Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-20T13:27:45.530Z Has data issue: false hasContentIssue false

7 - Distance-Based Modularity Analysis

Published online by Cambridge University Press:  28 January 2010

Aidong Zhang
Affiliation:
State University of New York, Buffalo
Get access

Summary

INTRODUCTION

The classic approaches to clustering follow a protocol termed “pattern proximity after feature selection” [158]. Pattern proximity is usually measured by a distance function defined for pairs of patterns. A simple distance measurement can capture the dissimilarity between two patterns, while similarity measures can be used to characterize the conceptual similarity between patterns. In protein-protein interaction (PPI) networks, proteins are represented as nodes and interactions are represented as edges. The relationship between two proteins is therefore a simple binary value: 1 if they interact, 0 if they do not. This lack of nuance makes it difficult to define the distance between the two proteins. The reliable clustering of PPI networks is further complicated by a high rate of false positives and the sheer volume of data, as discussed in Chapter 2.

Distance-based clustering employs these classic techniques and focuses on the definition of the topological or biological distance between proteins. These clustering approaches begin by defining the distance or similarity between two proteins in the network. This distance/similarity matrix can then be incorporated into traditional clustering algorithms. In this chapter, we will discuss a variety of approaches to distance-based clustering, all of which are grounded upon the use of these classic techniques.

TOPOLOGICAL DISTANCE MEASUREMENT BASED ON COEFFICIENTS

The simplest of these approaches use classic distance measurement methods and their various coefficient formulas to compute the distance between proteins in PPI networks. As discussed in [123], the distance between two nodes (proteins) in a PPI network can be defined as follows.

Type
Chapter
Information
Protein Interaction Networks
Computational Analysis
, pp. 109 - 129
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×