Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-16T18:13:01.057Z Has data issue: false hasContentIssue false

7 - Transrectal ultrasound imaging of the prostate

Published online by Cambridge University Press:  23 December 2009

Hedvig Hricak
Affiliation:
Memorial Sloan-Kettering Cancer Center
Peter Scardino
Affiliation:
Memorial Sloan-Kettering Cancer Center
Get access

Summary

Introduction

Over 186 000 men will be diagnosed with prostate cancer in 2008, accounting for approximately 25% of newly diagnosed cancers in the US male population [1]. In the era of prostate-specific antigen (PSA) screening, prostate cancer has undergone a significant downward stage and risk migration, with an increasing proportion of low-risk, organ-confined disease being diagnosed [2].

Transrectal ultrasound (TRUS) imaging of the prostate has played a fundamental role in the diagnosis, staging, and management of prostate cancer. During the past decade, technological innovations have improved the detection of prostate cancer. Clinical research continues to focus on methods to accurately and efficiently identify clinically significant neoplasms. In this chapter, we describe contemporary techniques for TRUS imaging and detection of prostate cancer.

Sonographic anatomy

Accurate evaluation and assessment of the prostate during TRUS requires a fundamental understanding of the underlying sonographic anatomy and histopathology of the gland. The prostate gland is anatomically divided into zones, originally described by McNeal in 1981 [3]. Zonal architecture of the prostate is defined anatomically with respect to glandular drainage into the prostatic urethra, and consists of a total of four glandular zones – the periurethral zone, the transition zone, the central zone, and the peripheral zone – as well as the anterior fibromuscular stroma. The anterior fibromuscular stroma does not contain any glands, whereas the peripheral zone comprises approximately 70% of the glandular tissue in the normal prostate.

