Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-16T18:30:18.006Z Has data issue: false hasContentIssue false

3 - Current clinical issues in prostate cancer that can be addressed by imaging

Published online by Cambridge University Press:  23 December 2009

Hedvig Hricak
Affiliation:
Memorial Sloan-Kettering Cancer Center
Peter Scardino
Affiliation:
Memorial Sloan-Kettering Cancer Center
Get access

Summary

Introduction

The role of imaging in the management of prostate cancer has long been controversial, and imaging continues to be both overused and underused. Guidelines are available regarding the use of imaging for the assessment of advanced disease. However, in recent years, imaging technology has matured, image acquisition and interpretation have improved, and a host of clinical studies have demonstrated the potential of imaging for improving other aspects of prostate cancer care, including the detection of local primary or recurrent disease and surgical or radiation treatment planning. This review will discuss the many ways in which imaging can contribute to the evidence-based clinical management of prostate cancer, focusing on the most commonly used cross-sectional imaging modalities: transrectal ultrasound (TRUS), computed tomography (CT), magnetic resonance imaging (MRI), radionuclide bone scanning, positron-emission tomography (PET), and combined PET/CT.

Imaging in diagnosis

Prostate-specific antigen (PSA) testing and digital rectal examination (DRE) continue to be the mainstays of prostate cancer detection. When either of these yields abnormal results, TRUS-guided biopsy is performed. The initial biopsy session will detect cancer in about 29% of patients who undergo biopsy for suspected prostate cancer, depending on the PSA level and DRE results. However, the sensitivity for detection is about 80%–90%, depending on the biopsy scheme used [1, 2]. Cancers missed by systematic transrectal biopsy may be small or located in the anterior part of the gland, an area rarely sampled [3].

