Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-20T10:10:56.020Z Has data issue: false hasContentIssue false

3 - Is Success or Failure at Solving Complex Problems Related to Intellectual Ability?

Published online by Cambridge University Press:  05 June 2012

Dorit Wenke
Affiliation:
Humboldt-University at Berlin
Peter A. Frensch
Affiliation:
Humboldt-University at Berlin
Janet E. Davidson
Affiliation:
Lewis and Clark College, Portland
Robert J. Sternberg
Affiliation:
Yale University, Connecticut
Get access

Summary

INTRODUCTION

Imagine you are elected mayor of a town and are given absolute power over all town resources. You may hire workers for the local factory, raise taxes, have schools built, and close down local businesses. The one goal you are to strive for is to make certain that the town prospers.

A situation like this, simulated on a computer, was used in the early 1980s by Dietrich Dörner and his colleagues (e.g., Dörner & Kreuzig, 1983; Dörner, Kreuzig, Reither, & Stäudel, 1983) in Bamberg, Germany, to study individual differences in the human ability to solve complex problems. Dörner was interested in understanding why some of his research participants were much more successful in building prosperous towns than were others. One of his rather striking and hotly debated conclusions was that individual differences in the ability to govern the simulated town were not at all related to the individuals' IQs. Rather, an individual's ability to turn the town into a prosperous community seemed to be related to his or her extroversion and self-confidence.

In this chapter we are concerned with the question of what determines individual differences in complex problem-solving competence. The answer to this question may be traced from many different viewpoints: cognitive, social, biological, and evolutionary, to name just a few. Here, we focus on the contribution of cognitive psychology to providing an answer to the question.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amthauer, R., Brocke, B., Liepmann, D. & Beauducel, A. (1973). Intelligence Structure Test (IST 70). Göttingen: Hogrefe
Anderson, M. (1998). Individual differences in intelligence. In K. Kirsner, C. Speelman, M. Maybery, A. O'Brien-Malone, M. Anderson, & C. MacLeod (Eds.), Implicit and explicit processes (pp. 171–185). Mahwah, NJ: Erlbaum
Beckmann, J. F. (1995). Lernen und komplexes Problemlösen: Ein Beitrag zur Validierung von Lerntests [Learning and problem solving: A contribution to validate learning potential tests]. Bonn, Germany: Holos
Beckmann, J. F., & Guthke, J. (1995). Complex problem solving, intelligence, and learning ability. In P. A. Frensch & J. Funke (Eds.), Complex problem solving: The European perspective (pp. 3–25). Hilldale, NJ: Erlbaum
Berry, D. C. (1991). The role of action in implicit learning. Quarterly Journal of Experimental Psychology, 43A, 881–906CrossRefGoogle Scholar
Berry, D. C., & Broadbent, D. E. (1984). On the relationship between task performance and associated verbalizable knowledge. Quarterly Journal of Experimental Psychology, 36A, 209–231CrossRefGoogle Scholar
Berry, D. C., & Broadbent, D. E. (1987). The combination of explicit and implicit learning processes in task control. Psychological research, 49, 7–15CrossRefGoogle Scholar
Berry, D. C., & Broadbent, D. E. (1988). Interactive tasks and the implicit-explicit distinction. British Journal of Psychology, 79, 251–272CrossRefGoogle Scholar
Berry, D. C., & Broadbent, D. E. (1995). Implicit learning in the control of complex systems. In P. A. Frensch & J. Funke (Eds.), Complex problem solving: The European perspective (pp. 3–25). Hilldale, NJ: Erlbaum