Type
Chapter
Information
Prostate Cancer , pp. 102 - 119
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Jemal, A., Siegel, R., Ward, E., et al., Cancer statistics, 2008. CA Cancer J Clin 58 (2008), 71–96.CrossRefGoogle ScholarPubMed
Cooperberg, M. R., Moul, J. W., Carroll, P. R., The changing face of prostate cancer. J Clin Oncol 23 (2005), 8146–51.CrossRefGoogle ScholarPubMed
McNeal, J. E., Normal and pathologic anatomy of the prostate. Urology, 17:Suppl (1981), 11–16.Google Scholar
McNeil, J. E., Origin and evolution of benign prostatic enlargement. Investig Urol, 15 (1978), 340–5.Google Scholar
McNeal, J. E., Origin and development of carcinoma in the prostate. Cancer, 23 (1969), 24–33.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
McNeal, J. E., Redwine, E. A., Freiha, F. S., et al., Zonal distribution of prostatic adenocarcinoma: correlation with histologic pattern and direction of spread. Am J Surg Pathol, 12 (1988), 897–906.CrossRefGoogle Scholar
Byar, D. P., Mostofi, F. K., Carcinoma of the prostate: evaluation of certain pathologic features in 208 radical prostatectomies. Cancer, 30 (1972), 5–13.3.0.CO;2-S>CrossRefGoogle ScholarPubMed
McNeal, J. E., Redwine, E. A., Freiha, F. S., et al., Zonal distribution of prostatic adenocarcinoma: correlation with histologic pattern and direction of spread. Am J Surg Pathol, 12 (1988), 897–906.CrossRefGoogle Scholar
Konig, K., Scheipers, U., Pesavento, A., et al., Initial experiences with real-time elastography guided biopsies of the prostate. J Urol, 174 (2005), 115–17.CrossRefGoogle ScholarPubMed
Sabbagh, R., McCormack, M., Peloquin, F., et al., A prospective randomized trial of 1-day versus 3-day antibiotic prophylaxis for transrectal ultrasound guided prostate biopsy. Can J Urol, 11 (2004), 2216–19.Google ScholarPubMed
Halpern, E. J., Frauscher, F., Forsberg, F., et al., High frequency Doppler imaging of the prostate: effect of patient position. Radiology, 222 (2002), 634–9.CrossRefGoogle ScholarPubMed
Rifkin, M. D., Dahnert, W., Kurtz, A. B., State of the art: endorectal sonography of the prostate gland. AJR Am J Roentgenol, 154 (1990), 691–700.CrossRefGoogle ScholarPubMed
Shinohara, K., Wheeler, T. M., Scardino, P. T., The appearance of prostate cancer on transrectal ultrasonography: correlation of imaging and pathological examinationsJ Urol, 142 (1989), 76–82.CrossRefGoogle ScholarPubMed
Voorde, W. M., Oyen, R. H., Poppel, H. P., et al., Peripherally localized benign hyperplastic nodules of the prostate. Mod Pathol, 8 (1995), 46–50.Google ScholarPubMed
Purohit, R. S., Shonohara, K., Meng, M. V., et al., Imaging clinically localized prostate cancer. Urol Clin N Am, 30 (2003), 279–93.CrossRefGoogle ScholarPubMed
Varghese, S. L., Grossfeld, G. D., The prostatic gland: malignancies other than adenocarcinomas. Radiol Clin N Am, 38 (2000), 179–202.CrossRefGoogle ScholarPubMed
Aarnink, R. G., Beerlage, H. P., Rosette, J. J., et al., Transrectal ultrasound of the prostate: innovations and future applications. J Urol, 159 (1998), 1568–79.CrossRefGoogle ScholarPubMed
Rifkin, M. D., Sudakoff, G. S., Alexander, A. A., Prostate: techniques, results, and potential applications of color Doppler US scanning. Radiology, 186 (1993), 509–13.CrossRefGoogle ScholarPubMed
Kravchick, S., Cytron, S., Peled, R., et al., Using gray-scale and two different techniques of color Doppler sonography to detect prostate cancer. Urology, 61 (2003), 977–81.CrossRefGoogle ScholarPubMed
Ismail, M., Petersen, R. O., Alexander, A. A., et al., Color Doppler imaging in predicting the biologic behavior of prostate cancer: correlation with disease-free survival. Urology, 50 (1997), 906–12.CrossRefGoogle ScholarPubMed
Cho, J. Y., Kim, S. H., Lee, S. E., Diffuse prostatic lesions: role of color Doppler and power Doppler ultrasonography. J Ultrasound Med, 17 (1998), 283–7.CrossRefGoogle ScholarPubMed
Okihara, K., Kojima, M., Naya, Y., et al., Ultrasonic power Doppler imaging for prostatic cancer: a preliminary report. Tohoku J Exp Med, 82 (1997), 277–81.CrossRefGoogle Scholar
Patel, U., Rickards, D., The diagnostic value of colour Doppler flow in the peripheral zone of the prostate, with histologic correlation. BJU Int, 74 (1994), 590–5.CrossRefGoogle Scholar
Keener, T. S., Winter, T. C., Berger, R., et al., Prostate vascular flow: the effect of ejaculation as revealed on transrectal power Doppler sonography. AJR Am J Roentgenol, 175 (2000), 1169–72.CrossRefGoogle ScholarPubMed
