Keary, N., Ruploh, T., Voss, J., Thalau, P., Wiltschko, R., Wiltschko, W., and Bischof, H.-J. 2009. Oscillating magnetic field disrupts magnetic orientation in Zebra finches, Taeniopygia guttata. Frontiers in Zoology, 6, 25.Google Scholar
Khalil, M., Demirdoven, N., and Tokmakoff, A. 2003. Coherent 2D-IR spectroscopy: molecular structure and dynamics in solution. Journal of Physical Chemistry A, 107, 5258-5279.Google Scholar
Khitrova, G., Gibbs, H. M., Jahnke, F., Kira, M., and Koch, S. W. 1999. Nonlinear optics of normal-mode-coupling semiconductor microcavities. Reviews of Modern Physics, 71, 1591-1639.Google Scholar
Khorana, H. G. J. 1992. Rhodopsin, photoreceptor of the rod cell. An emerging pattern for structure and function. Journal of Biological Chemistry, 267, 1-4.Google Scholar
Kim, D., and Osuka, A. 2004. Directly linked porphyrin arrays with tunable excitonic interactions. Accounts of Chemical Research, 37, 735.Google Scholar
Kimura, A. 2009. General theory of excitation energy transfer in donor-mediator-acceptor systems. Journal of Chemical Physics, 130, 154103.Google Scholar
Kirmaier, C., Weems, D., and Holten, D. 1999. M-side electron transfer in reaction center mutants with a lysine near the nonphotoactive B bacteriochlorophyll. Biochemistry, 38(35), 11516-11530.Google Scholar
Kirschvink, J., Walker, M., and Diebel, C. 2001. Magnetite-based magnetoreception. Current Opinion in Neurobiology 11, 462467.Google Scholar
Kirschvink, J. L., and Gould, J. L. 1981. Biogenic magnetite as a basis for magnetic-field detection in animals. Biosystems, 13, 181-201.Google Scholar
Kirtley, J., Scalapino, D. J., and Hansma, P. K. 1976. Theory of vibrational modeintensities in inelastic electron tunneling spectroscopy. Physical Review B, 14, 3177-3184.Google Scholar
Kleiman, V. D., Melinger, J. S., and McMorrow, D. 2001. Ultrafast dynamics of electronic excitations in a light-harvesting phenylacetylene dendrimer. Journal of Physical Chemistry B, 105, 5595.Google Scholar
Klopping, H. L. 1971. Olfactory theories and the odors of small molecules. Journal of Agricultural and Food Chemistry, 19, 999-1004.Google Scholar
Klug, A. 1999. The tobacco mosaic virus particle: structure and assembly. Philosophical Transactions of the Royal Society of London B. (Biological Sciences), 354, 531.Google Scholar
Knoester, J. 2002. Optical properties of molecular aggregates. Pages 149-186 in: Proceedings – International School of Physics Enrko Fermi, vol. 149. IOS Press; Ohmsha; 1999.
Knox, R. S., and van Amerongen, H. 2002. Refractive index dependence of the Forster resonance excitation transfer rate. Journal of Physical Chemistry B, 106, 5289.Google Scholar
Kobayashi, T. 1996. J-Aggregates.Singapore: World Scientific Publishing Company.
Kobayashi, T., Saito, T., and Ohtani, H. 2001. Real-time spectroscopy of transition states in bacteriorhodopsin during retinal isomerization. Nature, 414, 531-534.Google Scholar
Kobus, M., Nguyen, P. H., and Stock, G. 2011. Coherent vibrational energy transfer along a peptide helix. The Journal of chemical physics, 134, 124518.Google Scholar
Koch, C., and Hepp, K. 2006. Quantum mechanics in the brain. Nature, 440, 611.Google Scholar
Kochendoerfer, G. G., and Mathies, R. A. 1996. Spontaneous emission study of the femtosecond isomerization dynamics of rhodopsin. Journal of Physical Chemistry, 100, 14526-14532.Google Scholar
Koder, R. L., Anderson, J. L. R., Solomon, L. A., Reddy, K. S., Moser, C. C., and Dutton, P. L. 2009. Design and engineering of an O2 transport protein. Nature, 458(7236), 305-309.Google Scholar
Koepke, J., Hu, X. C., Muenke, C., Schulten, K., and Michel, H. 1996. Thecrystal structure of the light-harvesting complex II (B800-850) from Rhodospirillum molischianum. Structure, 4(5), 581-597.Google Scholar
Kohler, S., Lehmann, J., and Hanggi, P. 2005. Driven quantum transport on the nanoscale. Physics Reports, 406, 379-443.Google Scholar
Kolber, Z. S., Dover, C. L.Van Niederman, R. A., and Falkowski, P. G. 2000. Bacterial photosynthesis in surface waters of the open ocean. Nature, 407, 177-179.Google Scholar
Kolli, A., Nazir, A., and Olaya-Castro, A. 2011. Electronic excitation dynamics in multi-chromophoric systems described via a polaron-representation masterequation. Journal of Chemical Physics, 135, 154112.Google Scholar
Kosztin, I., and Schulten, K. 2008. Molecular dynamics methods for bioelectronic systems in photosynthesi. Chap. 22, pages 445-464 of: Aartsma, T. J., and Matysik, J. (eds), Biophysical Techniques in Photosynthesis. Advances in Photosynthesis and Respiration, vol. 26. Dordrecht: Springer.
Kothe, G., Weber, S., Bittl, R., Ohmes, E., Thurnauer, M. C., and Norris, J. R. 1991. Transient EPR of light-induced radical pairs in plant photosystem-I – observation of quantum beats. Chemical Physics Letters, 186, 474-480.Google Scholar
Koushik, S. V., Chen, H., Thaler, C., Puhl, H. L. III, and Vogel, S. S. 2006. Cerulean, venus, and venusy67c FRET reference standards. Biophysical Journal, 91, L99.Google Scholar
Koyama, Y., Kubo, K., Komori, M., Yasuda, H., and Mukai, Y. 1991. Effect of protonation on the isomerization properties of n-butylamine Schiff base of isomeric retinal as revealed by direct HPLC analyses: selection of isomerization pathways by retinal proteins. Photochemistry and Photobiology, 54, 433-443.Google Scholar
Krameri, B., and MacKinnont, A. 1993. Localization: theory and experiment. Reports on Progress in Physics, 56, 146.Google Scholar
Kraus, K. 1983. States, Effects and Operations.Berlin: Springer-Verlag.
Krueger, B. P., Scholes, G. D., and Fleming, G. R. 1998. Calculation of couplings and energy-transfer pathways between the pigments of LH2 by the ab initio transition density cube method. Journal of Physical Chemistry B, 102, 5378.Google Scholar
Kruger, T. P. J., Novoderezhkin, V. I., Ilioaia, C., and van Grondelle, R. 2010. Fluorescence spectral dynamics of single LHCII trimers. Biophysical Journal, 98(12), 3093-3101.Google Scholar
Kubo, R. 1962. Generalized cumulant expansion method. Journal of the Physical Society of Japan, 17, 1100.Google Scholar
Kubo, R. 1963. Stochastic liouville equations. Journal of Mathematical Physics, 4, 174.Google Scholar
Kubo, R. 1966. The fluctuation-dissipation theorem. Reports on Progress in Physics, 29, 255.Google Scholar
Kubo, R., Toda, M., and Hashitsume, N. 2003. Statistical Physics II: Nonequilibrium Statistical Mechanics.Berlin: Springer Verlag.
Kukura, P., McCamant, D. W., Yoon, S., Wandschneider, D. B., and Mathies, R. A. 2005. Structural observation of the primary isomerization in vision with femtosecond-stimulated Raman. Science, 310, 1006-1009.Google Scholar
Kuznetsov, A. M., and J., Ulstrup. 1999. Electron Transfer in Chemistry and Biology: An Introduction to the Theory.Chichester, UK: Wiley.
Lambe, J., and Jaklevic, R. C. 1968. Molecular vibration spectra by inelatic electron tunneling. Physical Review, 165(3), 821-832.Google Scholar
Lau, J. C. S., Wagner-Rundell, N., Rodgers, C. T., Green, N. J. B., and Hore, P. J. 2010. Effects of disorder and motion in a radical pair magnetoreceptor. Journal of the Royal Society Interface, 7, S257-S264.Google Scholar
Le Sage, D., Arai, K., Glenn, D. R., DeVience, S. J., Pham, L. M., Rahn-Lee, L., Lukin, M. D., Yacoby, A., Komeili, A., and Walsworth, R. L. 2013. Optical magnetic imaging of living cells. Nature, 496(7446), 486-489.Google Scholar
Lee, H., Cheng, Y.-C., and Fleming, G. R. 2007. Coherence dynamics in photosynthesis: protein protection of excitonic coherence. Science, 316, 1462-1465.Google Scholar
Leegwater, J. A. 1996. Coherent versus incoherent energy transfer and trapping in photo-synthetic antenna complexes. The Journal of Physical Chemistry, 100, 14403.Google Scholar
Leggett, A. J., Chakravarty, S., Dorsey, A. T., Fisher, M. P. A., Garg, A., and Zwerger, W. 1987. Dynamics of the dissipative two-state system. Reviews of Modern Physics, 59, 1.Google Scholar
Li, B., Wang, L., Kang, B., Wang, P., and Qiu, Y. 2006. Review of recent progress in solid-state dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 90(5), 549-573.Google Scholar
Li, Y. F., Zhou, W., Blankenship, R. E., and Allen, J. P. 1997. Crystal structure of the bac-teriochlorophyll a protein from Chlorobium tepidum. Journal of Molecular Biology, 271, 456.Google Scholar
Liedvogel, M., Maeda, K., Henbest, K., Schleicher, E., Simon, T., Timmel, C. R., Hore, P. J., and Mouritsen, H. 2007a. Chemical magnetoreception: bird cryptochrome 1a is excited by blue light and forms long-lived radical-pairs. PLoS ONE, 2, e1106.Google Scholar
Liedvogel, M., Feenders, G., Wada, K., Troje, N. F., Jarvis, E. D., and Mouritsen, H. 2007b. Lateralised activation of Cluster N in the brains of migratory songbirds. European Journal of Neuroscience, 25, 1166-1173.Google Scholar
Lin, C., and Todo, T. 2005. The cryptochromes. Genome Biology, 6, 220.Google Scholar
Lin, J. P., Balabin, I. A., and Beratan, D. N. 2005. The nature of aqueous tunneling pathways between electron-transfer proteins. Science, 301, 1311-1313.Google Scholar
Lin, X., Murchison, H. A., Nagarajan, V., Parson, W. W., Allen, J. P., and Williams, J. C. 1994. Specific alteration of the oxidation potential of the electron-donor in reaction centers from Rhodobacter sphaeroides. Proceedings of the National Academy of Sciences, USA, 91(22), 10265-10269.Google Scholar
Lin, Z., Lawrence, C. M., Xiao, D., Kireev, V. V., Skourtis, S. S., Sessler, J. L., Beratan, D. N., and Rubtsov, I. V. 2009. Modulating unimolecular charge transfer by exciting bridge vibrations. Journal of the American Chemical Society, 131, 18060-18062.Google Scholar
Lindblad, G. 1976. On the generators of quantum dynamical semigroups. Communications in Mathematical Physics, 48, 119.Google Scholar
Linnanto, J. M., and Korppi-Tommola, J. E. I. 2008. Investigation on chlorosomal antenna geometries: tube, lamella and spiral-type self-aggregates. Photosynthesis Research, 96(3), 227-245.Google Scholar
Lipman, E. A., Schuler, B., Bakajin, O., and Eaton, W. A. 2003. Single-molecule measurement of protein folding kinetics. Science, 301, 1233.Google Scholar
Litt, A., Aliasmith, C., Kroon, F. W., Weinstein, S., and Thagard, P. 2006. Is the brain a quantum computer?Cognitive Science, 30, 593-603.Google Scholar
Liu, Z. F., Yan, H. C., Wang, K. B., Kuang, T. Y., Zhang, J. P., Gui, L. L., An, X. M., and Chang, W. R. 2004. Crystal structure of spinach major light-harvesting complex at 2.72 angstrom resolution. Nature, 428(6980), 287-292.Google Scholar
Lo, H.-K., Spiller, T., and Popescu, S. (eds). 1998. Introduction to Quantum Computation and Information.Singapore: World Scientific.
Logan, B. E. 2009. Exoelectrogenic bacteria that power microbial fuelcells. Nature Reviews Microbiology, 7, 375-381.Google Scholar
Logunov, S. L., Sang, L., and El-Sayed, M. A. 1996. Excited state dynamics of a protonated retinal Schiffbase in solution. Journal of Physical Chemistry, 100, 18586-18591.Google Scholar
Loll, B., Kern, J., Saenger, W., Zouni, A., and Biesiadka, J. 2005. Towards complete cofactor arrangement in the 3.0 Aresolution structure of photosystem II. Nature, 438, 1040-1044.Google Scholar
Longuet-Higgins, H. C. 1962. Quantum mechanics and biology. Biophysical Journal, 2, 207-215.Google Scholar
Lovley, D. R., and Phillips, E. J. P. 1988. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Applied and Environmental Microbiology, 54, 1472-1480.Google Scholar
Löwdin, P.-O. 1951. A note on the quantum-mechanical perturbation theory. Journal of Chemical Physics, 19, 1396.Google Scholar
Lu, Q., Lu, H. P., and Wang, J. 2007. Exploring the mechanism of flexible biomolecular recognition with single molecule dynamics. Physical Review Letters, 98, 128105.Google Scholar
Ma, Y.-Z., Stenger, J., Zimmermann, J., Bachilo, S. M., Smalley, R. E., Weisman, R. B., and Fleming, G. R. 2004. Ultrafast carrier dynamics in single-walled carbon nanotubes probed by femtosecond spectroscopy. Journal of Physical Chemistry, 120, 3368-3373.Google Scholar
Ma, Y.-Z., Valkunas, L., Dexhemer, S. L., Bachilo, S. M., and Fleming, G. R. 2005. Femtosecond spectroscopy of optical excitations in single-walled carbon nanotubes: evidence for exciton-exciton annihilation. Physical Review Letters, 94, 157402.Google Scholar
Ma, Y.-Z., Hertel, T., Vardeny, Z. V., Fleming, G. R., and Valkunas, L. 2008. Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications. Heidelberg: Springer Verlag.