Type
Chapter
Information
Prostate Cancer , pp. 29 - 42
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Presti, Jr J. C.., Chang, J. J., Bhargava, V., et al., The optimal systematic prostate biopsy scheme should include 8 rather than 6 biopsies: results of a prospective clinical trial. J Urol, 163 (2000), 163–7.CrossRefGoogle ScholarPubMed
Roehl, K., Antenor, J., Catalona, W., Serial biopsy results in prostate cancer screening study. J Urol, 167 (2002), 2435–9.CrossRefGoogle ScholarPubMed
Koppie, T. M., Bianco, Jr F. J.., Kuroiwa, K., et al., The clinical features of anterior prostate cancers. BJU Int, 98 (2006), 1167–71.CrossRefGoogle ScholarPubMed
Beyersdorff, D., Taupitz, M., Winkelmann, B., et al., Patients with a history of elevated prostate-specific antigen levels and negative transrectal US-guided quadrant or sextant biopsy results: value of MR imaging. Radiology, 224 (2002), 701–6.CrossRefGoogle ScholarPubMed
Mullerad, M., Hricak, H., Kuroiwa, K., et al., Comparison of endorectal magnetic resonance imaging, guided prostate biopsy and digital rectal examination in the preoperative anatomical localization of prostate cancer. J Urol, 174 (2005), 2158–63.CrossRefGoogle ScholarPubMed
Hricak, H., White, S., Vigneron, D., et al., Carcinoma of the prostate gland: MR imaging with pelvic phased array coil versus integrated endorectal-pelvic phased-array coils. Radiology, 193 (1994), 703–9.CrossRefGoogle ScholarPubMed
Akin, O., Sala, E., Moskowitz, C. S., et al., Transition zone prostate cancers: features, detection, localization, and staging at endorectal MR imaging. Radiology, 239 (2006), 784–92.CrossRefGoogle ScholarPubMed
Schnall, M., Pollack, H. M., Magnetic resonance imaging of the prostate. Urol Radiol, 12 (1990), 109–14.CrossRefGoogle ScholarPubMed
Kaplan, I., Oldenburg, N. E., Meskell, P., et al., Real time MRI-ultrasound image guided stereotactic prostate biopsy. Magn Reson Imaging, 20 (2002), 295–9.CrossRefGoogle ScholarPubMed
Cooperberg, M. R., Lubeck, D. P., Meng, M. V., et al., The changing face of low-risk prostate cancer: trends in clinical presentation and primary management. J Clin Oncol, 22 (2004), 2141–9.CrossRefGoogle ScholarPubMed
Draisma, G., Boer, R., Otto, S. J., et al., Lead times and overdetection due to prostate-specific antigen screening: estimates from the European Randomized Study of Screening for Prostate Cancer. J Natl Cancer Inst, 95 (2003), 868–78.CrossRefGoogle ScholarPubMed
Etzioni, R., Penson, D. F., Legler, J. M., et al., Overdiagnosis due to prostate-specific antigen screening: lessons from U.S. prostate cancer incidence trends. J Natl Cancer Inst, 94 (2002), 981–90.CrossRefGoogle ScholarPubMed
Patel, M. I., DeConcini, D. T., Lopez-Corona, E., et al., An analysis of men with clinically localized prostate cancer who deferred definitive therapy. J Urol, 171 (2004), 1520–4.CrossRefGoogle ScholarPubMed
Kattan, M. W., Eastham, J. A., Stapleton, A. M., et al., A preoperative nomogram for disease recurrence following radical prostatectomy for prostate cancer. J Natl Cancer Inst, 90 (1998), 766–71.CrossRefGoogle ScholarPubMed
Kattan, M. W., Stapleton, A. M., Wheeler, T. M., et al., Evaluation of a nomogram used to predict the pathologic stage of clinically localized prostate carcinoma. Cancer, 79 (1997), 528–37.3.0.CO;2-5>CrossRefGoogle ScholarPubMed
Stephenson, A. J., Scardino, P. T., Eastham, J. A., et al., Preoperative nomogram predicting the 10-year probability of prostate cancer recurrence after radical prostatectomy. J Natl Cancer Inst, 98 (2006), 715–17.CrossRefGoogle ScholarPubMed
Carter, H. B., Sauvageot, J., Walsh, P. C., et al., Prospective evaluation of men with stage T1C adenocarcinoma of the prostate. J Urol, 157 (1997), 2206–9.CrossRefGoogle ScholarPubMed
Epstein, J. I., Chan, D. W., Sokoll, L. J., et al., Nonpalpable stage T1c prostate cancer: prediction of insignificant disease using free/total prostate specific antigen levels and needle biopsy findings. J Urol, 160 (1998), 2407.CrossRefGoogle ScholarPubMed