Brehmer, B. (1995). Feedback delays in complex decision tasks. In P. A. Frensch & J. Funke (Eds.), Complex problem solving: The European perspective (pp. 103–130). Hillsdale, NJ: Erlbaum
Brehmer, B., & Allard, R. (1991). Dynamic decision making: The effects of task complexity and feedback delay. In J. Rasmussen, B. Brehmer, & J. Leplat (Eds.), Distributed decision making: Cognitive models for cooperative work (pp. 319–334). New York: Wiley
Buchner, A. (1995). Basic topics and approaches to the study of complex problem solving. In P. A. Frensch & J. Funke (Eds.), Complex problem solving: The European perspective (pp. 27–63). Hillsdale, NJ: Erlbaum
Buchner, A., Funke, J., & Berry, D. (1995). Negative correlations between control performance and verbalizable knowledge: Indicators for implicit learning in process control tasks? Quarterly Journal of Experimental Psychology, 48A, 166–187CrossRefGoogle Scholar
Cattell, R. B. & Weiss, R. H. (1980). Culture Fair Intelligence Test, Scale 3 (CFT3). Göttingen: Hogrefe
Ceci, S. J., & Liker, J. K. (1986a). Academic and nonacademic intelligence: An experimental separation. In R. J. Sternberg & R. K. Wagner (Eds.), Practical intelligence (pp. 119–142). Cambridge, MA: Cambridge University Press
Ceci, S. J., & Liker, J. K. (1986b). A day at the races: A study of IQ, expertise, and cognitive complexity. Journal of Experimental Psychology: General, 115, 255–266CrossRefGoogle Scholar
Ceci, S. J., & Liker, J. K. (1988). Stalking the IQ-expertise relation: When critics go fishing. Journal of Experimental Psychology: General, 117, 96–100CrossRefGoogle Scholar
Ceci, S. J., & Ruiz, A. (1992). The role of general ability in cognitive complexity: A case study of expertise. In R. R. Hoffmann (Ed.), The psychology of expertise: Cognitive research and empirical AI (pp. 218–230). New York: SpringerCrossRef
Ceci, S. J., & Ruiz, A. (1993). Transfer, abstractness, and intelligence. In D. K. Detterman & R. J. Sternberg (Eds.), Transfer on trial: Intelligence, cognition, and instruction (pp. 168–191). Norwood, NJ: Ablex Publishing
Detterman, D. K., & Spry, K. M. (1988). Is it smart to play the horses? Comment on “A day at the races: A study of IQ, expertise, and cognitive complexity” (Ceci & Liker, 1986). Journal of Experimental Psychology: General, 117, 91–95CrossRefGoogle Scholar
Dienes, Z., & Fahey, R. (1995). The role of specific instances in controlling a dynamic system. Journal of Experimental Psychology: Learning, Memory, & Cognition, 21, 848–862Google Scholar
Dienes, Z., & Fahey, R. (1998). The role of implicit memory in controlling a dynamic system. Quarterly Journal of Experimental Psychology, 51A, 593–614CrossRefGoogle Scholar
Dörner, D. (1979). Kognitive Merkmale erfolgreicher und erfolgloser Problemlöser beim Umgang mit sehr komplexen Systemen [Cognitive properties of successful and less successful problem solvers interacting with highly complex systems]. In H. Ueckert & D. Rhenius (Eds.), Komplexe menschliche Informationsverarbeitung (pp. 185–195). Bern, Switzerland: Hans Huber
Dörner, D., & Kreuzig, H. W. (1983). Problemlösefähigkeit und Intelligenz [Problem solving and intelligence]. Psychologische Rundschau, 34, 185–192Google Scholar
Dörner, D., Kreuzig, H. W., Reither, F., & Stäudel, T. (1983). Lohhausen: Vom Umgang mit Unbestimmtheit und Komplexität [Lohhausen: On dealing with uncertainty and complexity]. Bern, Switzerland: Hans Huber
Dörner, D., & Preussler, W. (1990). Die Kontrolle eines einfachen ökologischen Systems [Control of a simple ecological system]. Sprache & Kognition, 9, 205–217Google Scholar
Frensch, P. A. (1998). One concept, multiple meanings. On how to define the concept of implicit learning. In M. A. Stadler & P. A. Frensch (Eds.), Handbook of implicit learning (pp. 47–104). Thousand Oaks: Sage Publications