Maeda, K., Henbest, K. B., Cintolesi, F., Kuprov, I., Rodgers, C. T., Liddell, P. A., Gust, D., Timmel, C. R., and Hore, P. J. 2008. Chemical compass model of avian magneto-reception. Nature, 453, 387-390.Google Scholar
Mahan, G. D. 1990. Many-Particle Physics. 2nd edn. New York: Plenum Press.
Makarov, D. E., and Makri, N. 1994. Path-integrals for dissipative systems by tensor multiplications – condensed-phase quantum dynamics for arbitrarily long time. Journal of Chemical Physics, 221, 482-491.Google Scholar
Makri, N. 1999. The linear response approximation and its lowest order corrections: an influence functional approach. Journal of Physical Chemistry B, 103(15), 2823-2829.Google Scholar
Makri, N., and Makarov, D. E. 1995a. Tensor propagator for iterative quantum time evolution of reduced density-matrices. 1. Theory. Journal of Chemical Physics, 102, 4600-4610.Google Scholar
Makri, N., and Makarov, D. E. 1995b. Tensor propagator for iterative quantum time evolution of reduced density-matrices. 2. Numerical methodology. Journal of Chemical Physics, 102, 4611.Google Scholar
Malvankar, N. S., Vargas, M., Nevin, K. P., Franks, A. E.Ching, Leang, C., Kim, B-C., Inoue, K., Mester, T., Covalla, S. F., Johnson, J. P., Rotello, V. M., Tuominen, M. T., and Lovley, D. R. 2011. Tunable metallic-like conductivity in microbial nanowire networks. Nature Nanotechnology, 6, 573-579.Google Scholar
Malvankar, N. S., T. M., Tuominena, and Lovley, D. R. 2012. Comment on “On electrical conductivity of microbial nanowires and biofilms” by S. M. Strycharz-Glaven, R. M. Snider, A. Guiseppi-Elie and L. M. Tender, Energy Environ. Sci., 2011, 4, 4366. Energy & Environmental Science, 5, 6247-6249.Google Scholar
Manor, J., Mukherjee, P., Lin, Y. S., Leonov, H., Skinner, J. L., Zanni, M. T., and Arkin, I. T. 2009. Gating mechanism of the influenza A M2 channel revealed by 1D and 2D-IR spectroscopies. Structure, 17, 247-254.Google Scholar
Manske, A. K., Glaeser, J., Kuypers, M. M. M., and Overmann, J. 2005. Physiology and phylogeny of green sulfur bacteria forming a monospecific phototrophic assemblage at a depth of 100 meters in the Black Sea. Applied and Environmental Microbiology, 71(12), 8049-8060.Google Scholar
Mančai, T., and Fleming, G. R. 2004. Probing electronic coupling in excitonically coupled heterodimer complexes by two-color three-pulse photon echoes. Journal of Chemical Physics, 121(21), 10556.Google Scholar
Mančai, T., and Šanda, F. 2012. Quantum master equations for non-linear optical response of molecular systems. Chemical Physics Letters, 530, 140-144.Google Scholar
Mancal, T., Christensson, N., Lukeš, V., Milota, F., Bixner, O., Kauffmann, H. F., and Hauer, J. 2012. System-dependent signatures of electronic and vibrational coherence in electronic two-dimensional spectra. Journal of Physical Chemistry Letters, 3, 1497.Google Scholar
Marcus, R., and Sutin, N. 1985. Electron transfers in chemistry and biology. Biochimica et Biophysica Acta, 811, 265-322.Google Scholar
Marcus, R. A. 1956a. Electrostatic free energy and other properties of states havingnonequi-librium polarization II. Journal of Chemical Physics, 24, 979-989.Google Scholar
Marcus, R. A. 1956b. On the energy of oxidation-reduction reactions involving electron transfer I. Journal of Chemical Physics, 24, 966-978.Google Scholar
Marcus, R. A. 1964. Chemical and electrochemical electron-transfer theory. Annual Review of Physical Chemistry, 15, 155-196.Google Scholar
Marcus, R. A. 1993. Electron-transfer reactions in chemistry – theory and experiment. Reviews of Modern Physics, 65(3), 599-610.Google Scholar
Martin, J. L., Breton, J., Hoff, A. J., Migus, A., and Antonetti, A. 1986. Femtosecond spectroscopy of electron-transfer in the reaction center of the photosynthetic bacterium Rhodopseudomonas-sphaeroides R-26 – direct electron-transfer from the dimeric bacteriochlorophyll primary donor to the bacteriopheophytin acceptor with a time constant 2.8 +/− 0.2 ps. Proceedings of the National Academy of Sciences, USA, 83(4), 957-961.Google Scholar
Martin, K. E., Wang, Z., Busani, T., Garcia, R. M., Chen, Z., Jiang, Y., Song, Y., Jacobsen, J. L., Vu, T. T., Schore, N. E., Swartzentruber, B. S., Medforth, C. J., and Shelnutt, J. A. 2010. Donor-acceptor biomorphs from the ionic self-assembly of porphyrins. Journal of the American Chemical Society, 132, 8194.Google Scholar
May, V., and Kühn, O. 2000. Charge and Energy Transfer Dynamics in Molecular Systems.Berlin: WILEY-VCH.
May, V., and Kühn, O. 2001. Charge and Energy Transfer Dynamics in Molecular Systems.Berlin: Wiley-VCH.
May, V., and Kühn, O. 2004. Charge and Energy Transfer Dynamics in Molecular Systems.Weinheim: Wiley-VCH.
May, V., and Kühn, O. 2011. Charge and Energy Transfer Dynamics in Molecular Systems.Weinheim, Germany: Wiley-VCH.
McConnell, H. M. 1961. Intramolecular charge transfer in aromatic free radicals. Journal of Chemical Physics, 35, 508.Google Scholar
McCutcheon, D. P. S., and Nazir, A. 2011. Consistent treatment of coherent and incoherent energy transfer dynamics using a variational master equation. Journal of Chemical Physics, 135, 114501.Google Scholar
McDermott, G., Prince, S. M., Freer, A. A., Hawthornthwaite-Lawless, A. M., Paplz, M. Z., Cogdell, R. J., and Issacs, N. W. 1995. Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature, 374, 517-521.Google Scholar
McKemmish, L. K., Reimers, J. R., McKenzie, R. H., Mark, A. E., and Hush, N. S. 2009. Penrose-Hameroff orchestrated objective-reduction proposal for human consciousness is not biologically feasible. Physical Review E, 80, 021912.Google Scholar
Medvedev, E. S., and Stuchebrukhov, A. 1997. Inelastic tunneling in long-distance biological electron transfer reactions. Journal of Chemical Physics, 107, 3821-3831.Google Scholar
Meier, C., and Tannor, D. J. 1999. Non-Markovian evolution of the density operator in the presence of strong laser fields. Journal of Chemical Physics, 111, 3365.Google Scholar
Meier, T., Chernyak, V., and Mukamel, S. 1997. Multipleexciton coherence sizes in photo-synthetic antenna complexes viewed by pump-probe spectroscopy. Journal of Physical Chemistry B, 101(37), 7332-7342.Google Scholar
Mercer, I. P., Gould, I. R., and Klug, D. R. 1999. A quantum mechanical/molecular mechanical approach to relaxation dynamics: calculation of the optical properties of solvated bacteriochlorophyll-a. Journal of Physical Chemistry B, 103(36), 7720-7727.Google Scholar
Michl, J. 1990. Electronic Aspects of Organic Photochemistry.New York: Wiley-Interscience.
Miller, R. A., Presley, A. D., and Francis, M. B. 2007. Self-assembling light-harvesting systems from synthetically modified tobacco mosaic virus coat proteins. Journal of the American Chemical Society, 129, 3104.Google Scholar
Miller, R. A., Stephanopoulos, N., McFarland, J. M., Rosko, A. S., Geissler, P. L., and Francis, M. B. 2010. Impact of assembly state on the defect tolerance of TMV-based light harvesting arrays. Journal of the American Chemical Society, 132, 6068.Google Scholar
Min, W., English, B. P., Luo, G., Cherayil, B. J., Kou, S. C., and Xie, X. S. 2005. Fluctuating enzymes: lessons from single-molecule studies. Accounts of Chemical Research, 38, 923-931.Google Scholar
Misra, B., and Sudarshan, E. C. G. 1977. Zenos paradox in quantum-theory. Journal of Mathematical Physics, 18, 756.Google Scholar
Modesto-Lopez, L. B., Thimsen, E. J., Collins, A. M., Blankenship, R. E., and Biswas, P. 2010. Electrospray-assisted characterization and deposition of chlorosomes to fabricate a biomimetic light-harvesting device. Energy & Environmental Science, 3(2), 216-222.Google Scholar
Mohseni, M., Rebentrost, P., Lloyd, S., and Aspuru-Guzik, A. 2008. Environment-assisted quantum walks in photosynthetic energy transfer. Journal of Chemical Physics, 129, 174106.Google Scholar
Mohseni, M., Shabani, A., Lloyd, S., Omar, Y., and Rabitz, H. 2013. Geometrical effects on energy transfer in disordered open quantum systems. Journal of Chemical Physics, 138, 204309.Google Scholar
Mohseni, M., Shabani, A., Lloyd, S., and Rabitz, H. 2014. Energy-scales convergence for optimal and robust quantum transport in photosynthetic complexes. Journal of Chemical Physics, 140, 035102.Google Scholar
Moller, A., Sagasser, S., Wiltschko, W., and Schierwater, B. 2004. Retinal cryptochrome in a migratory passerine bird: a possible transducer for the avian magnetic compass. Naturwissenschaften, 91, 585-588.Google Scholar
Morais-Cabral, J. H., Zhou, Y. F., and MacKinnon, R. 2001. Energetic optimization of ion conduction rate by the K+ selectivity filter. Nature, 414, 37-42.Google Scholar
Moser, C. C., and Dutton, P. L. 1992. Engineering protein-structure for electron-transfer function in photosynthetic reaction centers. Biochimica et Biophysica Acta, 1101, 171-176.Google Scholar
Moser, C. C., Keske, J. M., Warncke, K., Farid, R. S., and Dutton, P. L. 1992. Nature of biological electron-transfer. Nature, 355(6363), 796-802.Google Scholar
Mouritsen, H. 2001. Navigation in birds and other animals. Journal of Image and Vision Computing, 19, 713.Google Scholar
Mouritsen, H., and Ritz, T. 2005. Magnetoreception and its use in bird navigation. Current Opinion in Neurobiology, 15, 406-414.Google Scholar
Mouritsen, H., Janssen-Bienhold, U., Liedvogel, M., Feenders, G., Stalleicken, J., Dirks, P., and Weiler, R. 2004. Cryptochromes and neuronal-activity markers colocalize in the retina of migratory birds during magnetic orientation. Proceedings of the National Academy of Sciences, USA, 101, 14294-14299.Google Scholar
Mouritsen, H., Feenders, G., Liedvogel, M., Wada, K., and Jarvis, E. D. 2005. A night vision brain area in migratory songbirds. Proceedings of the National Academy of Sciences, USA, 102, 8339-8344.Google Scholar
Müh, F., Madjet, M. E.-A., Adolphs, J., Abdurahman, A., Rabenstein, B., Ishikita, H., Knapp, E.-W., and Renger, T. 2007. Alpha-helices direct excitation energy flow in the Fenna-Matthews-Olson protein. Proceedings of the National Academy of Sciences of the United States of America, 104, 16862.Google Scholar
Mukai, K., Abe, S., and H. Sumi, J. 1999. Theory of rapid excitation-energy transfer from B800 to optically-forbidden exciton states of B850 in the antenna system LH2 of photosynthetic purple bacteria. Journal of Physical Chemistry B, 103, 6096.Google Scholar
Mukamel, S. 1995. Principles of Nonlinear Optical Spectroscopy.New York: Oxford University Press.
Mukamel, S. 1999. Principles of Nonlinear Optical Spectroscopy.USA: Oxford University Press.
Mukamel, S. 2000. Multidimensional femtosecond correlation spectroscopies of electronic and vibrational excitations. Annual Review of Physical Chemistry, 51, 691-729.Google Scholar
Mukamel, S. 2010. Communications: signatures of quasiparticle entanglement in multi-dimensional nonlinearoptical spectroscopy of aggregates. Journal of Chemical Physics, 132, 241105.Google Scholar
Mukherjee, P., Kass, I.Arkin, I. T., and Zanni, M. T. 2006. Structural disorder of the CD3 xi transmembrane domain studied with 2D-IR spectroscopy and molecular dynamics simulations. Journal of Physical Chemistry B, 110, 24740-24749.Google Scholar
Murchie, E. H., and Niyogi, K. K. 2011. Manipulation of photoprotection to improve plant photosynthesis. Journal of Plant Physiology, 155, 86.Google Scholar
Muus, L. T., Atkins, P. W., McLauchlan, K. A., and Pedersen, J. B. 1977. Chemically Induced Magnetic Polarization.Dordrecht: D. Reidel.