Kelly, I. M. G., Lees, W. R., Rickards, D., Prostate cancer and the role of color Doppler US. Radiology, 189 (1993), 153–6.CrossRefGoogle ScholarPubMed
Newman, J. S., Bree, R. L., Rubin, J. M., Prostate cancer: diagnosis with color Doppler sonography with histologic correlation of each biopsy site. Radiology, 195 (1995), 86–90.CrossRefGoogle ScholarPubMed
Cornud, F., Belin, X., Piron, D., et al., Color Doppler-guided biopsies in 591 patients with an elevated serum PSA level: impact on Gleason score for non-palpable lesions. Urology, 49 (1997), 709–15.CrossRefGoogle Scholar
Halpern, E. J., Frauscher, F., Strup, S. E., et al., Prostate: high frequency Doppler US imaging for cancer detection. Radiology, 225 (2002), 71–7.CrossRefGoogle ScholarPubMed
Kay, P. A., Robb, R. A., Bostwick, D. G., Prostate cancer microvessels: a novel method for three-dimensional reconstruction and analysis. Prostate, 37 (1998), 270–7.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Louvar, E., Littrup, P. J., Goldstein, A., et al., Correlation of color flow in the prostate with tissue microvascularity. Cancer, 83 (1998), 135–40.3.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Lissbrant, I. F., Stattin, P., Damber, J. E., et al., Vascular density is a predictor of cancer-specific survival in prostatic carcinoma. Prostate, 33 (1997), 38–45.3.0.CO;2-5>CrossRefGoogle ScholarPubMed
Borre, M., Offersen, B. V., Nerstrom, B., et al., Microvessel density predicts survival in prostate cancer patients subjected to watchful waiting. Br J Cancer, 78 (1998), 940–4.CrossRefGoogle ScholarPubMed
Weidner, N., Carroll, P. R., Flax, J., et al., Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma. Am J Pathol, 143 (1993), 401–9.Google ScholarPubMed
Fregene, T. A., Khanuja, P. S., Noto, A. C., et al., Tumor-associated angiogenesis in prostate cancer. Anticancer Res, 13 (1993), 2377–82.Google ScholarPubMed
Brawer, M. K., Deering, R. E., Brown, M., et al., Predictors of pathologic stage in prostate carcinoma, the role of neovascularity. Cancer, 73 (1994), 678–87.3.0.CO;2-6>CrossRefGoogle ScholarPubMed
Bostwick, D. G., Wheeler, T. M., Blute, M., et al., Optimized microvessel density analysis improves prediction of cancer stage from prostate needle biopsies. Urology, 48 (1996), 47–57.CrossRefGoogle ScholarPubMed
Golberg, B. B., Liu, J. B., Forsberg, F., Ultrasound contrast agents: a review. Ultrasound Med Biol, 20 (1994), 319–33.CrossRefGoogle Scholar
Goldberg, B. B., Raichlen, J. S., Forsberg, F., In: Ultrasound Contrast Agents: Basic Principles and Clinical Applications, 2nd edn. London: Dunitz, 2001.Google Scholar
Sedelaar, J. P., Leenders, G. J., Hulsbergen-van de Kaa, C. A., et al., Microvessel density: correlation between contrast ultrasonography and histology of prostate cancer. Eur Urol, 40 (2001), 285–93.CrossRefGoogle ScholarPubMed
Strohmeyer, D., Frauscher, F., Klauser, A., et al., Contrast-enhanced transrectal color Doppler ultrasonography (TRCDUS) for assessment of angiogenesis in prostate cancer. Anticancer Res, 21 (2001), 2907–13.Google ScholarPubMed
Bogers, H. A., Sedelaar, J. P., Beerlage, H. P., et al., Contrast-enhanced three-dimensional power Doppler angiography of the human prostate: correlation with biopsy outcome. Urology, 54 (1999), 97–104.CrossRefGoogle ScholarPubMed
Roy, C., Buy, X., Lang, H., et al., Contrast enhanced color Doppler endorectal-sonography of the prostate: efficiency for detecting peripheral zone tumors and role for biopsy procedure. J Urol, 170 (2003), 69–72.CrossRefGoogle Scholar
Frauscher, F., Klauser, A., Halpern, E. J., et al., Detection of prostate cancer with a microbubble ultrasound contrast agent. Lancet, 357 (2001), 1849–50.CrossRefGoogle ScholarPubMed
Frauscher, F., Klauser, A., Volgger, H., et al. Comparison of contrast-enhanced color Doppler targeted biopsy to conventional systematic biopsy: impact on prostate cancer detection. J Urol, 167 (2002), 1648–52.CrossRefGoogle ScholarPubMed
Jong, N., Cornet, R., Lancee, C. T., Higher harmonics of vibrating gas-filled microspheres. Part one: simulations. Ultrasonics, 32 (1994), 447–53.CrossRefGoogle Scholar
Jong, N., Cornet, R., Lance, C. T., Higher harmonics of vibrating gas-filled microspheres. Part two: measurements. Ultrasonics, 32 (1994), 455–9.CrossRefGoogle Scholar