Frensch, P. A., & Funke, J. (1995). Definitions, traditions, and a general framework for understanding complex problem solving. In P. A. Frensch & J. Funke (Eds.), Complex problem solving: The European perspective (pp. 3–25). Hillsdale, NJ: Erlbaum
Fritz, A., & Funke, J. (1988). Komplexes Problemlösen bei Jugendlichen mit Hirnfunktionsstörungen [Complex problem solving by children with cerebral dysfunctions]. Zeitschrift für Psychologie, 196, 171–187Google Scholar
Funke, J. (1983). Einige Bermerkungen zu Problemen der Problemlöseforschung oder: Ist Testintelligenz doch ein Prädiktor? [Some remarks on the problems of problem solving research or: Does test intelligence predict control performance?]. Diagnostica, 29, 283–302Google Scholar
Funke, J. (1984). Diagnose der westdeutschen Problemlöseforschung in Form einiger Thesen [Assessment of West German problem solving research]. Sprache & Kognition, 3, 159–172Google Scholar
Funke, J. (1985). Steuerung dynamischer Systeme durch Aufbau und Anwendung subjektiver Kausalmodelle [Control of dynamic sytems through development and application of subjective causal models]. Zeitschrift für Psychologie, 193, 443–465Google Scholar
Funke, J. (1991). Solving complex problems: Exploration and control of complex systems. In R. J. Sternberg & P. A. Frensch (Eds.), Complex problem solving: Principles and mechanisms (pp. 185–222). Hillsdale, NJ: Erlbaum
Funke, J. (1992a). Dealing with dynamic systems: Research strategy, diagnostic approach and experimental results. German Journal of Psychology, 16, 24–43Google Scholar
Funke, J. (1992b). Wissen über dynamische Systeme: Erwerb, Repräsentation und Anwendung [Knowledge about complex dynamic systems: Acquisition, representation, and use]. Berlin: Springer
Funke, J. (1993). Microworlds based on linear equation systems: A new approach to complex problem solving and experimental results. In G. Strube & K. F. Wender (Eds.), The cognitive psychology of knowledge (pp. 313–330). Amsterdam: ElsevierCrossRef
Funke, J., & Müller, H. (1988). Eingreifen und Prognostizieren als Determinanten von Systemidentifikation und Systemsteuerung [Active control and prediction as determinants of system identification and system control]. Sprache & Kognition, 7, 176–186Google Scholar
Geddes, B. W., & Stevenson, R. J. (1997). Explicit learning of a dynamic system with a non-salient pattern. Quarterly Journal of Experimental Psychology, 50A, 742–765CrossRefGoogle Scholar
Green, R. E., & Shanks, D. R. (1993). On the existence of independent explicit and implicit learning systems: An examination of some evidence. Memory & Cognition, 21, 304–317CrossRefGoogle ScholarPubMed
Guthke, J. (1992). Learning tests – The concept, main research findings, problems, and trends. Learning and Individual Differences, 4, 137–152CrossRefGoogle Scholar
Guthke, J., Jäger, C. & Schmidt, I. (1983). LTS: Learning Test Battery “Reasoning.” Berlin: Humboldt-Universität zu Berlin, Institut für Psychologie
Haider, H. (1992). Implizites Wissen und Lernen. Ein Artefakt? [Implicit knowledge and learning. An artifact?]. Zeitschrift für Experimentelle und Angewandte Psychologie, 39, 68–100Google Scholar
Hayes, N. A., & Broadbent, D. E. (1988). Two modes of learning for interactive tasks. Cognition, 28, 249–276CrossRefGoogle ScholarPubMed
Hesse, F. W. (1982). Effekte des semantischen Kontexts auf die Bearbeitung komplexer Probleme [Effects of semantic context on problem solving]. Zeitschrift für Experimentelle und Angewandte Psychologie, 29, 62–91Google Scholar