Epstein, J. I., Sanderson, H., Carter, H. B., et al., Utility of saturation biopsy to predict insignificant cancer at radical prostatectomy. Urology, 66 (2005), 356–60.CrossRefGoogle ScholarPubMed
Epstein, J. I., Walsh, P. C., Carmichael, M., et al., Pathologic and clinical findings to predict tumor extent of nonpalpable (stage T1c) prostate cancer. JAMA, 271 (1994), 368–74.CrossRefGoogle ScholarPubMed
Goto, Y., Ohori, M., Arakawa, A., et al., Distinguishing clinically important from unimportant prostate cancers before treatment: value of systematic biopsies. J Urol, 156 (1996), 1059–63.CrossRefGoogle ScholarPubMed
Kattan, M. W., Eastham, J. A., Wheeler, T. M., et al., Counseling men with prostate cancer: a nomogram for predicting the presence of small, moderately differentiated, confined tumors. J Urol, 170 (2003), 1792–7.CrossRefGoogle ScholarPubMed
Partin, A. W., Kattan, M. W., Subong, E. N., et al., Combination of prostate-specific antigen, clinical stage, and Gleason score to predict pathological stage of localized prostate cancer. A multi-institutional update. JAMA, 277 (1997), 1445–51.CrossRefGoogle ScholarPubMed
Shukla-Dave, A., Hricak, H., Kattan, M. W., et al., The utility of magnetic resonance imaging and spectroscopy for predicting insignificant prostate cancer: an initial analysis. BJU Int, 99 (2007), 786–93.CrossRefGoogle ScholarPubMed
Coakley, F. V., Kurhanewicz, J., Lu, Y., et al., Prostate cancer tumor volume: measurement with endorectal MR and MR spectroscopic imaging. Radiology, 223 (2002), 91–7.CrossRefGoogle ScholarPubMed
Hricak, H., MR imaging and MR spectroscopic imaging in the pre-treatment evaluation of prostate cancer. Br J Radiol, 78 (2005), S103–S111.CrossRefGoogle Scholar
Yu, K. K., Scheidler, J., Hricak, H., et al., Prostate cancer: prediction of extracapsular extension with endorectal MR imaging and three-dimensional proton MR spectroscopic imaging. Radiology, 213 (1999), 481–8.CrossRefGoogle ScholarPubMed
Cornud, F., Flam, T., Chauveinc, L., et al., Extraprostatic spread of clinically localized prostate cancer: factors predictive of pT3 tumor and of positive endorectal MR imaging examination results. Radiology, 224 (2002), 203–10.CrossRefGoogle ScholarPubMed
Engelbrecht, M. R., Jager, G. J., Laheij, R. J., et al., Local staging of prostate cancer using magnetic resonance imaging: a meta-analysis. Eur Radiol, 12 (2002), 2294–302.CrossRefGoogle ScholarPubMed
May, F., Treumann, T., Dettmar, P., et al., Limited value of endorectal magnetic resonance imaging and transrectal ultrasonography in the staging of clinically localized prostate cancer. BJU Int, 87 (2001), 66–9.CrossRefGoogle ScholarPubMed
Mullerad, M., Hricak, H., Wang, L., et al., Prostate cancer: detection of extracapsular extension by genitourinary and general body radiologists at MR imaging. Radiology, 232 (2004), 140–6.CrossRefGoogle ScholarPubMed
Outwater, E. K., Petersen, R. O., Siegelman, E. S., et al., Prostate carcinoma: assessment of diagnostic criteria for capsular penetration on endorectal coil MR images. Radiology, 193 (1994), 333–9.CrossRefGoogle ScholarPubMed
Rifkin, M. D., Zerhouni, E. A., Gatsonis, C. A., et al., Comparison of magnetic resonance imaging and ultrasonography in staging early prostate cancer. Results of a multi-institutional cooperative trial. N Engl J Med, 323 (1990), 621–6.CrossRefGoogle ScholarPubMed
Wang, L., Hricak, H., Kattan, M. W., et al., Prediction of prostate cancer organ-confined disease: the incremental value of endorectal coil magnetic resonance imaging to partin staging nomograms (2001 version). Radiology, 238 (2006), 597–603.CrossRefGoogle Scholar
Wang, L., Zhang, J., Schwartz, L. H., et al., Prediction of seminal vesicle invasion in prostate cancer: incremental value of adding endorectal MR imaging to the Kattan nomogram. Radiology, 242 (2007), 182–8.CrossRefGoogle ScholarPubMed
Wang, L., Mullerad, M., Chen, H. N., et al., Prostate cancer: incremental value of endorectal MR imaging findings for prediction of extracapsular extension. Radiology, 232 (2004), 133–9.CrossRefGoogle ScholarPubMed