Myers, C. R., and Nealson, K. H. 1988. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science, 240, 1319-1321.Google Scholar
Nagarajan, V., Parson, W. W., Gaul, D., and Schenck, C. 1990. Effect of specific mutations of tyrosine-(M)210 on the primary photosynthetic electron-transfer process in Rhodobacter sphaeroides. Proceedings of the National Academy of Sciences, USA, 87(20), 7888-7892.Google Scholar
Nagel, Z. D., and Klinman, J. P. 2006. Tunneling and dynamics in enzymatic hydride transfer. Chemical Reviews, 106, 3095-3118.Google Scholar
Nalbach, P., and Thorwart, M. 2010. Multiphonon transitions in the biomolecular energy transfer dynamics. Journal of Chemical Physics, 132, 194111.Google Scholar
Nalbach, P., Ishizaki, A., Fleming, G. R., and Thorwart, M. 2011. Iterative path-integral algorithm versus cumulant time-nonlocal master equation approach for the dissipative biomolecular exciton transport. New Journal of Physics, 13, 063040.Google Scholar
Nam, K. T., Kim, D.-W., Yoo, P. J., Chiang, C.-Y., Meethong, N., Hammond, P. T., Chiang, Y.-M., and Belcher, A. M. 2006. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science, 312, 885.Google Scholar
Nam, Y. S., Shin, T., Park, H., Magyar, A. P., Choi, K., Fantner, G., Nelson, K. A., and Belcher, A. M. 2010. Virus-Templated Assembly of Porphyrins into Light-Harvesting Nanoantennae. Journal of the American Chemical Society, 132(5), 1462-1463.Google Scholar
Nathans, J., Piantanida, T. P., Eddy, R. L., Shows, T. B., and Hogness, D. S. 1986. Molecular genetics of inherited variation in human color vision. Science, 232, 203-210.Google Scholar
Nazir, A. 2009. Correlation-dependent coherent to incoherent transitions in resonant energy transfer dynamics. Physical Review Letters, 103, 146404.Google Scholar
Nealson, K. H., Belz, A., and McKee, B. 2002. Breathingmetals as away of life: geobiology in action. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology, 81, 215-222.Google Scholar
Nemeth, A., Milota, F., Mančsal, T., Lukesš, V., Kauffmann, H. F., and Sperling, J. 2008. Vibronic modulation of lineshapes in two-dimensional electronic spectra. Chemical Physics Letters, 459(1-6), 94.Google Scholar
Nemeth, A., Milota, F., Mančsal, T., Lukesš, V., Hauer, J., Kauffmann, H. F., and Sperling, J. 2010. Vibrational wave packet induced oscillations in two-dimensional electronic spectra. I. Experiments. Journal of Chemical Physics, 132, 184514.Google Scholar
Newton, M. D. 2001. Electron Transfer in Chemistry, Vol 1. New York: Wiley-VCH.
Nguyen, T.-Q., Wu, J., Doan, V., Schwartz, B. J., and Tolbert, S. H. 2000. Control of energy transfer in oriented conjugated polymer-mesoporous silica composites. Science, 288, 652.Google Scholar
Nielsen, M. A., and Chuang, I. L. 2001. Quantum Computation and Quantum Information.Cambridge: Cambridge University Press.
Nimigean, C. M., and Allen, T. W. 2011. Origins of ion selectivity in potassium channels from the perspective of channel block. Journal of General Physiology, 137(5), 405-413.Google Scholar
Nishioka, H., and Kakitani, T. 2008. Average electron tunneling route of the electron transfer in protein media. Journal of Physical Chemistry B, 112, 9948-9958.Google Scholar
Nishioka, H., Kimura, A., Yamato, T., Kawatsu, T., and T., Kakitani. 2005. Interference, fluctuation, and alternation of electron tunneling in protein media. 2. Non-Condon theory for the energy gap dependence of electron transfer rate. Journal of Physical Chemistry B, 109, 15621-15635.Google Scholar
Nitzan, A. 2006. Chemical Dynamics in Condensed Phases.Oxford: Oxford University Press.
Norrman, K., Larsen, N. B., and Krebs, F. C. 2006. Lifetimes of organic photovoltaics: combining chemical and physical characterisation techniques to study degradation mechanisms. Solar Energy Materials and Solar Cells, 90, 2793.Google Scholar
Noskov, S. Y., and Roux, B. 2006. Ion selectivity in potassium channels. Biophysical Chemistry, 124, 279-291.Google Scholar
Noskov, S. Y., Berneche, S., and Roux, B. 2004. Control of ion selectivity in potassium channels by electrostatic and dynamic properties of carbonyl ligands. Nature, 431, 830-834.Google Scholar
Novoderezhkin, V. I., and Razjivin, A. P. 1994. Exciton states of the antenna and energy trapping by the reaction center. Photosynthesis Research, 42, 9-15.Google Scholar
Novoderezhkin, V. I., and Razjivin, A. P. 1996. The theory of Forster-type migration between clusters of strongly interacting molecules: application to light-harvesting complexes of purple bacteria. Chemical Physics, 211, 203-214.Google Scholar
Novoderezhkin, V. I., and van Grondelle, R. 2002. Exciton-vibrational relaxation and transient absorption dynamics in LH1 of Rhodopseudomonas viridis: a Redfield theory approach. Journal of Physical Chemistry B, 106, 6025-6037.Google Scholar
Novoderezhkin, V. I., and van Grondelle, R. 2010. Physical origins and models of energy transfer in photosynthetic light harvesting. Physical Chemistry – Chemical Physics, 12, 7352-7365.Google Scholar
Novoderezhkin, V. I., Monshouwer, R., and van Grondelle, R. 2000. Electronic and vibra-tional coherence in the core light-harvesting antenna of Rhodopseudomonas viridis. Journal of Physical Chemistry B, 104, 12056-12071.Google Scholar
Novoderezhkin, V. I., Yakovlev, A. G., van Grondelle, R., and Shuvalov, V. A. 2004. Coherent nuclear and electronic dynamics in primary charge separation in photosynthetic reaction centers: a Redfield theory approach. Journal of Physical Chemistry B, 108, 7445-7457.Google Scholar
Novoderezhkin, V. I., Palacios, M. A., van Amerongen, H., and van Grondelle, R. 2005. Excitation dynamics in the LHCII complex of higher plants: Modeling based on 2.72 AA crystal structure. Journal of Physical Chemistry B, 109, 10493-10504.Google Scholar
Novoderezhkin, V. I., Andrizhiyevskaya, E. G., Dekker, J. P., and van Grondelle, R. 2005a. Pathways and timescales of primary charge separation in the photosystem II reaction center as revealed by a simultaneous fit of time-resolved fluorescence and transient absorption. Biophysical Journal, 89, 1464-1481.Google Scholar
Novoderezhkin, V. I., Rutkauskas, D., and van Grondelle, R. 2006. Dynamics of the emission spectrum of a single LH2 complex: interplay of slow and fast nuclear motions. Biophysical Journal, 90, 2890-2902.Google Scholar
Novoderezhkin, V. I., Dekker, J. P., and van Grondelle, R. 2007a. Mixing of exciton and charge-transfer states in Photosystem II reaction centers: modeling of Stark spectra with modified redfield theory. Biophysical Journal, 93, 1293-1311.Google Scholar
Novoderezhkin, V. I., Rutkauskas, D., and van Grondelle, R. 2007b. Multistate conforma-tional model of a single LH2 complex: quantitative picture of time-dependent spectral fluctuations. Chemical Physics, 341, 45-56.Google Scholar
Novoderezhkin, V. I., Doust, A. B., Curutchet, C., Scholes, G. D., and van Grondelle, R. 2010. Excitation dynamics in phycoerythrin 545: modeling of steady-statespectra and transient absorption with modified Redfield theory. Biophysical Journal, 99, 344-352.Google Scholar
Novoderezhkin, V. I., Marin, A., and van Grondelle, R. 2011a. Intra- and inter-monomeric transfers in the light harvesting LHCII complex: the Redfield-Forster picture. Physical Chemistry – Chemical Physics, 13, 17093.Google Scholar
Novoderezhkin, V. I., Romero, E., Dekker, J. P., and van Grondelle, R. 2011b. Multiple charge separation pathways in photosystem II: modeling of transient absorption kinetics. Chem Phys Chem, 12, 681-688.Google Scholar
O'Day, K. E. 2008. Shedding light on animal cryptochromes. PLoS Biology, 6, 1359-1360.Google Scholar
Odgen, D. 1994. Microelectrode Techniques – The Plymouth Workshop Handbook.Cambridge, UK: The Company of Biologists Ltd.
Oettel, M., and Schillinger, E. 1999. Estrogens and Antiestrogens.Berlin: Springer-Verlag.
Ogawa, T., and Takagahara, T. 1991. Optical absorption and Sommerfeld factors of one-dimensional semiconductors: an exact treatment of excitonic effects. Physical Review B, 44, 8138.Google Scholar
O'Grady, S. M., and Lee, S. Y. 2003. Chloride and potassium channel function in alveolar epithelial cells. American Journal of Physiology-Lung Cellular and Molecular Physiology, 284, L689-L700.Google Scholar
Olaya-Castro, A., and Scholes, G. D. 2011. Energy transfer from Förster-Dexter theory to quantum coherent light-harvesting. International Reviews in Physical Chemistry, 30, 49.Google Scholar
Olaya-Castro, A., Lee, C. F., Olsen, F. F., and Johnson, N. F. 2008. Efficiency of energy transfer in a light-harvesting system under quantum coherence. Physical Review B, 78, 085115.Google Scholar
Olbrich, C., Strümpfer, J., Schulten, K., and & Kleinekathöfer, U. 2011. Quest for spatially correlated fluctuations in the FMO light-harvesting complex. Journal of Physical Chemistry, 115, 758-764.Google Scholar
Onuchic, J. N., and Da Gama, A. A. S. 1986. Influence of intersite modes on the exchange interaction in electron transfer at large distances. Theoretica Chimica Acta, 69, 89-100.Google Scholar
Oostergetel, G. T., Reus, M., G. M. Chew, A., Bryant, D. A., Boekema, E. J., and Holzwarth, A. R. 2007. Long-range organization of bacteriochlorophyll in chlorosomes of Chloro-bium tepidum investigated by cryo-electron microscopy. FEBS Letters, 581(28), 5435-5439.Google Scholar
Oszwaldowski, R., Reichelt, M., Meier, T., Koch, S. W., and Rohlfing, M. 2005. Nonlinear optical response of the Si(111)-(2x1) surface exciton: influence of biexciton many- body correlations. Physical Review B, 71, 00265324.Google Scholar
Page, C. C., Moser, C. C., and Dutton, P. L. 2003. Mechanism for electron transfer within and between proteins. Current Opinion in Chemical Biology 7, 551-556.Google Scholar
Page, C. C., Moser, C. C., Chen, X., and Dutton, P. L. 1999. Natural engineering principles of electron tunnelling in biological oxidation-reduction. Nature, 402(6757), 47-52.Google Scholar
Palmieri, B., Abramavicius, D., and Mukamel, S. 2009. Lindblad equations for strongly coupledpopulations and coherences in photosynthetic complexes. Journal of Chemical Physics, 130(20), 204512.Google Scholar
Panitchayangkoon, G., Hayes, D., Fransted, K. A., Caram, J. R., Harel, E., Wen, J., Blanken-ship, R. E., and Engel, G. S. 2010. Long-lived quantum coherence in photosynthetic complexes at physiological temperature. Proceedings of the National Academy of Sciences, USA, 107, 12766-12770.Google Scholar
Panitchayangkoon, G., Voronine, D. V., Abramavicius, D., Caram, J. R., Lewis, N. H. C., Mukamel, S., and Engel, G. S. 2011. Direct evidence of quantum transport in photosynthetic light-harvesting complexes. Proceedings of the National Academy of Sciences, USA, 108, 20908.Google Scholar
Papiz, M., Prince, S., Howard, T., Cogdell, R., and Isaacs, N. 2003. The structure and thermal motion of the B800-850 LH2 complex from Rps. acidophila at 2.0 AA resolution and 100 K: new structural features and functionally relevant motions. Journal of Molecular Biology, 326, 1523-1538.Google Scholar
Pardo, L. A. 2004. Voltage-gated potassium channels in cell proliferation. Physiology, 19, 285-292.Google Scholar
Parson, W. W. 2007. Modern Optical Spectroscopy.Berlin: Springer.
Peierls, R. E. 1995. Quantum Theory of Solids.London: Oxford University Press.
Pirbadian, S., and El-Naggar, M. Y. 2012. Multistep hopping and extracellular charge transfer in microbial redox chains. Physical Chemistry-Chemical Physics, 14, 13802-13808.Google Scholar
Pisliakov, A. V., Mancal, T., and Fleming, G. R. 2006. Two-dimensional optical three-pulse photon echo spectroscopy II. Signatures of coherent electronic motion and exciton population transfer in dimer two-dimensional spectra. Journal of Chemical Physics, 124, 234505.Google Scholar
Plenio, M. B., and Huelga, S. F. 2002. Entangled light from white noise. Physical Review Letters, 88, 197901.Google Scholar
Plenio, M. B., and Huelga, S. F. 2008. Dephasing-assisted transport: quantum networks and biomolecules. New Journal of Physics, 10, 113019.Google Scholar
Plenio, M. B., and Virmani, S. 2007. An introduction to entanglement measures. Quantum Information & Computation, 7, 1-51.Google Scholar
Polivka, T., and Sundstrom, V. 2004. Ultrafast dynamics of carotenoid excited states -from solution to natural and artificial systems. Chemical Reviews, 104(4), 2021-2071.Google Scholar
Polizzi, N. F., Skourtis, S. S., and Beratan, D. N. 2012. Physical constraints on charge transport through bacterial nanowires. Faraday Discussions, 155, 43-62.Google Scholar
Polli, D., Altoe, P., Weingart, O., Spillane, K. M., Manzoni, C., Brida, D., Tomasello, G., Orlandi, G., Kukura, P., Mathies, R. A., Garavelli, M., and Cerullo, G. 2010. Conical intersection dynamics of the primary photoisomerization event in vision. Nature, 467, 440-443.Google Scholar
Potts, D., and Kunis, S. 2007. Stability results for scattered data interpolation by trigonometric polynomials.