Hörmann, J. J., & Thomas, M. (1989). Zum Zusammenhang zwischen Intelligenz und komplesem Problemlösen [On the relationship between intelligence and complex problem solving]. Sprache & Kognition, 8, 23–31Google Scholar
Howe, M. J. (1988). Intelligence as an explanation. British Journal of Psychology, 79, 349–360CrossRefGoogle Scholar
Howe, M. J. A. (1996). Concepts of ability. In I. Dennis & P. Tapsfield (Eds.), Human abilities: Their nature and their measurement (pp. 39–48). Mahwah, NJ: Erlbaum
Hunt, E. (1980). Intelligence as an information-processing concept. British Journal of Psychology, 71, 449–474CrossRefGoogle ScholarPubMed
Hussy, W. (1989). Intelligenz und komplexes Problemlösen [Intelligence and complex problem solving]. Diagnostica, 35, 1–16Google Scholar
Hussy, W. (1991). Problemlösen und Verarbeitungskapazität [Complex problem solving and processing capacity]. Sprache & Kognition, 10, 208–220Google Scholar
Jäger, A. O. (1982). Mehrmodale Klassifikation von Intelligenzleistungen [Multimodal classification of intelligent performance]. Diagnostica, 28, 195–225Google Scholar
Jensen, A. B., & Weng, L. J. (1994). What is a good g? Intelligence, 8, 231–258CrossRefGoogle Scholar
Klahr, D., & Dunbar, K. (1988). Dual space search during scientific reasoning. Cognitive Science, 12, 1–55CrossRefGoogle Scholar
Kluwe, R. H., Misiak, C., & Haider, H. (1991). Systems and performance in intelligence tests. In H. Rowe (Ed.), Intelligence: Reconceptualization and measurement (pp. 227–244). Hillsdale, NJ: Erlbaum
Kray, J., & Frensch, P. A. (2002). A view from cognitive psychology: “g” – (G)host in the correlation matrix? In R. J. Sternberg & E. E. Grigorenko (Eds.), The general factor of intelligence: Fact or fiction? (pp. 183–222). Hillsdale, NJ: Erlbaum
Lüer, G., & Spada, H. (1998). Denken und Problemlösen [Thinking and problem solving]. In H. Spada (Ed.), Lehrbuch Allgemeine Psychologie (2nd ed., pp. 189–280). Bern: Hans Huber
Mawer, R. F., & Sweller, J. (1982). Effects of subgoal density and location on learning during problem solving. Journal of Experimental Psychology: Learning, Memory, & Cognition, 8, 252–259Google Scholar
Müller, H. (1993). Komplexes Problemlösen: Reliabilität und Wissen [Complex problem solving: Reliability and knowledge]. Bonn, Germany: Hobos
Nissen, M. J., & Bullemer, P. (1987). Attentional requirements of learning: Evidence from performance measures. Cognitive Psychology, 19, 1–32CrossRefGoogle Scholar
Putz-Osterloh, W. (1981). Über die Beziehung zwischen Testintelligenz und Problemlöseerfolg [On the relationship between test intelligence and success in problem solving]. Zeitschrift für Psychologie, 189, 79–100Google Scholar
Putz-Osterloh, W. (1983). Kommentare zu dem Aufsatz von J. Funke: Einige Bermerkungen zu Problemen der Problemlöseforschung oder: Ist Testintelligenz doch ein Prädiktor? [Comments on J. Funke's paper: Some remarks on problems of problem solving research or: Does test intelligence predict control performance?]. Diagnostica, 29, 303–309Google Scholar
Putz-Osterloh, W. (1993). Strategies for knowledge acquisition and transfer of knowledge in dynamic tasks. In G. Grube & K. F. Wender (Eds.), The cognitive psychology of knowledge. Amsterdam: ElsevierCrossRef
Putz-Osterloh, W., & Lüer, G. (1981). Über die Vorhersagbarkeit komplexer Problemlöseleistungen durch Ergebnisse in einem Intelligenztest [On the predictability of complex problem solving performance by intelligence test scores]. Zeitschrift für Experimentelle und Angewandte Psychologie, 28, 309–334Google Scholar
Raven, J. C., Court, J. & Raven, J., Jr. (1980). Advanced Progressive Matrices (APM). Weinheim: Beltz
Reber, A. S. (1967). Implicit learning of artificial grammars. Journal of Verbal Learning and Verbal Behavior, 77, 317–327Google Scholar
Reber, A. S. (1969). Transfer of syntactic structure in synthetic languages. Journal of Experimental Psychology, 81, 115–119CrossRefGoogle Scholar
Reber, A. S. (1976). Implicit learning and tacit knowledge. Journal of Experimental Psychology: Human Learning and Memory, 2, 88–94Google Scholar
Reber, A. S. (1995). The Penguin dictionary of psychology (2nd ed.). New York: Penguin Books, Inc
Reber, A. S., Walkenfield, F. F., & Hernstadt, R. (1991). Implicit and explicit learning: Individual differences and IQ. Journal of Experimental Psychology: Learning, Memory, & Cognition, 17, 888–896Google ScholarPubMed
Sanderson, P. M. (1989). Verbalizable knowledge and skilled task performance: Association, dissociation, and mental models. Journal of Experimental Psychology: Learning, Memory, & Cognition, 15, 729–747Google Scholar
Shanks, D. R., & St. John, M. F. (1994). Characteristics of dissociable human learning systems. Behavioral and Brain Sciences, 17, 367–447CrossRefGoogle Scholar
Simon, H. A., & Lea, G. (1974). Problem solving and rule induction: A unified view. In L. W. Gregg (Ed.), Knowledge and cognition. Hillsdale, NJ: Erlbaum
Squire, L. R., & Frambach, M. (1990). Cognitive skill learning in amnesia. Psychobiology, 18, 109–117Google Scholar
Stanley, W. B., Mathews, R. C., Buss, R. R., & Kotler-Cope, S. (1989). Insight without awareness: On the interaction of verbalization, instruction, and practice in a simulated process control task. Quarterly Journal of Experimental Psychology, 41A, 553–577CrossRefGoogle Scholar
Sternberg, R. J. (1982). Reasoning, problem solving, and intelligence. In R. J. Sternberg (Ed.), Handbook of human intelligence (pp. 225–307). Cambridge, MA: Cambridge University Press
Sternberg, R. J., Nokes, C., Geissler, P. W., Prince, R., Okatcha, F., Bundy, D. A., & Grigorenko, E. L. (2001). The relationship between academic and practical intelligence: A case study in Kenya. Intelligence, 29, 401–418CrossRefGoogle Scholar
Strohschneider, S. (1991). Problemlösen und Intelligenz: Über die Effekte der Konkretisierung komplexer Probleme [Complex problem solving and intelligence: On the effects of problem concreteness]. Diagnostica, 37, 353–371Google Scholar
Süβ, H. M., Kersting, M., & Oberauer, K. (1991). Intelligenz und Wissen als Prädiktoren für Leistungen bei computersimulierten komplexen Problemen [Intelligence and knowledge as predictors of performance in solving complex computer-simulated problems]. Diagnostica, 37, 334–352Google Scholar
Sweller, J. (1983). Control mechanisms in problem solving. Memory and Cognition, 11, 32–40CrossRefGoogle ScholarPubMed
Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12, 257–285CrossRefGoogle Scholar
Vollmeyer, R., Burns, B. D., & Holyoak, K. J. (1996). The impact of goal specificity on strategy use and the acquisition of problem structure. Cognitive Science, 20, 75–100CrossRefGoogle Scholar
Wechsler, D. (1982). Wechsler Adult Intelligence Scale – Revised (WAIS-R). New York: The Psychological Corporation
Whittlesea, B. W., & Dorken, M. D. (1993). Incidentally, things in general are particularly determined: An episodic-processing account of implicit learning. Journal of Experimental Psychology: General, 122, 227–248CrossRefGoogle Scholar
Wright, R. L., & Whittlesea, B. W. (1998). Implicit learning of complex structures: Active adaptation and selective processing in acquisition and application. Memory & Cognition, 26, 402–420CrossRefGoogle ScholarPubMed
Zacks, R. T., Hasher, L., & Sanft, H. (1982). Automatic encoding of event frequency: Further findings. Journal of Experimental Psychology: Learning, Memory, & Cognition, 8, 106–116Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×