Forsberg, F., Goldberg, B. B., Liu, J. B., et al., On the feasibility of real-time, in vivo harmonic imaging with proteinaceous microspheres. Ultrasound Med, 15 (1996), 853–60.CrossRefGoogle ScholarPubMed
Schrope, B. A., Newhouse, V. L., Uhlendorf, V., Simulated capillary blood flow measurement using a nonlinear ultrasonic contrast agent. Ultrason Imaging, 14 (1992), 134–58.CrossRefGoogle ScholarPubMed
Schrope, B. A., Newhouse, V. L., Second harmonic ultrasound blood perfusion measurement. Ultrasound Med Biol, 19 (1993), 567–79.CrossRefGoogle ScholarPubMed
Porter, T. R., Xie, F., Transient myocardial contrast after initial exposure to diagnostic ultrasound pressures with minute doses of intravenously injected microbubbles. Circulation, 92 (1995), 2391–5.CrossRefGoogle ScholarPubMed
Colon, P. J., Richards, D. R., Moreno, C. A., et al., Benefits of reducing the cardiac cycle-triggering frequency of ultrasound imaging to increase myocardial opacification with FS069 during fundamental and second harmonic imaging. J Am Soc Echocardiogr, 10 (1997), 602–7.CrossRefGoogle ScholarPubMed
Broillet, A., Puginier, J., Ventrone, R., et al., Assessment of myocardial perfusion by intermittent harmonic power Doppler using SonoVue, a new ultrasound contrast agent. Invest Radiol, 33 (1998), 209.CrossRefGoogle ScholarPubMed
Halpern, E. J., Verkh, L., Forsberg, F., et al., Initial experience with contrast-enhanced sonography of the prostate. AJR Am J Roentgenol, 174 (2000), 1575–80.CrossRefGoogle ScholarPubMed
Halpern, E. J., Rosenberg, M., Gomella, L. G., Prostate cancer: contrast-enhanced US for detection. Radiology, 219 (2001), 219–25.CrossRefGoogle ScholarPubMed
Halpern, E. J., Frauscher, F., Rosenberg, M., et al., Directed biopsy during contrast enhanced sonography of the prostate. AJR Am J Roentgenol, 178 (2001), 915–19.CrossRefGoogle Scholar
Halpern, E. J., Ramey, J. R., Strup, S. E., et al., Detection of prostate cancer with contrast-enhanced sonography using intermittent harmonic imaging. Cancer, 104 (2005), 2373–83.CrossRefGoogle ScholarPubMed
Halpern, E. J., McCue, P. A., Aksnes, A. K., et al., Contrast enhanced sonography of the prostate with Sonazoid: comparison with prostatectomy specimens in twelve patients. Radiology, 222 (2002), 361–6.CrossRefGoogle Scholar
Rittmaster, R. S., Norman, R. W., Thomas, L. N., et al., Evidence for atrophy and apoptosis in the prostates of men given finasteride. J Clin Endocrinol Metab, 81 (1996), 814–9.Google ScholarPubMed
Donohue, J. F., Sharma, H., Abraham, R., et al., Transurethral prostate resection and bleeding: a randomized, placebo controlled trial of role of finasteride for decreasing operative blood loss. J Urol, 168 (2002), 2024–6.CrossRefGoogle ScholarPubMed
Hochberg, D. A., Basillote, J. B., Armenakas, N. A., et al., Decreased suburethral prostatic microvessel density in finasteride treated prostates: a possible mechanism for reduced bleeding in benign prostatic hyperplasia. J Urol, 167 (2002), 1731–3.CrossRefGoogle ScholarPubMed
Ives, E. P., Gomella, L. G., Halpern, E. J., Effect of dutasteride therapy on Doppler evaluation of the prostate: preliminary results. Radiology, 237 (2005), 197–201.CrossRefGoogle ScholarPubMed
Taylor, L. S., Porter, B. C., Rubens, D. J., et al., Three-dimensional sonoelastography: principles and practices. Phys Med Biol, 45 (2000), 1477–94.CrossRefGoogle ScholarPubMed
Lee, F., Bronson, J. P., Lerner, R. M., et al., Sonoelasticity imaging: results in vitro tissue specimens. Radiology, 181 (1991), 237–9.CrossRefGoogle ScholarPubMed
Krouskop, T. A., Wheeler, T. M., Kallel, F., et al., Elastic moduli of breast and prostatic tissues under compression. Ultrason Imaging, 20 (1998), 260–74.CrossRefGoogle ScholarPubMed
Ophir, J., Cespedes, I., Ponnekanti, H., et al., Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging, 13 (1991), 111–34.CrossRefGoogle ScholarPubMed
Cochlin, D. L., Ganatra, R. H., Griffiths, D. F., Elastography in the detection of prostatic cancer. Clin Radiol, 57 (2002), 1014–20.CrossRefGoogle ScholarPubMed
Nelson, E. D., Slotoroff, C. B., Gomella, L. G., et al., Targeted biopsy of the prostate: the impact of color Doppler and elastography on prostate cancer detection and Gleason score. Urology, 70:6 (2007), 1136–40.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×