Prior, J., Chin, A. W., Huelga, S. F., and Plenio, M. B. 2010. Efficient simulation of strong system-environment interactions. Physical Review Letters, 105, 050404.Google Scholar
Prokhorenko, V. I., Holzwarth, A. R., Müller, M. G., Schaffner, K., Miyatake, T., and Tamiaki, H. 2002. Energy Transfer in Supramolecular Artificial Antennae Units of Synthetic Zinc Chlorins and Co-aggregated Energy Traps. A Time-Resolved Fluorescence Study. Journal of Physical Chemistry B, 106, 5761.Google Scholar
Prokhorenko, V. I., Nagy, A. M., Waschuk, S. A., Brown, L. S., Birge, R. R., and Miller, R. J. D. 2006. Coherent control of retinal isomerization in bacteriorhodopsin. Science, 313, 1257-1261.Google Scholar
Prokof'ev, N. V., and Stamp, P. C. E. 2000. Theory of the spin bath. Reports on Progress in Physics, 63, 669.Google Scholar
Prytkova, T. R., Beratan, D. N., and Skourtis, S. S. 2007. Photoselected electron transfer pathways in DNA photolyase. Proceedings of the National Academy of Sciences, USA, 104, 802-807.Google Scholar
Pullerits, T., Hess, S., Herek, J. L., and Sundström, V. 1997. Temperature dependence of excitation transfer in LH2 of Rhodobacter sphaeroides. Journal of Physical Chemistry B, 101, 10560.Google Scholar
Pullman, B., and Pullman, A. 1963. Quantum Biochemistry.New York: Wiley-Interscience.
Rackovsky, S., and Silbey, R. J. 1973. Electronic energy transfer in impure solids I. Two molecules embeded in a lattice. Molecular Physics, 25, 61.Google Scholar
Raman, B., and Gutierrez-Osuna, R. 2009. Relating sensor responses of odorants to their organoleptic properties by means of a biologically-inspired model of receptor neuron convergence onto olfactory bulb. Pages 93-108 of: Gutierrez, Agustín, and Marco, Santiago (eds), Biologically Inspired Signal Processing for Chemical Sensing.Berlin: Springer-Verlag.
Rammer, J. 2007. Quantum Field Theory of Non-equilibrium States.New York: Cambridge University Press.
Ranasinghe, M., Wang, Y. and Goodson, T. III 2003. Excitation energy transfer in branched dendritic macromolecules at low (4 K) temperatures. Journal of the American Chemical Society, 125, 5258.Google Scholar
Raszewski, G., and Renger, T. 2008. Light harvesting in photosystem II core complexes is limited by the transfer to the trap: can the core complex turn into a photoprotective mode?Journal of the American Chemical Society, 130(13), 4431-4446.Google Scholar
Raszewski, G., Saenger, W., and Renger, T. 2005. Theory of optical spectra of photosystem II reaction centers: location of the triplet state and the identity of the primary electron donor. Biophysical Journal, 88(2), 986-998.Google Scholar
Raszewski, G., Diner, B. A., Schlodder, E., and Renger, T. 2008. Spectroscopic properties of reaction center pigments in photo system II corecomplexes: revision of the multimer model. Biophysical Journal, 95(1), 105-119.Google Scholar
Ratner, M. A. 1990. Bridge-assisted electron transfer: effective electronic coupling. Journal of Physical Chemistry, 94, 4877.Google Scholar
Read, E. L., Engel, G. S., Calhoun, T. R., Mančal, T., Ahn, T.-K., Blankenship, R. E., and Fleming, G. R. 2007. Cross-peak-specific two-dimensional electronic spectroscopy. Proceedings of the National Axademy Sciences, USA, 104(36), 14203.Google Scholar
Read, E. L., Schlau-Cohen, G. S., Engel, G. S., Wen, J.-Z., Blankenship, R. E., and Fleming, G. R. 2008. Visualization of excitonic structure in the Fenna-Matthews-Olson photosynthetic complex by polarization-dependent two-dimensional electronic spectroscopy. Biophysical Journal, 95, 847-856.Google Scholar
Read, E. L., Lee, H., and Fleming, G. R. 2009. Photon echo studies of photosynthetic light harvesting. Photosynthesis Research, 101, 233-243.Google Scholar
Rebentrost, P., and Aspuru-Guzik, A. 2011. Exciton-phonon information flow in the energy transfer process of photosynthetic complexes. Journal of Chemical Physics, 134, 101103.Google Scholar
Rebentrost, P., Mohseni, M., Kassal, I., Lloyd, S., and Aspuru-Guzik, A. 2009a. Environment-assisted quantum transport. New Journal of Physics, 11, 033003.Google Scholar
Rebentrost, P., Chakraborty, R., and Aspuru-Guzik, A. 2009b. Non-Markovian quantum jumps in excitonic energy Transfer. Journal of Physical Chemistry, 131, 184102.Google Scholar
Rebentrost, P., Mohseni, M., and Aspuru-Guzik, A. 2009c. Role of quantum coherence and environmental fluctuations in chromophoric energy transport. Journal of Physical Chemistry B, 113, 9942.Google Scholar
Redfield, A. G. 1957. On the theory of relaxation processes. IBM Journal of Research and Development, 1, 19.Google Scholar
Redfield, A. G. 1965. The theory of relaxation processes. Advances in Magnetic Resonance, I, 1.Google Scholar
Reguera, G., McCarthy, K. D., Mehta, T., Nicoll, J. S., Tuominen, M. T., and Lovley, D. R. 2005. Extra cellular electron transfer via microbial nanowires. Nature, 435, 1098-1101.Google Scholar
Ren, L., Martin, C. M., Wise, K. J., Gillespie, N. B., Luecke, H., Lanyi, J. K., Spudich, J. L., and Birge, R. R. 2001. Molecular mechanism of spectral tuning in sensory rhodopsin II. Biochemistry, 40, 13906-13914.Google Scholar
Renger, T. 2009. Theory of excitation energy transfer: from structure to function. Photosynthesis Research, 102, 471.Google Scholar
Renger, T., and Marcus, R. A. 2002. On the relation of protein dynamics and exciton relaxation in pigment-protein complexes: an estimation of the spectral density and a theory for the calculation of optical spectra. Journal of Chemical Physics, 116, 9997.Google Scholar
Renger, T., May, V., and Kühn, O. 2001. Ultrafast excitation energy transfer dynamics in photosynthetic pigment-protein complexes. Physical Reports, 343, 137.Google Scholar
Renger, T., Madjet, M. E., Knorr, A., and Müh, F. 2011. How the molecular structure determines the flow of excitation energy in plant light-harvesting complex II. Journal of Plant Physiology, 168, 1497.Google Scholar
Reynolds, N. P., Janusz, S., Escalante-Marun, M., Timney, J., Ducker, R. E., Olsen, J. D., Otto, C., Subramaniam, V., Leggett, G. J., and Hunter, C. N. 2007. Directed Formation of Micro- and Nanoscale Patterns of Functional Light-Harvesting LH2 Complexes. Journal of the American Chemical Society, 129(47), 14625-14631.Google Scholar
Ritz, T. 2011. Quantum effects in biology: bird navigation. Procedia Chemistry, 3, 262-275.Google Scholar
Ritz, T., Damjanovic, A., Schulten, K., Zhang, J.-P., and Koyama, Y. 2000a. Efficient light harvesting through carotenoids. Photosynthesis Research, 66, 125-144.Google Scholar
Ritz, T., Adem, S., and Schulten, K. 2000b. A model for photoreceptor-based magnetore- ception in birds. Biophysical Journal, 78, 707-718.Google Scholar
Ritz, T., Park, S., and Schulten, K. 2001. Kinetics of excitation migration and trapping in the photosynthetic unit of purple bacteria. Journal of Physical Chemistry B, 105, 8259.Google Scholar
Ritz, T., Thalau, P., Phillips, J. B., Wiltschko, R., and Wiltschko, W. 2004. Resonance effects indicate a radical-pair mechanism for avian magnetic compass. Nature, 429, 177-180.Google Scholar
Ritz, T., Wiltschko, R., Hore, P. J., Rodgers, C. T., Stapput, K., Thalau, P., Timmel, C. R., and Wiltschko, W. 2009. Magnetic compass of birds is based on a molecule with optimal directional sensitivity. Biophysical Journal, 96, 3451-3457.Google Scholar
Ritz, Th., Damjanovic, A., Schulten, K., Zhang, J.-P., and Koyama, Y. 2000d. Efficient light harvesting through carotenoids. Photosynthesis Research, 66, 125-144.Google Scholar
Rivas, J. C. M., Schwalbe, H., and Lippard, S. J. 2001. Interchain hydrogen-bonding interactions may facilitate translocation of K+ ions across the potassium channel selectivity filter, as suggested by synthetic modeling chemistry. Proceedings of the National Academy of Sciences of the United States of America, 98, 9478-9483.Google Scholar
Rodgers, C. T. 2009. Magnetic field effects in chemical systems. Pure and Applied Chemistry, 81, 19-43.Google Scholar
Rodgers, C. T., and Hore, P. J. 2009. Chemical magnetoreception in birds: the radical pair mechanism. Proceedings of the National Academy of Sciences, USA, 106, 353-360.Google Scholar
Rodgers, C. T., and Hore, P. J. 2009d. Chemical magnetoreception in birds: the radical pair mechanism. Proceedings of the National Academy of Sciences, USA, 106, 353.Google Scholar
Rodgers, C. T., Henbest, K. B., Kukura, P., Timmel, C. R., and Hore, P. J. 2005. Low- field optically detected EPR spectroscopy of transient photoinduced radical pairs. The Journal of Physical Chemistry A, 109, 5035-5041.Google Scholar
Rodgers, C. T., Norman, S. A., Henbest, K. B., Timmel, C. R., and Hore, P. J. 2007. Determination of radical re-encounter probability distributions from magnetic field effects on reaction yields. Journal of the American Chemical Society, 129, 6746-6755.Google Scholar
Rodgers, C. T., Wedge, C. J., Norman, S. A., Kukura, P., Nelson, K., Baker, N., Maeda, K., Henbest, K. B., Hore, P. J., and Timmel, C. R. 2009. Radio frequency polarization effects in zero-field electron paramagnetic resonance. Physical Chemistry Chemical Physics, 11, 6569-6572.Google Scholar
Röger, C., Müller, M. G., Lysetska, M., Miloslavina, Y., Holzwarth, A. R., and Würthner, F. 2006. Efficient Energy Transfer from Peripheral Chromophores to the Self-Assembled Zinc Chlorin Rod Antenna: âaL A Bioinspired Light-Harvesting System to Bridge the “Green Gap”. Journal of the American Chemical Society, 128, 6542.Google Scholar
Röger, C., Miloslavina, Y., Brunner, D., Holzwarth, A. R., and Würthner, F. 2008. Self-Assembled Zinc Chlorin Rod Antennae Powered by Peripheral Light-Harvesting Chro-mophores. Journal of the American Chemical Society, 130, 5929.Google Scholar
Romero, E., van Stokkum, I. H. M., Novoderezhkin, V. I., Dekker, J P., and van Grondelle, R. 2010. Two different charge separation pathways in photosystem II. Biochemistry, 49, 4300-4307.Google Scholar
Romero, E., Diner, B. A., Nixon, P. J., Coleman, W. J., Dekker, J. P., and van Grondelle, R. 2012. Mixed exciton-charge-transfer states in photosystem II: Stark spectroscopy on site-directed mutants. Biophysical Journal, 103, 185-194.Google Scholar
Rosch, N., and Voityuk, A. 2004. Quantum chemical calculation of donor-acceptor coupling for charge transfer in DNA. Topics in Current Chemistry, 237, 37-72.Google Scholar
Roszak, A. W., Howard, T. D., Southall, J., Gardiner, A. T., Law, C. J., Isaacs, N. W., and Cogdell, R. J. 2003. Crystal structure of the RC-LH1 core complex from Rhodopseu-domonas palustris. Science, 302(5652), 1969-1972.Google Scholar
Roux, B. 2005. Ion conduction and selectivity in K+ channels. Annual Review of Biophysics and Biomolecular Structure, 34, 153-171.Google Scholar
Royston, E., Ghosh, A., Kofinas, P., Harris, M. T., and Culver, J. N. 2008. Self-assembly of virus-structured high surface area nanomaterials and their application as battery electrodes. Langmuir, 24, 906.Google Scholar
Ruhman, S., Hou, B., Friedman, N., Ottolenghi, M., and Sheves, M. 2002. Following evoluation of bacteriorhodopsin in its reactive excited state via stimulated emission pumping. Journal of the American Chemical Society, 124, 8854-8858.Google Scholar
Russo, V., Curutchet, C., and Mennucci, B. 2007. Towards a molecular scale interpretation of excitation energy transfer in solvated bichromophoric systems. II. The through-bond contribution. Journal of Physical Chemistry B, 111, 853.Google Scholar
Rutkauskas, D., Novoderezhkin, V. I., Cogdell, R. J., and van Grondelle, R. 2004. Fluorescence spectral fluctuations of single LH2 complexes from Rhodopseudomonas acidophila strain. Biochemistry, 43(15), 4431-4438.Google Scholar
Rutkauskas, D., Novoderezhkin, V., Gall, A., Oslen, J., Cogdell, R. J., Hunter, C. N., and van Grondelle, R. 2006. Spectral trends in the fluorescence of single bacterial light-harvesting complexes: experiments and modified redfield simulations. Biophysical Journal, 90(7), 2475-2485.Google Scholar
Sacher, M., and Grampp, G. 1997. Magnetic field effects on the luminescence of p-phenylenediamine derivatives. Berichte der Bunsengesellschaft für Physikalische Chemie, 101, 971-974.Google Scholar
Saik, V. O., Ostafin, A. E., and Lipsky, S. 1995. Magnetic-field effects on recombination fluorescence in liquid isooctane. Journal of Chemical Physics, 103, 7347-7358.Google Scholar
Saito, K., and Sumi, H. 2009. Unified expression for the rate constant of the bridged electron transfer derived by renormalization. Journal of Chemical Physics, 131, 134101.Google Scholar
Sakata, S. T., Kurokawa, T., Norholm, M. H. H., Takagi, M., Okochi, Y., von Heijne, G., and Okamura, Y. 2010. Functionality of the voltage-gated proton channel truncated in S4. Proceedings of the National Academy of Sciences of the United States of America, 107, 2313-2318.Google Scholar
Sakmann, B., and Neher, E. 1995. Single Channel Rercording.New York: Springer-Verlag.
Salem, L. 1979. The sudden polarization effect and its possible role in vision. Account of Chemical Research, 119, 12687-12688.Google Scholar
Salikhov, K. M. 1996. Magnetic Isotope Effectin Radical Reactions.Wien: Springer-Verlag.
Sancar, A. 2003. Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors. Chemical Reviews, 103, 2203-2237.Google Scholar
Sarovar, M., and Whaley, K. B. 2013. Design principles and fundamental trade-offs in biomimetic light harvesting. New Journal of Physics, 15, 013030.Google Scholar
Sarovar, M., Ishizaki, A., Fleming, G. R., and Whaley, K. B. 2010. Quantum entanglement in photosynthetic light-harvesting complexes. Nature Physics, 6(6), 462-467.Google Scholar
Sasaki, J., Brown, L. S., Chon, Y.-S., Kandori, H., Maeda, A., Needleman, R., and Lanyi, J. K. 1995. Conversion of bacteriorhodopsin into a chloride ion pump. Science, 269, 73-75.Google Scholar
Sato, R., Dresselhaus, G., and Dresselhaus, M. S. 1998. Physical Properties of Carbon Nanotubes.London: Imperial College Press.
Savikhin, S., Buck, D. R., and Struve, W. S. 1997. Oscillating anisotropies in a bacteri-ochlorophyll protein: evidence for quantum beating between exciton levels. Chemical Physics, 223, 303.Google Scholar
Scharf, B., and Engelhard, M. 1994. Blue halorhodopsin from natronobacterium pharaonis: wavelength regulation by anions. Biochemistry, 33, 6387-6393.Google Scholar
Scheibe, G. 1936. Über die Veränderlichkeit des Absorptionsspektrums einiger Sensibil-isierungsfarbstoffe und deren Ursache. Angewandte Chemie, 49, 563.Google Scholar
Scheibe, G. 1937. Über die Veränderlichkeit der Absorptionsspektren in Losungen und die Nebenvalenzen als ihre Ursache. Angewandte Chemie, 50, 212-219.Google Scholar
Scheibe, G., Kandler, L., and Ecker, H. 1937. Polymerisation und polymere Adsorption als Ursache neuartiger Absorptionsbanden von organischen Farbstoffen. Naturwissenschaften, 25, 75.Google Scholar
Schlau-Cohen, G. S., Calhoun, T. R., Ginsberg, N. S., Read, E. L., Ballottari, M., Bassi, R., van Grondelle, R., and Fleming, G. R. 2009. Pathways of energy flow in LHCII from two-dimensional electronic spectroscopy. Journal of Physical Chemistry B, 113, 15352.Google Scholar
Schlau-Cohen, G. S., Dawlaty, J. M., and Fleming, G. R. 2012. Ultrafast multidimensional spectroscopy: principles and applications to photosynthetic systems. IEEE Journal of Selected Topics in Quantum Electronics, 18(1), 283-295.Google Scholar
Schlosser, M., and Lochbrunner, S. 2006. Exciton migration by ultrafast Forster transfer in highly doped matrixes. Journal of Physical Chemistry B, 110, 6001.Google Scholar
Schmidt am Busch, M., Müh, F., El-Amine Madjet, M., and Renger, T. 2011. The eighth bacteriochlorophyll completes the excitation energy funnel in the FMO protein. Journal of Physical Chemistry Letters, 2, 93-98.Google Scholar
Schoenlein, R. W., Peteanu, L. A., Mathies, R. A., and Shank, C. A. 1991. The first step in vision: femtosecond isomerization of rhodopsin. Science, 254, 412-415.Google Scholar
Scholak, T., de Melo, F., Wellens, T., Mintert, F., and Buchleitner, A. 2011. Efficient and coherent excitation transfer across disordered molecular networks. Physical Review E, 83, 021912.Google Scholar
Scholes, G. D. 2002. Designing light-harvesting antenna systems based on superradiant molecular aggregates. Chemical Physics, 275, 373.Google Scholar
Scholes, G. D. 2003. Long-range resonance energy transfer in molecular systems. Annual Review of Physical Chemistry, 54, 57.Google Scholar
Scholes, G. D., and Fleming, G. R. 2000. On the mechanism of light harvesting in photosynthetic purple bacteria: B800 to B850 energy transfer. Journal of Physical Chemistry B, 104, 1854-1868.Google Scholar
Scholes, G. D., Fleming, G. R., Olaya-Castro, A., and van Grondelle, R. 2011. Lessons from nature about solar light harvesting. Nature Chemistry, 3, 763-774.Google Scholar
Scholes, G. D., Mirkovic, T., Turner, D. B., Fassioli, F., and Buchleitner, A. 2012. Solarlight harvesting by energy transfer: from ecology to coherence. Energy and Environmental Science, 5, 9374-9393.Google Scholar
Schrodinger, E. 1944. What Is Life?Cambridge: Cambridge University Press.
Schulten, K. 1982. Magnetic field effects in chemistry and biology. Pages 61-83 in: Treusch, J. (ed), Festkorperprobleme, vol. 22. Braunschweig: Vieweg.
Schulten, K. 1984. Ensemble averaged spin pair dynamics of doublet and triplet molecules. Journal of Chemical Physics, 80, 3668-3679.Google Scholar
Schulten, K., and Karplus, M. 1972. On the origin of a low-lying forbidden transition in polyenes and related molecules. Chemical Physics Letters, 14, 305-309.Google Scholar
Schulten, K., Staerk, H., Weller, A., Werner, H.-J. and Nickel, B. 1976. Magnetic field dependence of the geminate recombination of radical ion pairs in polar solvents. Zeitschrift für Physikalische Chemie, NF101, 311-390.Google Scholar
Schulten, K., and Tesch, M. 1991. Coupling of protein motion to electron transfer: Molecular dynamics and stochastic quantum mechanics study of photosynthetic reaction centers. Chemical Physics, 158, 421-446.Google Scholar
Schulten, K., and Tavan, P. 1978. Amechanism for the light-driven proton pump of Halacterium halobium. Nature, 272, 85-86.Google Scholar
Schulten, K., and Windemuth, A. 1986. Model for a physiological magnetic compass. Pages 99-106 in: Maret, G., Boccara, N., and Kiepenheuer, J. (eds), Biophysical Effects of Steady Magnetic Fields. Proceedings in Physics, vol. 11. Berlin: Springer.
Schulten, K., Swenberg, C. E., and Weller, A. 1978. A biomagnetic sensory mechanism based on magnetic field modulated coherent electron spin motion. Zeitschrift für Physikalische Chemie, 111, 1-5.Google Scholar
Schulten, K., Dinur, U., and Honig, B. 1980. The spectra of carbonium ions, cyanine dyes, and protonated Schiff base polyenes. Journal of Chemical Physics, 73, 3927-3935.Google Scholar
Schuster, G. B. (ed). 2004. Topics in Current Chemistry: Long-Range Charge Transfer in DNA I-II. Vol. 236-237. Berlin: Springer.
Schuster, P. 2009. Free will, information, quantum mechanics, and biology. Complexity, 15, 8-10.Google Scholar
Schwab, A. D., Smith, D. E., Rich, C. S., Young, E. R., Smith, W. F., and de Paula, J. C. 2003. Porphyrin Nanorods. Journal of Physical Chemistry B, 107, 11339.Google Scholar
Scully, M. O., and Zubairy, M. S. 1997. Quantum Optics.Cambridge: Cambridge University Press.
Sell, C. S. 2006. On the unpredictability of odor. Angewandte Chemie – International Edition in English, 45, 6254-6261.Google Scholar
Selvin, P. R. 2000. The renaissance of fluorescence resonance energy transfer. Nature Structural Biology, 7, 730.Google Scholar
Sener, M., Olsen, J. D., Hunter, C. N., and Schulten, K. 2007. Atomic level structural and functional model of a bacterial photosynthetic membrane vesicle. Proceedings of the National Academy of Sciences, USA, 104, 15723-15728.Google Scholar
Sener, M., Strümpfer, J., Timney, J. A., Freiberg, A., Hunter, C. N., and Schulten, K. 2010. Photosynthetic vesicle architecture and constraints on efficient energy harvesting. Biophysical Journal, 99(1), 67-75.Google Scholar
Sener, M., Strümpfer, J., Hsin, J., Chandler, D., Scheuring, S., Hunter, C. N., and Schulten, K. 2011. Forster energy transfer theory as reflected in the structures of photosynthetic light-harvesting systems. ChemPhysChem, 12(3), 518-531.Google Scholar
Serin, J. M., Brousmiche, D. W., and Frechet, J. M. J. 2002. Cascade energy transfer in a conformationally mobile multichromophoric dendrimer. Chemical Communications, 22, 2605.Google Scholar
Shabani, A. 2009. Open Quantum Systems and Error Correction. Ph.D. thesis, University of Southern California.
Shabani, A., and Lidar, D. 2009a. Maps for general open quantum systems and a theory of linear quantum error correction. Physical Review A, 80, 012309.Google Scholar
Shabani, A., and Lidar, D. 2009b. Vanishing quantum discord is necessary and sufficient for completely positive maps. Physical Review Letters, 102, 100402.Google Scholar
Shabani, A., Mohseni, M., Rabitz, H., and Lloyd, S. 2012. Efficient estimation of energy transfer efficiency in light-harvesting complexes. Physical Review E, 86, 011915.Google Scholar
Shao, H., Gao, M., Kim, S. H., Jaroniec, C. P., and Parquette, J. R. 2011. Aqueous self-assembly of L-Lysine-based amphiphiles into 1D n-type nanotubes. Chemistry – A European Journal, 17(46), 12882-12885.Google Scholar
Shichida, Y., and Imai, H. 1998. Visual pigment: G-protein-coupled receptor for light signals. Cellular and Molecular Life Science, 54, 1299-1315.Google Scholar
Shih, C., Museth, A. K., Abrahamsson, M., Blanco-Rodriguez, A. M., Di Bilio, A. J., Sudhamsu, J., Crane, B. R., Ronayne, K. L., Towrie, M., Vlcek, A. Jr, Richards, J. H., Winkler, J. R., and Gray, H. B. 2008. Tryptophan-accelerated electron flow through proteins. Science, 320, 1760-1762.Google Scholar
Shim, S., Rebentrost, P., Valleau, S., and Aspuru-Guzik, A. 2012. Atomistic study of the long-lived quantum coherences in the Fenna-Matthews-Olson complex. Biophysical Journal, 102, 649.Google Scholar
Shimono, K., Iwamoto, M., Sumi, M., and Kamo, N. 2000. Effects of three characteristic amino acid residues of pharaonis phoborhodopsin on the absorption maximum. Photochemistry and Photobiology, 72, 141-5.Google Scholar
Sigala, P. A., Kraut, D. A., Caaveiro, J. M. M., Pybus, B., Ruben, E. A., Ringe, D., A. G., Petsko, and Herschlag, D. 2008. Testing geometrical discrimination within an enzyme active site: constrained hydrogen bonding in the ketosteroid isomerase hydrogen bonding in the ketosteroid isomerase oxyanion hole. Journal of the American Chemical Society, 130, 13696-13708.Google Scholar
Silbey, R. J. 1976. Electronic energy transfer in molecular crystals. Annual Review of Physical Chemistry, 27, 203.Google Scholar
Silbey, R. J., and Harris, R. A. 1984. Variational calculation of the dynamics of a two level system interacting with a bath. Journal of Chemical Physics, 80, 2615.Google Scholar
Skourtis, S. S., and Beratan, D. N. 1999. Theories of structure-function relationships for bridge-mediated electron-transfer reactions. Advances in Chemical Physics, 106, 377-452.Google Scholar
Skourtis, S. S., and Beratan, D. N. 2007. A molecular double slit paradigm. AIP Conference Proceedings, 963, 809-812.Google Scholar
Skourtis, S. S., and Mukamel, S. 1995. Super exchange versus sequential longr angeelectron transfer; density matrix pathways in Liouville space. Chemical Physics, 197,367-388.Google Scholar
Skourtis, S. S., and Onuchic, J. N. 1993. Effective two-state systems in bridge-mediated electron transfer: a Green function analysis. Chemical Physics Letters, 209, 171-177.Google Scholar
Skourtis, S. S., Beratan, D. N., and Onuchic, J. N. 1993. The two-state reduction for electron and hole transfer in bridge-mediated electron-transfer reactions. Chemical Physics, 176, 501-520.Google Scholar
Skourtis, S. S., Xie, Q., and Archontis, G. J. 2001. Electron transfer through fluctuating bridges: on the validity of the superexchange mechanism and time-dependent tunneling matrix elements. Journal of Chemical Physics, 115, 9444-9462.Google Scholar
Skourtis, S. S., Waldeck, D. H., and Beratan, D. N. 2004. Inelastic electron tunneling erases coupling-pathway interferences. Journal of Physical Chemistry B, 108, 15511-15518.Google Scholar
Skourtis, S. S., Balabin, I. A., Kawatsu, T., and Beratan, D. N. 2005. Protein dynamics and electron transfer: electronic decoherence and non-Condon effects. Proceedings of the National Academy of Sciences, USA, 102, 3552-3557.Google Scholar
Skourtis, S. S., Lin, J., and Beratan, D. N. 2006. Modern Methods for Theoretical Physical Chemistry of Biopolymers. Boston: Elsevier.
Skourtis, S. S., Waldeck, D. H., and Beratan, D. N. 2010. Fluctuations in biological and bioinspired electron-transfer reactions. 61, 461-485.
Sokolova, O., Kolmakova-Partensky, L., and Grigorieff, N. 2001. Three-dimensional structureof a voltage-gated potassium channel at 2.5 nm resolution. Structure, 9, 215-220.Google Scholar
Solov'yov, I. A., and Greiner, W. 2007. Theoretical analysis of an iron mineral-based magnetoreceptor model in birds. Biophysical Journal, 93, 1493-1509.Google Scholar
Solov'yov, I. A., and Greiner, W. 2009a. Iron-mineral-based magnetoreceptor in birds: polarity or inclination compass?European Physical Journal D, 51, 161-172.Google Scholar
Solov'yov, I. A., and Greiner, W. 2009b. Micromagnetic insight into a magnetoreceptor in birds: on the existence of magnetic field amplifiers in the beak. Physical Review E, 80, 041919.Google Scholar
Solov'yov, I. A., and Schulten, K. 2009. Magnetoreception through cryptochrome may involve superoxide. Biophysical Journal, 96, 4804-4813.Google Scholar
Solov'yov, I. A., and Schulten, K. 2012. Reaction kinetics and mechanism of magnetic field effects in cryptochrome. Journal of Physical Chemistry B, 116, 1089-1099.Google Scholar
Solov'yov, I. A., Chandler, D., and Schulten, K. 2007. Magnetic field effects in Arabidopsis thaliana cryptochrome-1. Biophysical Journal, 92, 2711-2726.Google Scholar
Solov'yov, I. A., Mouritsen, H., and Schulten, K. 2010. Acuity of a cryptochrome and vision-based magnetoreception system in birds. Biophysical Journal, 99, 40-49.Google Scholar
Solov'yov, I. A., Chang, P.-Y., and Schulten, K. 2012. Vibrationally assisted electron transfer mechanism of olfaction: myth or reality?Physical Chemistry Chemical Physics, 14(40), 13861-13871.Google Scholar
Solov'yov, I. A., Domratcheva, T., Shahi, A. R. M., and Schulten, K. (2012). Decrypting cryptochrome: reveraling the molecular identity of the photoactivation reaction. Journal of the American Chemical Society, 134, 18046-18052.Google Scholar
Solov'yov, I. A., Domratcheva, T., and Schulten, K. 2014. Separation of photo-induced radical pair in cryptochrome to a functionally critical distance. Scientific Reports, 4: 3845, doi: 10.1038/srep03845.
Somsen, O. J. G., van Grondelle, R., and van Amerongen, H. 1996. Spectral broadening of interacting pigments: polarized absorption by photosynthetic proteins. Biophysical Journal, 71(4), 1934-1951.Google Scholar
Song, X., and Marcus, R. A. 1993. Quantum correction for electron transfer rates. Comparison of polarizable versus nonpolarizable descriptions of solvent. The Journal of Chemical Physics, 99(10), 7768-7773.Google Scholar
Spataru, C. D., Ismail-Beigi, S., Benedict, L. X., and Louie, S. G. 2004a. Excitonic effects and optical spectra of single-walled carbon nanotubes. Physical Review Letters, 92, 077402.Google Scholar
Spataru, C. D., Ismail-Beigi, S., Benedict, L. X., and Louie, S. G. 2004b. Quasiparticle energies, excitonic effects and optical absorption spectra in small diameter singlewalled carbon nanotubes. Applied Physics A, 78, 1129.Google Scholar
Spudich, J. L., and Jung, K.-H. 2005. Hand Book of Photosensory Receptors. Weinheim: Wiley-VCH.
Sridharan, A., Muthuswamy, J., and Pizziconi, V. B. 2009. Optoelectronic energy transfer at novel biohybrid interfaces using light harvesting complexes from Chloroflexus aurantiacus. Langmuir, 25(11), 6508-6516.Google Scholar
Staehelin, L. A., Golecki, J. R., and Drews, G. 1980. Supramolecular organization of chlorosomes (Chlorobium vesicles) and of their membrane attachment sites in Chlorobium limicola. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 589(1), 3045.Google Scholar
Staehelin, L. A., Golecki, J. R., Fuller, R. C., and Drews, G. 1978. Visualization of the supramolecular architecture of chlorosomes (Chlorobium type vesicles) in freeze-fractured cells of Chloroflexus aurantiacus. Archives of Microbiology 119, 269.Google Scholar
Standfuss, J., van Scheltingal, A. C. T., Lamborghni, M., and Kuhlbrandt, W. 2005. Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 Åresolution. EMBO Journal, 24, 919.Google Scholar
Stass, D. V., Tadjikov, B. M., and Molin, Y. N. 1995a. Manifestation of quantum coherence upon recombination of radicalion pairs in weak magnetic fields – systems with equivalent nuclei. Chemical Physics Letters, 235, 511-516.Google Scholar
Stass, D. V., Lukzen, N. N., Tadjikov, B. M., and Molin, Y. N. 1995b. Manifestation of quantum coherence upon recombination of radicalion pairs in weak magnetic fields -systems with nonequivalent nuclei. Chemical Physics Letters, 233, 444-450.
Steane, A. M. 1998. Quantum Computing. Reports on Progress in Physics, 61, 117-173.Google Scholar
Steane, A. M. 1996. Error correcting codes in quantum theory. Physical Review Letters, 77, 793.Google Scholar
Steed, J. W., and Atwood, J. L. 2009. Supramolecular Chemistry.Wiltshire, UK: Wiley.
Steensgaard, D. B., Wackerbarth, H., Hildebrandt, P., and Holzwarth, A. R. 2000. Diastere-oselective control of bacteriochlorophyll e aggregation. 3 1-S-BChl e is essential for the formation of chlorosome-like aggregates. The Journal of Physical Chemistry B, 104(44), 10379-10386.Google Scholar
Steffen, M. A., Lao, K., and Boxer, S. G. 1994. Dielectric asymmetry in the photosynthetic reaction center. Science, 264, 810-816.Google Scholar
Steiner, U. E., and Ulrich, T. 1989. Magnetic field effects in chemical kinetics and related phenomena. Chemical Reviews, 89, 51-147.Google Scholar
Stoneham, A. M. 1975. Theory of Defects in Solids. Electronic Structure of Defects in Insulators and Semiconductors.Oxford: Oxford University Press.
Streltsov, A. M., Yakovlev, A. G., Shkuropatov, A. Y., and Shuvalov, V. A. 1996. Femtosecond kinetics of electron transfer in the bacteriochlorophyll(M)-modified reaction centers from Rhodobacter sphaeroides (R-26). FEBS Letters, 383, 129-32.Google Scholar
Strümpfer, J., and Schulten, K. 2011. The effect of correlated bath fluctuations on exciton transfer. Journal of Chemical Physics, 134(9).Google Scholar
Strümpfer, J., and Schulten, K. 2012. Excited state dynamics in photosynthetic reaction center and light harvesting complex 1. Journal of Chemical Physics, 137, 065101.Google Scholar
Strümpfer, J., Hsin, J., Sener, M., Chandler, D., and Schulten, K. 2011. The light-harvesting apparatus in purple photosynthetic bacteria, introduction to a quantum biological device. Chap. 2, pages 19-48 of: Roux, Benoit (ed), Molecular Machines.Singapore: World Scientific Press.
Strümpfer, J., Sener, M., and Schulten, K. 2012. How quantum coherence assists photosyn-thetic light harvesting. Journal of Physical Chemistry Letters, 3, 536-542.Google Scholar
Strycharz-Glaven, S. M., and Tender, L. M. 2012. Reply to the ‘Comment on “On electrical conductivity of microbial nanowires and biofilms”’ by N. S. Malvankar, M. T. Tuominen and D. R. Lovley, Energy Environ. Sci., 2012, 5, DOI: 10.1039/c2ee02613a. Energy & Environmental Science, 5, 6250-6252.Google Scholar
Strycharz-Glaven, S. M., Snider, R. M., Guiseppi-Elie, A., and Tender, L. M. 2011. On the electrical conductivity of microbial nanowires and bio films. Energy & Environmental Science, 4, 4366-4379.Google Scholar
Stryer, L., and Haugland, R. P. 1967. Energy transfer: a spectroscopic ruler. Proceedings of the National Academy Sciences, USA, 58, 719.Google Scholar
Stubbe, J., Nocera, D. G., Yee, C. S., and Chang, M. C. Y. 2002. Radical initiation in the class I ribonucleotide reductase: long-range proton-coupled electron transfer?Chemical Reviews, 103, 2167-2201.Google Scholar
Stuchebrukhov, A. A. 2001. Toward ab initio theory of long-distance electron tunneling in proteins: tunneling currents approach. Advances in Chemical Physics, 118, 1-44.Google Scholar
Su, W. P., Schrieffer, J. R., and Heeger, A. J. 1980. Soliton excitations in polyacetylene. Physical Review B, 22, 2099.Google Scholar
Sumi, H. 1999. Theory on rates of excitation-energy transfer between molecular aggregates through distributed transition dipoles with application to the antenna system in bacterial photosynthesis. Journal of Physical Chemistry B, 103, 252-260.Google Scholar
Sumi, H., and Kakitani, T. 2001. Unified theory on rates for electron transfer mediated by a midway molecule, bridging between superexchange and sequential processes. Journal of Physical Chemistry B, 105, 9603-9622.Google Scholar
Sumi, H., and Marcus, R. A. 1986. Dynamical effects in electron transferreactions. Journal of Chemical Physics, 84, 4894-4914.Google Scholar
Sundstrom, V., van Grondelle, R., Bergstrom, H., Akesson, E., and Gillbro, T. 1986. Excitation energy transport in the bacteriochlorophyll antenna systems of Rhodospirillum rubrum and Rhodobacter sphaeroides, studied by low-intensity picosecond absorption spectroscopy. Biochimica et Biophysica Acta, 851, 431-446.Google Scholar
Sundstrom, V., Pullerits, T., and van Grondelle, R. 1999. Photosynthetic light-harvesting: reconciling dynamics and structure of purple bacterial LH2 reveals function of photo-synthetic unit. Journal of Physical Chemistry B, 103, 2327.Google Scholar
Takagahara, T., Hanamura, E., and Kubo, R. 1977. Stochastic models of intermediate state interaction in second order optical processes – Stationary response. II. Journal of the Physical Society of Japan, 43, 811.Google Scholar
Tamiaki, H., Amakawa, M., Shimono, Y., Tanikaga, R., Holzwarth, A. R., and Schaffner, K. 1996. Synthetic Zinc and Magnesium Chlorin Aggregates as Models for Supramolecular Antenna Complexes in Chlorosomes of Green Photosynthetic Bacteria. Photo chemistry and Photobiology, 63, 92.Google Scholar
Tanimura, Y. 2006. Stochastic Liouville, Langevin, Fokker-Planck, and master equation approaches to quantum dissipative systems. Journal of the Physical Society of Japan, 75, 082001.Google Scholar
Tanimura, Y., and Kubo, R. 1989. Time evolution of a quantum system in contact with a nearly Gaussian-Markoffian noise bath. Journal of the Physical Society of Japan, 58, 101.Google Scholar
Tavan, P., and Schulten, K. 1986. Thelow-lyingexcitations in long polyenes: APPP-MRD- CI study. Journal of Chemical Physics, 85, 6602-6609.Google Scholar
Tavan, P., and Schulten, K. 1987. Electronic excitations in finite and infinite polyenes. Physical Review B, 36, 4337-4358.Google Scholar
Tegmark, M. 2000. Importance of quantum decoherence in brain processes. Physical Review E, 61, 4194-4206.Google Scholar
Teklos, A., and Skourtis, S. S. 2005. Electron transfer through time dependent bridges: differences between Franck-Condon and Born-Oppenheimer breakdown. Chemical Physics, 319, 52-68.Google Scholar
Thalau, P., Ritz, T., Stapput, K., Wiltschko, R., and Wiltschko, W. 2005. Magnetic compass orientation of migratory birds in the presence of a 1.315 MHz oscillating field. Naturwissenschaften, 92, 86-90.Google Scholar
Thalau, P., Ritz, T., Burda, H., Wegner, R. E., and Wiltschko, R. 2006. The magnetic compass mechanisms of birds and rodents are based on different physical principles. Journal of the Royal Society Interface, 3, 583-587.Google Scholar
Thompson, A. L., Gaab, K. M., Xu, J., Bardeen, C. J., and Martínez, T. J. 2004. Variable electronic coupling in phenylacetylene dendrimers: the role of Forster, Dexter, and charge-transfer interactions. Journal of Physical Chemistry A, 108, 671.Google Scholar
Thompson, A. N., Kim, I., Panosian, T. D., Iverson, T. M., Allen, T. W., and Nimigean, C. M. 2009. Mechanism of potassium-channel selectivity revealed by Na+ and Li+ binding sites within the KcsA pore. Nature Structural & Molecular Biology 16(12), 1317-1324.Google Scholar
Thorwart, M., Reimann, P., and Hänggi, P. 2000. Iterative algorithm versus analytic solutions of the parametrically driven dissipative quantum harmonic oscillator. Physical Review E, 62, 5808-5817.Google Scholar
Thorwart, M., Eckel, J., Reina, J. H., Nalbach, P., and Weiss, S. 2009. Enhanced quantum entanglement in the non-Markovian dynamics of biomolecular excitons. Chemical Physics Letters, 478, 234-237.Google Scholar
Tian, P., Keusters, D., Suzaki, Y., and Warren, W. S. 2003. Femtosecond phase-coherent two-dimensional spectroscopy. Science, 300, 155.Google Scholar
Tiersch, M., and Briegel, H. J. 2012. Decoherence in the chemical compass: the role of decoherence for avian magnetoreception. Philosophical Transactions of the Royal Society A, 370, 4517.Google Scholar
Tiersch, M., Popescu, S., and Briegel, H. J. 2012. A critical view on transport and entanglement in models of photosynthesis. Philosophical Transactions of the Royal Society A, 370, 3771.Google Scholar
Timmel, C. R., and Henbest, K. B. 2004. A study of spin chemistry in weak magnetic fields. Philosophical Transactions of the Royal Society A, 362, 2573-2589.Google Scholar
Timmel, C. R., and Hore, P. J. 1996. Oscillating magnetic field effects on the yields of radical pair reactions. Chemical Physics Letters, 257, 401-408.Google Scholar
Timmel, C. R., Till, U., Brocklehurst, B., Mclauchlan, K. A., and Hore, P. J. 1998. Effects of weak magnetic fields on free radical recombination reactions. Molecular Physics, 95, 71-89.Google Scholar
Timmel, C. R., Cintolesi, F., Brocklehurst, B., and Hore, P. J. 2001. Model calculations of magnetic field effects on the recombination reactions of radicals with anisotropic hyperfine interactions. Chemical Physics Letters, 334, 387-395.Google Scholar
Tiwari, V., Peters, W. K., and Jonas, D. M. 2013. Electronic resonance with anticorre-lated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework. Proceedings of the National Academy of Sciences, USA, 110(4), 1203-1208.Google Scholar
Tokmakoff, A. 2000. Two-dimensional line shapes derived from coherent third-order nonlinear spectroscopy. Journal of Physical Chemistry A, 104, 4247.Google Scholar
Tokmakoff, A. 2007. Shining light on the rapidly evolving structure of water. Science, 317, 54-55.Google Scholar
Torres, J., Kukol, A., Goodman, J. M., and Arkin, I. T. 2001. Site-specific examination of secondary structure and orientation determination in membrane proteins: the peptidic C-13==O-18 group as a novel infrared probe. Biopolymers, 59, 396-401.Google Scholar
Trammell, S. A., Wang, L., Zullo, J. M., Shashidhar, R., and Lebedev, N. 2004. Orientated binding of photosynthetic reaction centers on gold using Ni—NTA self-assembled monolayers. Biosensors & Bioelectronics, 19, 1649-1655.Google Scholar
Tretiak, S., Kilina, S., Piryatinski, A., Saxena, A., Martin, R. L., and Bishop, A. R. 2007. Excitons and Peierls distortion in conjugated carbon nanotubes. Nano Letters, 7, 86-92.Google Scholar
Troisi, A., Nitzan, A., and Ratner, M. A. 2003. A rate constant expression for charge transfer through fluctuating bridges. Journal of Chemical Physics, 119, 5782-88.Google Scholar
Troisi, A., Ratner, M. A., and Zimmt, M. B. J. 2004. Dynamic nature of the intramolecular electronic coupling mediated by a solvent molecule: a computational study. Journal of the American Chemical Society, 126, 2215-2224.Google Scholar
Tronrud, D. E., Wen, J., Gay, L., and Blankenship, R. E. 2009. The structural basis for the difference in absorbance spectra for the FMO protein from various green sulfur bacteria. Photosynthesis Research, 100, 79.Google Scholar
Tully, D. C., and Freichet, J. M. J. 2001. Dendrimers at surfaces and interfaces: chemistry and applications. Chemical Communications,1229-1239.Google Scholar
Tully, J. C. 1990. Molecular dynamics with electronic transitions. Journal of Chemical Physics, 93, 1061-71.Google Scholar
Turin, L. 1996. A spectroscopic mechanism for primary olfactory reception. The Chemical Senses, 21/6, 773-791.Google Scholar
Ulstrup, J. 1979. Lecture Notes in Chemistry.Berlin: Springer-Verlag.
Umena, Y., Kawakami, K., Shen, J-R., and Kamiya, N. 2011. Crystal structure of oxygen- evolving photosystem II at a resolution of 1.9 Å. Nature, 473(7345), 55-60.Google Scholar
Vacha, M., Puzová, T., and Kvícalová, M. 2009. Radio frequency magnetic fields disrupt magnetoreception in American cockroach. Journal of Experimental Biology, 212, 3473-3477.Google Scholar
Valkunas, L., Ma, Y.-Z., and Fleming, G. R. 2006. Exciton-exciton annihilation in singlewalled carbon nanotubes. Physical Review B, 73, 115432.Google Scholar
Valkunas, L., Abramavicius, D., and Mancal, T. 2013. Molecular Excitation Dynamics and Relaxation.Wiley VCH.
van Amerongen, H., Kwa, S. L. S., van Bolhuis, B. M., and van Grondelle, R. 1994. Polarized fluorescence and absorption of macroscopically aligned light-harvesting complex II. Biophysical Journal, 67, 837-847.Google Scholar
van Amerongen, H., Valkunas, L., and van Grondelle, R. 2000. Photosynthetic Excitons.Singapore: World Scientific.
van Brederode, M. E., Jones, M. R., van Mourik, F., van Stokkum, I. H. M., and van Gron-delle, R. 1997. A new pathway for transmembrane electron transfer in photosynthetic reaction centers of Rhodobacter sphaeroides not involving the excited special pair. Biochemistry, 36(23), 6855-6861.Google Scholar
van Brederode, M. E., van Mourik, F., van Stokkum, I. H. M., Jones, M. R., and van Grondelle, R. 1999. Multiple pathways for ultrafast transduction of light energy in the photosynthetic reaction center of Rhodobacter sphaeroides. Proceedings of the National Academy of Sciences, USA, 96, 2054-2059.Google Scholar
van der Laan, H., Schmidt, T., Visschers, R. W., Visscher, K. J., van Grondelle, R., and Volker, S. 1990. Energy transfer in the B800-850 antenna complex of purple bacteria Rhodobactersphaeroides-a study by spectral hole-burning. Chemical Physics Letters, 170, 231-238.Google Scholar
van Grondelle, R. 1985. Excitation energy transfer, trapping and annihilation in photosyn- thetic systems. Biochimica et Biophysica Acta, 811, 147-195.Google Scholar
van Grondelle, R., and Novoderezhkin, V. I. 2006. Energy transfer in photosynthesis: experimentalinsights and quantitative models. Physical Chemistry-Chemical Physics, 8(7), 793-807.Google Scholar
van Grondelle, R., and Novoderezhkin, V. I. 2010. Photosynthesis: quantum design for a light trap. Nature, 463(7281), 614-615.Google Scholar
van Grondelle, R., Dekker, J. P., Gillbro, T., and Sundstrom, V. 1994. Energy transfer and trapping in photosynthesis. Biochimica et Biophysica Acta, 1187, 1-65.Google Scholar
van Oijen, A. M., Ketelaars, M., Kohler, J., Aartsma, T. J., and Schmidt, J. 1999. Unraveling the electronic structure of individual photosynthetic pigment-protein complexes. Science, 285(5426), 400-402.Google Scholar
van Rossum, B. J., Steensgaard, D. B., Mulder, F. M., Boender, G.-J., Schaffner, K., Holzwarth, A. R., and de Groot, H. J. M. 2001. A refined model of chlorosomal antennae of Chlorobium tepidum from proton chemical shift constraints obtained with High-Field 2-D and 3-D MAS NMR dipolar correlation spectroscopy. Biochemistry, 40, 1587.Google Scholar
van Stokkum, I. H. M., Larsen, D. S., and vanGrondelle, R. 2004. Global and target analysis of time-resolved spectra. Biochimica et Biophysica Acta, 1657(2-3), 82-104.Google Scholar
van Vliet, C. M. 2008. Equilibrium and non-equilibrium statistical mechanics.Singapore: World Scientific.
Varnavski, O. P., Ostrowski, J., Sukhomlinova, L., Twieg, R. J., Bazan, G. C., and Goodson, T. III 2002. Coherent effects in energy transport in model dendritic structures investigated by ultrafast fluorescence anisotropy spectroscopy. Journal of the American Chemical Society, 124, 1736.Google Scholar
Vaziri, A., and Plenio, M. B. 2010. Quantum coherence in ion channels: resonances, transport and verification. New Journal of Physics, 12, 085001.Google Scholar
Visscher, K. J., Bergstrom, H., Sundstrom, V., Hunter, C. N., and van Grondelle, R. 1989. Temperature dependence of energy transfer from the long wavelength antenna BChl-896 to the reaction center in Rhodospirillum rubrum, Rhodobacter sphaeroides (Wt and M21 mutant) from 77 to 177K, studied by picosecond absorption spectroscopy. Photosynthesis Research, 22, 211-217.Google Scholar
Visser, H. M., Somsen, O. J. G., van Mourik, F., Lin, S., van Stokkum, I. H. M., and van Grondelle, R. 1996. Direct observation of subpicosecond equilibration of excitation energy in the light-harvesting antenna of Rhodospirillumrubrum. Biophysical Journal, 69, 1083-1099.Google Scholar
Vlaming, S. M., Augulis, R., Stuart, M. C. A., Knoester, J., and van Loosdrecht, P. H. M. 2009. Exciton spectra and the microscopic structure of self-assembled porphyrin nanotubes. The Journal of Physical Chemistry B, 113(8), 2273-2283.Google Scholar
von Neumann, J., and Wigner, E. P. 1929. Concerning the behavior of eigenvalues in adiabatic processes. Zeitschrift fur Physik, 30, 467470.Google Scholar
Vos, M. H., Rappaport, F., Lambry, J.-Ch., Breton, J., and Martin, J.-L. 1993. Visualization of coherent nuclear motion in a membrane protein by femtosecond spectroscopy. Nature, 363, 320-325.Google Scholar
Vos, M. H., Jones, M. R., Hunter, C. N., Breton, J., Lambry, J.-C., and Martin, J.-L. 1994. Coherent dynamics during the primary electron-transfer reaction in membrane-bound reaction centers of Rhodobacter sphaeroides. Biochemistry, 33(22), 6750-6757.Google Scholar
Vulto, S. I. E., de Baat, M. A., Neerken, S., Nowak, F. R., van Amerongen, H., Amesz, J., and Aartsma, T. J. 1999. Excited state dynamics in FMO antenna complexes from photosynthetic green sulfur bacteria: akineticmodel. Journal of Physical Chemistry B, 103(38), 8153.Google Scholar
Wajnberg, E., Acosta-Avalos, D., Cambraia Alves, O., Ferreira de Oliveira, J., Srygley, R. B. and Esquivel, D. M. S.Magnetoreception in eusocial insects: an update. Journal of the Royal Society Interface, 7, S207-S225.
Wald, G. 1933. Vitamin A in the retina. Nature, 132, 316-317.Google Scholar
Walker, G. C., Aakesson, E., Johnson, A. E., Levinger, N. E., and Barbara, P. F. 1992. Interplay of solvent motion and vibrational excitation in electron-transfer kinetics: experiment and theory. Journal of Physical Chemistry, 96, 3728-3736.Google Scholar
Walker, M. M. 2008. A model for encoding of magnetic field intensity by magnetite-based magnetoreceptor cells. Journal of Theoretical Biology, 250, 85-91.Google Scholar
Wang, F., Dukovic, G., Knoesel, E., Brus, L. E., and Heinz, T. F. 2004a. Observation of rapid Auger recombination in optically excited semiconducting carbon nanotubes. Physical Review B, 70, 241403.Google Scholar
Wang, H., Lin, S., Allen, J. P., Williams, J. C., Blankert, S., Laser, C., and Woodbury, N. W. 2007. Protein dynamics control the kinetics of initial electron transfer in photosynthesis. Science, 316(5825), 747-750.Google Scholar
Wang, Q., Schoenlein, R. W., Peteanu, L. A., Mathies, R. A., and Schank, C. V. 1994. Vibrationally coherent photochemistry in the femtosecond primary event of vision. Science, 266, 422-424.Google Scholar
Wang, Z., Medforth, C. J., and Shelnutt, J. A. 2004b. Porphyrin nanotubes by ionic self-assembly. Journal of the American Chemical Society, 126, 15954.Google Scholar
Wang, Z. Y., Tang, J., and Norris, J. R. 1992. The general treatment of dynamic solvent effects in electron-transfer at high-temperature. Journal of Chemical Physics, 97, 7251-7256.Google Scholar
Wanko, M., Hoffmann, M., Strodel, P., Koslowski, A., Thiel, W., Neese, F., Frauenheim, T., and Elstner, M. 2005. Calculating absorption shifts for retinal proteins: computational challenges. Journal of Physical Chemistry B, 109, 3606-3615.Google Scholar
Wannagat, U., Damrath, V., Huch, V., Veith, M., and Harder, U. 1993. Sila-olfactory substances and olfactory substance isosters. Part 12. Odors of homologous organoelement compounds of the fourth main group (C, Si, Ge, Sn). Journal of Organometallic Chemistry, 443, 153-165.Google Scholar
Wannagat, U., Damrath, V., and Harder, U. 1994. Sila perfumes and isoteric perfumes. 13. Isoteric compounds according to the hydride principle of Grimm in the range of linalool scents. Monatshefte fur Chemie 125, 1159-1169.Google Scholar
Warshel, A. 2002. Molecular dynamics simulations of biological reactions. Accounts of Chemical Research, 35, 385.Google Scholar
Warshel, A., Chu, Z. T., and Parson, W. W. 1989. Dispersed polaron simulations of electron transfer in photosynthetic reaction centers. Science, 246, 112-116.Google Scholar
Warshel, A., Chu, Z. T., and Parson, W. W. 2001. Dynamics of biochemical and biophysical reactions: insight from computer simulations. Quarterly Reviews of Biophysics, 34, 563-679.Google Scholar
Wasielewski, M. R. 2009. Self-assembly strategies for integrating light harvesting and charge separation in artifical photosynthetic systems. Accounts of Chemical Research, 42, 1910.Google Scholar
Weaver, J. C., Vaughan, T. E., and Astumian, R. D. 2000. Biological sensing of small field differences by magnetically sensitive chemical reactions. Nature, 405(6787), 707-709.Google Scholar
Wedge, C. J., Rodgers, C. T., Norman, S. A., Baker, N., Maeda, K., Henbest, K. B., Timmel, C. R., and Hore, P. J. 2009. Radio frequency polarization effects in low-field electron paramagnetic resonance. Physical Chemistry Chemical Physics, 11, 6573-6579.Google Scholar
Weiss, R. M., and Warshel, A. 1979. A new view of the dynamics of singlet cis-trans photoisomerization. Journal of the American Chemical Society, 101, 6131-6133.Google Scholar
Weiss, U. 2008. Quantum Dissipative Systems.Singapore: World Scientific.