Hracik, H., Wang, L., Wei, D. C., et al., The role of preoperative endorectal magnetic imaging in the decision regarding whether to preserve or resect neurovascular bundles during radical retropubic prostatectomy. Cancer, 100:12 (2004), 2655–63.Google Scholar
Eastham, J. A., Scardino, P. T., Radical prostatectomy for clinical stage T1 and T2 prostate cancer. In: Comprehensive Textbook of Genitourinary Oncology, 2nd edn., eds. Vogelzand, N. J., Scardino, P. T., Shipley, W. U., et al. Philadelphia: Lippincott Williams & Wilkins, 2000; 722–38.Google Scholar
Coakley, F. V., Eberhardt, S., Wei, D. C., et al., Blood loss during radical retropubic prostatectomy: relationship to morphologic features on preoperative endorectal magnetic resonance imaging. Urology, 59 (2002), 884–8.CrossRefGoogle ScholarPubMed
Coakley, F. V., Eberhardt, S., Kattan, M. W., et al., Urinary continence after radical retropubic prostatectomy: relationship with membranous urethral length on preoperative endorectal magnetic resonance imaging. J Urol, 168 (2002), 1032–5.CrossRefGoogle ScholarPubMed
Wang, L., Hricak, H., Kattan, M. W., et al., Combined endorectal and phased-array MRI in the prediction of pelvic lymph node metastasis in prostate cancer. AJR Am J Roentgenol, 186 (2006), 743–8.CrossRefGoogle ScholarPubMed
Sala, E., Eberhardt, S. C., Akin, O., et al., Endorectal MR imaging before salvage prostatectomy: tumor localization and staging. Radiology, 238 (2006), 176–83.CrossRefGoogle ScholarPubMed
Pucar, D., Shukla-Dave, A., Hricak, H., et al., Prostate cancer: correlation of MR imaging and MR spectroscopy with pathologic findings after radiation therapy-initial experience. Radiology, 236 (2005), 545–53.CrossRefGoogle Scholar
Pucar, D., Hricak, H., Shukla-Dave, A., et al., Clinically significant prostate cancer local recurrence after radiation therapy occurs at the site of primary tumor: magnetic resonance imaging and step-section pathology evidence. Int J Radiat Oncol Biol Phys, 69 (2007), 62–9.CrossRefGoogle ScholarPubMed
Sella, T., Schwartz, L. H., Swindle, P. W., et al., Suspected local recurrence after radical prostatectomy: endorectal coil MR imaging. Radiology, 231 (2004), 379–85.CrossRefGoogle ScholarPubMed
Silverman, J. M., Krebs, T. L., MR imaging evaluation with a transrectal surface coil of local recurrence of prostatic cancer in men who have undergone radical prostatectomy. AJR Am J Roentgenol, 168 (1997), 379–85.CrossRefGoogle ScholarPubMed
Leventis, A. K., Shariat, S. F., Slawin, K. M., Local recurrence after radical prostatectomy: correlation of US features with prostatic fossa biopsy findings. Radiology, 219 (2001), 432–9.CrossRefGoogle ScholarPubMed
Mohler, J., Babaian, R. J., Bahnson, R. R., et al., NCCN Clinical Practice Guidelines in Oncology Prostate Cancer, v 1.2007. In National Comprehensive Cancer Network, 2007.
Amis, Jr E. S.., Bigongiari, L. R., Bluth, E. I., et al., Pretreatment staging of clinically localized prostate cancer. American College of Radiology. ACR Appropriateness Criteria. Radiology, 215 Suppl (2000), 703–8.Google ScholarPubMed
Fuchsjäger, M., Shukla-Dave, A., Akin, O., et al., Prostate cancer imaging. Acta Radiol, 49:1 (2008), 107–20.CrossRefGoogle ScholarPubMed
Harisinghani, M. G., Barentsz, J., Hahn, P. F., et al., Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med, 348:25 (2003), 2491–9. Erratum in: N Engl J Med, 349:10 (2003), 1010.CrossRefGoogle ScholarPubMed
Heesakkers, R. A., Futterer, J. J., Hovels, A. M., et al., Prostate cancer evaluated with ferumoxtran-10-enhanced T2*-weighted MR imaging at 1.5 and 3.0 T: early experience. Radiology, 239 (2006), 481–7.CrossRefGoogle Scholar
Cher, M. L., Bianco, Jr F. J.., Lam, J. S., et al., Limited role of radionuclide bone scintigraphy in patients with prostate specific antigen elevations after radical prostatectomy. J Urol, 160 (1998), 1387–91.CrossRefGoogle ScholarPubMed
Dotan, Z. A., Bianco, Jr F. J.., Rabbani, F., et al., Pattern of prostate-specific antigen (PSA) failure dictates the probability of a positive bone scan in patients with an increasing PSA after radical prostatectomy. J Clin Oncol, 23 (2005), 1962–8.CrossRefGoogle ScholarPubMed
Freedman, G. M., Negendank, W. G., Hudes, G. R., et al., Preliminary results of a bone marrow magnetic resonance imaging protocol for patients with high-risk prostate cancer. Urology, 54 (1999), 118–23.CrossRefGoogle ScholarPubMed
Rosenthal, D. I., Radiologic diagnosis of bone metastases. Cancer, 80 (1997), 1595–607.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Ghanem, N., Uhl, M., Brink, I., et al., Diagnostic value of MRI in comparison to scintigraphy, PET, MS-CT and PET/CT for the detection of metastases of bone. Eur J Radiol, 55:1 (2005), 41–55.CrossRefGoogle Scholar
Lecouvet, F. E., Geukens, D., Stainier, A., et al., Magnetic resonance imaging of the axial skeleton for detecting bone metastases in patients with high-risk prostate cancer: diagnostic and cost-effectiveness and comparison with current detection strategies. J Clin Oncol, 25 (2007), 3281–7.CrossRefGoogle ScholarPubMed
Hricak, H., Choyke, P. L., Eberhardt, S. C., et al., Imaging prostate cancer: a multidisciplinary perspective. Radiology, 243 (2007), 28–53.CrossRefGoogle ScholarPubMed
Schöder, H., Herrmann, K., Gönen, M., et al., 2-[18F]fluoro-2-deoxyglucose positron emission tomography for the detection of disease in patients with prostate-specific antigen relapse after radical prostatectomy. Clin Cancer Res, 11 (2005), 4761–9.CrossRefGoogle ScholarPubMed
Macapinlac, H. A., Humm, J. L., Akhurst, T., et al., Differential metabolism and pharmacokinetics of l-[1–11C]-methionine and 2-[18F]fluoro-2-deoxyglucose (FDG) in androgen independent prostate cancer. Clin Positron Imaging, 2 (1999), 173–81.CrossRefGoogle Scholar
Jager, P. L., Vaalburg, W., Pruim, J., et al., Radiolabeled amino acids: basic aspects and clinical applications in oncology. J Nucl Med, 42 (2001), 432–45.Google Scholar
Nunez, R., Macapinlac, H. A., Yeung, H. W., et al., Combined 18F-FDG and 11C-methionine PET scans in patients with newly progressive metastatic prostate cancer. J Nucl Med, 43 (2002), 46–55.Google ScholarPubMed
Bander, N. H., Technology insight: monoclonal antibody imaging of prostate cancer. Nat Clin Pract Urol, 3 (2006), 216–25.CrossRefGoogle ScholarPubMed
Pollen, J. J., Witztum, K. S., Ashburn, W. L., The flare phenomenon on radionuclide bone scan in metastatic prostate cancer. AJR Am J Roentgenol, 142 (1984), 773–6.CrossRefGoogle ScholarPubMed
Schneider, J. A., Divgi, C. R., Scott, A. M., et al., Flare on bone scintigraphy following Taxol chemotherapy for metastatic breast cancer. J Nucl Med, 35 (1994), 1748–52.Google Scholar
Yeung, H., Schoder, H., Larson, S., Utility of PET/CT for assessing equivocal PET lesions in oncology–initial experience [abstract]. J Nucl Med, 43 (2007), 32p.Google Scholar
Dehdashti, F., Picus, J., Michalski, J. M., et al., Positron tomographic assessment of androgen receptors in prostatic carcinoma. Eur J Nucl Med Mol Imaging, 32 (2005), 344–50.CrossRefGoogle ScholarPubMed
Larson, S. M., Morris, M., Gunther, I., et al., Tumor localization of 16beta-18F-fluoro-5alpha-dihydrotestosterone versus 18F-FDG in patients with progressive, metastatic prostate cancer. J Nucl Med, 45 (2004), 366–73.Google ScholarPubMed
Imbriaco, M., Larson, S. M., Yeung, H. W., et al., A new parameter for measuring metastatic bone involvement by prostate cancer: the Bone Scan Index. Clin Cancer Res, 4 (1998), 1765–72.Google ScholarPubMed
Sabbatini, P., Larson, S. M., Kremer, A., et al., Prognostic significance of extent of disease in bone in patients with androgen-independent prostate cancer. J Clin Oncol, 17 (1999), 948–57.CrossRefGoogle ScholarPubMed
Morris, M. J., Akhurst, T., Larson, S. M., et al., Fluorodeoxyglucose positron emission tomography as an outcome measure for castrate metastatic prostate cancer treated with antimicrotubule chemotherapy. Clin Cancer Res, 11 (2005), 3210–16.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×