Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-16T09:19:52.173Z Has data issue: false hasContentIssue false

Section 4 - Neurodegenerative and Other Progressive Disorders in Childhood

Published online by Cambridge University Press:  28 April 2017

Juan M. Pascual
Affiliation:
University of Texas Southwestern Medical Center, Dallas
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bibliography

Dimauro, S., Garone, C. (2011). Metabolic disorders of fetal life: glycogenoses and mitochondrial defects of the mitochondrial respiratory chain. Semin Fetal Neonatal Med. 16(4):181–89.CrossRefGoogle ScholarPubMed
Illsinger, S., Das, A.M. (2010). Impact of selected inborn errors of metabolism on prenatal and neonatal development. IUBMB Life. 62(6):403–13.CrossRefGoogle ScholarPubMed

Bibliography

Braverman, N.E., Raymond, G.V., Rizzo, W.B., et al (2016). Peroxisome biogenesis disorders in the Zellweger spectrum: An overview of current diagnosis, clinical manifestations, and treatment guidelines. Mol Genet Metab. 117(3):313–21.CrossRefGoogle ScholarPubMed
Cho, S.Y., Chang, Y.P., Park, J.Y., et al (2011). Two novel PEX1 mutations in a patient with Zellweger syndrome: the first Korean case confirmed by biochemical, and molecular evidence. Ann Clin Lab Sci. 41(2):182–7.Google Scholar

Bibliography

Klouwer, F.C., Berendse, K., Ferdinandusse, S., et al (2015). Zellweger spectrum disorders: Clinical overview and management approach. Orphanet J Rare Dis. 10:151.CrossRefGoogle ScholarPubMed

Bibliography

Ganetzky, R.D., Bloom, K., Ahrens-Nicklas, R., et al ECHS1 deficiency as a cause of severe neonatal lactic acidosis. JIMD Rep. [in press].Google Scholar
Pirot, N., Crahes, M., Adle-Biassette, H., et al (2016). Phenotypic and neuropathological characterization of fetal pyruvate dehydrogenase deficiency. J Neuropathol Exp Neurol. 75(3):227–38.CrossRefGoogle ScholarPubMed

Bibliography

Marin-Valencia, I., Roe, C.R., Pascual, J.M. (2010). Pyruvate carboxylase deficiency: Mechanisms, mimics and anaplerosis. Mol Genet Metab. 101(1):917.CrossRefGoogle ScholarPubMed
Ortez, C., Jou, C., Cortès-Saladelafont, E., et al (2013). Infantile parkinsonism and GABAergic hypotransmission in a patient with pyruvate carboxylase deficiency. Gene. 532(2):302–6.CrossRefGoogle Scholar

Bibliography

Bourgeron, T., Chretien, D., Poggi-Bach, J., et al (1994). Mutation of the fumarase gene in two siblings with progressive encephalopathy and fumarase deficiency. J Clin Invest. 93(6):2514–18.CrossRefGoogle ScholarPubMed
Pithukpakorn, M. (2005). Disorders of pyruvate metabolism and the tricarboxylic acid cycle. Mol Genet Metab. 85(4):243–6.Google ScholarPubMed

Bibliography

DiMauro, S., Garone, C. (2011). Metabolic disorders of fetal life: Glycogenoses and mitochondrial defects of the mitochondrial respiratory chain. Semin Fetal Neonatal Med. 16(4):181–89.CrossRefGoogle ScholarPubMed
DiMauro, S., Nicholson, J.F., Hays, A.P., et al (1983). Benign infantile mitochondrial myopathy due to reversible cytochrome c oxidase deficiency. Ann Neurol. 14(2):226–34.CrossRefGoogle ScholarPubMed

Bibliography

Burlina, A.B., Bonafé, L., Zacchello, F. (1999). Clinical and biochemical approach to the neonate with a suspected inborn error of amino acid and organic acid metabolism. Semin Perinatol. 23(2):162–73.CrossRefGoogle Scholar
Seashore, M.R., Seashore, C.J. (2005). Newborn screening and the pediatric practitioner. Semin Perinatol. 29(3):182–8.CrossRefGoogle ScholarPubMed

Bibliography

Chen, L.W., Tsai, Y.S., Huang, C.C. (2014). Prenatal multicystic encephalopathy in isolated sulfite oxidase deficiency with a novel mutation. Pediatr Neurol. 51(1):181–2.CrossRefGoogle Scholar
Reiss, J., Hahnewald, R. (2011). Molybdenum cofactor deficiency: Mutations in GPHN, MOCS1, and MOCS2. Hum Mutat. 32(1):1018.CrossRefGoogle ScholarPubMed

Bibliography

Gelfand, A.A., Sznewajs, A., Glass, H.C., et al. (2011). Clinical Reasoning: An encephalopathic 3-day-old infant. Neurology. 77(1):e1–5.CrossRefGoogle ScholarPubMed
Häberle, J., Boddaert, N., Burlina, A., et al. (2012). Suggested guidelines for the diagnosis and management of urea cycle disorders. Orphanet J Rare Dis. 7:32.CrossRefGoogle ScholarPubMed
Helman, G., Pacheco-Colón, I., Gropman, A.L. (2014). The urea cycle disorders. Semin Neurol. 34(3):341–9.CrossRefGoogle ScholarPubMed

Bibliography

Haagerup, A., Andersen, J.B., Blichfeldt, S., et al. (1997). Biotinidase deficiency: Two cases of very early presentation. Dev Med Child Neurol. 39(12):832–5.Google ScholarPubMed
Wolf, B. (2012). Biotinidase deficiency: “if you have to have an inherited metabolic disease, this is the one to have”. Genet Med. 14(6):565–75.CrossRefGoogle Scholar

Bibliography

Cirillo, M., Venkatesan, C., Millichap, J.J., et al. (2015). