Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-22T10:23:20.158Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 August 2014

John M. Stewart
Affiliation:
University of Cambridge
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Python for Scientists , pp. 216 - 217
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ascher, U. M., Mattheij, R. M. M. and Russell, R. D. (1995), Numerical Solution of Boundary Value Problems for Ordinary Differential Equations, SIAM.CrossRefGoogle Scholar
Ascher, U. M., Mattheij, R. M. M., Russell, R. D. and Petzold, L. R. (1998), Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations, SIAM.CrossRefGoogle Scholar
Bader, G. and Ascher, U. M. (1987), ‘A new basis implementation for a mixed order boundary value odesolver’, SIAM J. Sci. Stat. Comp. 8, 483-500.Google Scholar
Bellen, A. and Zennaro, M. (2003), Numerical Methods for Delay Differential Equations, Oxford.CrossRefGoogle Scholar
Bogacki, P. and Shampine, L. F. (1989), ‘A 3(2) pair of Runge-Kutta formulas’, Appl. Math. Lett. 2, 321-325.CrossRefGoogle Scholar
Boyd, J. P. (2001), Chebyshev and Fourier Spectral Methods, second edn, Dover.Google Scholar
Brandt, A. and Livne, O. E. (2011), Multigrid Techniques: 1984 Guide with Applications to Fluid Dynamics, revised edn, SIAM.CrossRefGoogle Scholar
Briggs, W. L., Henson, V. E. and McCormick, S. (2000), A Multigrid Tutorial, second edn, SIAM.CrossRefGoogle Scholar
Butcher, J. C. (2008), Numerical Methods for Ordinary Differential Equations, second edn, Wiley.CrossRefGoogle Scholar
Coddington, E. A. and Levinson, N. (1955), Theory of Ordinary Differential Equations, McGraw-Hill.Google Scholar
Driver, R. D. (1997), Ordinary and Delay Differential Equations, Springer.Google Scholar
Erneux, Y. (2009), Appplied Delay Differential Applications, Springer.Google Scholar
Evans, L. C. (2013), Introduction to Stochastic Differential Equations, AMS.CrossRefGoogle Scholar
Fornberg, B. (1995), A Practical Guide to Pseudospectral Methods, Cambridge.Google Scholar
Funaro, D. and Gottlieb, D. (1988), ‘A new method of imposing boundary conditions in pseudospectral approximations of hyperbolic equations’, Math. Comp. 51, 599-613.CrossRefGoogle Scholar
Gardiner, C. W. (2009), Handbook ofStochastic Methods, fourth edn, Springer.Google Scholar
Gnuplot Community (2012), ‘Gnuplot 4.6, an interactive plotting program’, available from www.gnuplot.info/docs_4.6/gnuplot.pdf.
Hesthaven, J. S. (2000), ‘Spectral penalty methods’, Appl. Num. Maths. 33, 23-41.Google Scholar
Hesthaven, J. S., Gottlieb, S. and Gottlieb, D. (2007), Spectral Methods for Time-Dependent Problems, Cambridge.CrossRefGoogle Scholar
Higham, D. J. (2001), ‘An algorithmic introduction to numerical solution of stochastic differential equations’, SIAM Rev. 43, 525-546.CrossRefGoogle Scholar
Hull, J. (2009), Options, Futures and Other Derivatives, seventh edn, Pearson.Google Scholar
Janert, K. (2010), Gnuplot in Action, Manning Publications Co.Google Scholar
Kloeden, P. E. and Platen, E. (1992), Numerical Solution of Stochastic Differential Equations, Springer.CrossRefGoogle Scholar
Lambert, J. D. (1992), Numerical Methods for Ordinary Differential Systems, Wiley.Google Scholar
Langtangen, H. P. (2008), Python Scripting for Computational Science, third edn, Springer.CrossRefGoogle Scholar
Langtangen, H. P. (2009), A Primer on Scientific Programming with Python, Springer.CrossRefGoogle Scholar
Lutz, M. (2009), Learning Python, fourth edn, O'Reilly.Google Scholar
Mackey, M. C. and Glass, L. (1977), ‘Oscillation and chaos in physiological control systems’, Science 197, 287-289.CrossRefGoogle ScholarPubMed
Matplotlib Community (2013), ‘Matplotlib release 1.2.1’, available from http://matplotlib.org/Matplotlib.pdf.
Mayavi Community (2011), ‘Mayavi: 3d scientific data visualization and plotting in Python’, available from http://docs.enthought.com/mayavi/mayavi/.
McKinney, W. W. (2012), Python for Data Analysis, O'Reilly.Google Scholar
Murray, J. D. (2002), Mathematical Biology I. An Introduction, Springer.Google Scholar
Numpy Community (2013a), ‘Numpy reference release 1.7.0’, available from http://docs.scipy.org/doc/numpy/numpy-ref-1.7.8.pdf.
Numpy Community (2013b), ‘Numpy user guide release 1.7.0’, available from http://docs.scipy.org/doc/numpy/numpy-user-1.7.8.pdf.
Øksendal, B. (2003), Stochastic Differential Equations, sixth edn, Springer.CrossRefGoogle Scholar
Peitgen, H-O. and Richter, P. H. (1986), The Beauty ofFractals: Images of Complex Dynamical Systems, Springer.CrossRefGoogle Scholar
Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P. (2007), Numerical Recipes: The Art of Scientific Computing, third edn, Cambridge.Google Scholar
Ramachandandran, P. and Variquaux, G. (2009), ‘Mayavi user guide release 3.3.1’, available from http://code.enthought.com/projects/mayavi/docs/development/latex/mayavi/mayavi_user_guide.pdf.Google Scholar
Rossant, C. (2013), Learning IPython for Interactive Computing and Data Visualization, Packt Publishing.Google Scholar
Scipy Community (2012), ‘SciPy reference guide release 0.12.0’, available from http://docs.scipy.org/doc/scipy/scipy-ref.pdf.
Sparrow, C. (1982), The Lorenz Equations, Springer.Google Scholar
Tosi, S. (2009), Matplotlib for Python Developers, Packt Publishing.Google Scholar
Trefethen, L. N. (2000), Spectral Methods in MATLAB, SIAM.CrossRefGoogle Scholar
Trottenberg, U., Oosterlee, C. W. and Schüller, A. (2001), Multigrid, Academic Press.Google Scholar
van Rossum, G. and Drake, F. L. Jr. (2011), An Introduction to Python, Network Theory Ltd.Google Scholar
Wesseling, P. (1992), An Introduction to Multigrid Methods, Wiley.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • John M. Stewart, University of Cambridge
  • Book: Python for Scientists
  • Online publication: 05 August 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781107447875.013
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • John M. Stewart, University of Cambridge
  • Book: Python for Scientists
  • Online publication: 05 August 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781107447875.013
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • John M. Stewart, University of Cambridge
  • Book: Python for Scientists
  • Online publication: 05 August 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781107447875.013
Available formats
×