Werner, H.-J., Schulten, Z., and Schulten, K. 1977. Theory of the magnetic field modulated geminate recombination of radical ion pairs in polar solvents: application to the pyrene N,N-dimethylaniline system. Journal of Chemical Physics, 67, 646-663.Google Scholar
Whaley, B., Sarovar, M., and Ishizaki, A. 2011. Quantum entanglement phenomena in photosynthetic light harvesting complexes. Procedia Chemistry, 3, 152.Google Scholar
Whitesides, G. M., Mathias, J. P., and Seto, C. T. 1991. Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. Science, 254, 1312.Google Scholar
Wilde, M. M., McCracken, J. M., and Mizel, A. 2010. Could light harvesting complexes exhibit non-classical effects at room temperature?Philosophical Transactions of the Royal Society of London A. (Mathematical, Physical and Engineering Sciences), 466, 1347-1363.Google Scholar
Wiltschko, R., and Wiltschko, W. 1995a. Magnetic Orientationin Animals.Berlin: Springer.
Wiltschko, R., and Wiltschko, W. 2006. Magnetoreception. Bio Essays, 28, 157-168.
Wiltschko, R., Stapput, K., Ritz, T., Thalau, P., and Wiltschko, W. 2007. Magnetoreception in birds: different physical processes for two types of directional responses. HFSP Journal, 1, 41-48.Google Scholar
Wiltschko, R., Munro, U., Ford, H., Stapput, K., and Wiltschko, W. 2008. Light-dependent magnetoreception: orientation behaviour of migratory birds under dim red light. Journal of Experimental Biology, 211, 3344-3350.Google Scholar
Wiltschko, R., Stapput, K., Thalau, P., and Wiltschko, W. 2010. Directional orientation of birds by the magnetic field under different light conditions. Journal of the Royal Society Interface, 7, S163-S177.Google Scholar
Wiltschko, W., and Wiltschko, R. 1972. Magnetic compass of european robins. Science, 176, 62.Google Scholar
Wiltschko, W., and Wiltschko, R. 1995b. Migratory orientation of European robins is affected by the wavelength of light as well as by a magnetic pulse. Journal of Comparative Physiology A, 177, 363-369.Google Scholar
Wiltschko, W., and Wiltschko, R. 1996. Magnetic orientation in birds. Journal of Expeñmental Biology, 199, 29.Google Scholar
Wiltschko, W., Munro, U., Ford, H., and Wiltschko, R. 1993. Magnetic inclination compass: a basis for the migratory orientation of birds in the northern and southern hemisphere. Cellular and Molecular Life Sciences, 49, 167-170.Google Scholar
Wiltschko, W., Munro, U., Ford, H., and Wiltschko, R. 2006. Bird navigation: what type of information does the magnetite-based receptor provide?Proceedings of the Royal Society of London B. (Biological Sciences), 273, 2815-2820.Google Scholar
Winkler, J. R., and Gray, H. B. 2010. Electron flow through metalloproteins. Biochimica et Biophysica Acta, 1797, 1563-1572.Google Scholar
Winkler, J. R., Nocera, D. G., Yocom, K. M., Bordignon, E., and Gray, H. B. 1982. Electron-transfer kinetics of pentaammineruthenium(III)(histidine-33)-ferricytochromec. Measurement of the rate of intramolecular electron transfer between redox centers separated by 15 Åin a protein. Journal of the American Chemical Society, 104, 5798-5800.Google Scholar
Wiseman, H. M., and Eisert, J. 2007. Nontrivial quantum effects in biology: a skeptical physicists' view. Singapore: World Scientific.
Woiczikowski, P. B., Steinbrecher, T., Kubar, T., and Elstner, M. J. 2011. Nonadiabatic QM/MM simulations of fast charge transfer in Escherichia coli DNA photolyase. Journal of Physical Chemistry B, 115, 9846-9863.Google Scholar
Wong, C. Y., Alvey, R. M., Turner, D. B., Wilk, K. E., Bryant, D. A., Curmi, P. M. G., Silbey, R. J., and Scholes, G. D. 2012. Electronic coherence lineshapes reveal hidden excitonic correlations in photosynthetic light harvesting. Nature Chemistry, 4, 396-404.Google Scholar
Wong, K. F., Bagchi, B., and Rossky, P. J. 2004. Distance and orientation dependence of excitation transfer rates in conjugated systems: beyond the Forster theory. Journal of Physical Chemistry A, 108, 5752.Google Scholar
Woods, M. P., Groux, R., Chin, A. W., Huelga, S. F., and Plenio, M. B. 2014. Mappings of open quantum systems onto chain representations and Markovian embeddings. Journal of Mathematical Physics, 55, 092101.Google Scholar
Woodward, J. R., Timmel, C. R., McLauchlan, K. A., and Hore, P. J. 2001. Radio frequency magnetic field effects on electron-hole recombination. Physical Review Letters, 87, 077602.Google Scholar
Woodward, R. B., and Hoffmann, R. 1969. The conservation of orbital symmetry. Angewandte Chemie – International Edition in English, 8, 781-932.Google Scholar
Wootters, W. K. 1998. Entanglement of formation of an arbitrary state of two qubits. Physical Review Letters, 80, 2245.Google Scholar
Wrobel, D., Wannagat, U., and Harder, U. 1982. Some methoxysilanes, disiloxanes and digermoxanes with effectiveness of odour sila-substituted perfumes 3. Monatshefte fur Chemie, 113, 381-388.Google Scholar
Wu, J., Liu, F., Shen, Y., Cao, J., and Silbey, R. J. 2010. Efficient energy transfer in light-harvesting systems, I: optimal temperature, reorganization energy and spatial-temporal correlations. New Journal of Physics, 12, 105012.Google Scholar
Wu, W., Hsiao, S. C., Carrico, Z. M., and Francis, M. B. 2009. Genome-free viral capsids as multivalentcarriers for Taxol delivery. Angewandte Chemie-International Edition in English, 48, 9493.Google Scholar
Würthner, F., Kaiser, T. E., and Saha-Moller, C. R. 2011. J-Aggregates: from serendipitous discovery to supramolecular engineering of functional dye materials. Angewandte Chemie – International Edition in English, 50, 3376.Google Scholar
Xiao, D., Skourtis, S. S., Rubtsov, I. V., and Beratan, D. N. 2009. Turning charge transfer on and off in a molecular interferometer with vibronic pathways. Nano Letters, 9, 1818-1823.Google Scholar
Xie, Q., Archontis, G., and Skourtis, S. S. 1999. Protein electron transfer: a numerical study of tunneling through fluctuating bridges. Chemical Physics Letters, 312, 237-246.Google Scholar
Xu, D., and Schulten, K. 1992. Multi-mode coupling of protein motion to electron transfer in the photosynthetic reaction center: spin-boson theory based on a classical molecular dynamics simulation. Pages 301-312 of: Breton, J., and Vermeglio, A. (eds), The Photosynthetic Bacterial Reaction Center: II. Structure, Spectroscopy and Dynamics. NATO ASI Series A: Life Sciences. New York: Plenum Press.
Xu, D., and Schulten, K. 1994. Coupling of protein motion to electron transfer in a photo-synthetic reaction center: investigating the low temperature behavior in the framework of the spin-boson model. Chemical Physics, 182, 91-117.Google Scholar
Yakovlev, A. G., Shkuropatov, A. Y., and Shuvalov, V. A. 2000. Nuclear wavepacket motion producing a reversible charge separation in bacterial reaction centers. FEBS Letters, 466, 209-212.Google Scholar
Yakovlev, A. G., Shkuropatov, A. Y., and Shuvalov, V. A. 2002a. Nuclear wave packet motion between P* and P+BA- potential surfaces with a subsequent electron transfer to HA in bacterial reaction centers at 90 K. Electron transfer pathway. Biochemistry, 41(47), 14019-14027.Google Scholar
Yakovlev, A. G., Shkuropatov, A. Ya, and Shuvalov, V. A. 2002b. Nuclear wavepacket motion between P* and P+BA- potential surfaces with subsequent electron transfer to HA in bacterial reaction centers. 1. Room temperature. Biochemistry, 41(8), 2667-2674.Google Scholar
Yan, Y. J., Fried, L. E., and Mukamel, S. 1989. Ultrafast pump-probe spectroscopy: femtosecond dynamics in Liouville space. Journal of Physical Chemistry, 93, 8149.Google Scholar
Yang, M., and Fleming, G. R. 1999. Two-color three-pulse photon echoes as a probe of electronic coupling in molecular complexes. Journal of Chemical Physics, 110, 2983.Google Scholar
Yang, M., and Fleming, G. R. 2002. Influence of phonons on exciton transfer dynamics: comparison of the Redfield, Forster, and modified Redfield equations. Chemical Physics, 275, 355.Google Scholar
Yang, S. I., Lammi, R. K., Seth, J., Riggs, J. A., Arai, T., Kim, D., Bocian, D., Holten, D., and Lindsey, J. 1998. Excited-state energy transfer and ground-state hole/electron hopping in p-phenylene-linked porphyrin dimers. Journal of Physical Chemistry B, 102, 9426.Google Scholar
Yoshii, T., Ahmad, M., and Helfrich-Foerster, C. 2009. Cryptochrome mediates light-dependent magnetosensitivity of Drosophila's circadian clock. PLoS Biology, 7, 813-819.Google Scholar
Zapka, M.,Heyers, D.,Hein, C. M., Engels, S., Schneider, N.-L., Hans, J., Weiler, S.,Dreyer, D., Kishkinev, D., Wild, J. M., and Mouritsen, H. 2009. Visual but not trigeminal mediation of magnetic compass information in a migratory bird. Nature, 461, 1274-1277.Google Scholar
Zener, C. 1932. Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London A, 137, 696-702.Google Scholar
Zhang, F., Aravanis, A. M., Adamantidis, A., deLecea, L., and Deisseroth, K. 2007. Circuit-breakers: optical technologies forprobing neural signals and systems. Nature Reviews Neuroscience, 8, 205-218.Google Scholar
Zhang, J.-P., Fujii, R., Qian, P., Inaba, T., Mizoguchi, T., and Koyama, Y. 2000. Mechanism of the carotenoid-to-bacteriochlorophyll energy transfer via the S1 state in the LH2 complexes from purple bacteria. Journal of Physical Chemistry B, 104, 3683-3691.Google Scholar
Zhang, W. M., Meier, T., Chernyak, V., and Mukamel, S. 1998. Exciton-migration and three-pulse femtosecond optical spectroscopies of photosynthetic antenna complexes. Journal of Chemical Physics, 108, 7763-7774.Google Scholar
Zhang, Y., and Mascarenhas, A. 1999. Scaling of exciton binding energy and Virial theorem in semiconductor quantum wells and wires. Physical Review B, 59, 2040.Google Scholar
Zhou, Y. F., Morais-Cabral, J. H., Kaufman, A., and R., MacKinnon. 2001. Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 angstrom resolution. Nature, 414, 43-48.Google Scholar
Zhu, J., Kais, S., Aspuru-Guzik, A., Rodriques, S., Brock, B., and Love, P. J. 2012. Multipartite quantum entanglement evolution in photosynthetic complexes. Journal of Chemical Physics, 137, 074112.Google Scholar
Zhuang, W., Hayashi, T., and Mukamel, S. 2009. Coherent multidimensional vibrational spectroscopy of biomolecules: concepts, simulations, and challenges. Angewandte Chemie – International Edition, 48, 3750-3781.Google Scholar
Zigmantas, D., Read, E. L., Mancal, T., Brixner, T., Gardiner, A. T., Cogdell, R. J., and Fleming, G. R. 2006. Two-dimensional electronic spectroscopy of the B800-B820 light-harvesting complex. Proceedings of the National Academy Sciences, USA, 103, 12672-7.Google Scholar
Zimmermann, J., Oakman, E. L., Thorpe, I. F., Shi, X., Abbyad, P., Brooks, C. L. II, Boxer, S. G., and Romesberg, F. E. 2006. Antibody evolution constrains conformational heterogeneity by tailoring protein dynamics. Proceedings of the National Academy of Sciences, USA, 103, 13722.Google Scholar
Zoller, P., Beth, T., Binosi, D., Blatt, R., Briegel, H., Bruss, D., Calarco, T., Cirac, J. I., Deutsch, D., Eisert, J., Ekert, A., Fabre, C., Gisin, N., Grangiere, P., Grassl, M., Haroche, S., Imamoglu, A., Karlson, A., Kempe, J., Kouwenhoven, L., Kroll, S., Leuchs, G., Lewenstein, M., Loss, D., Lütkenhaus, N., Massar, S., Mooij, J. E., Plenio, M. B., Polzik, E., Popescu, S., Rempe, G., Sergienko, A., Suter, D., Twamley, J., Wendin, G., Werner, R., Winter, A., Wrachtrup, J., and Zeilinger, A. 2005. Quantum information processing and communication. European Physical Journal D, 36, 203.Google Scholar
Zwanzig, R. 2001. Nonequilibrium Statistical Mechanics.New York: Oxford University Press.

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×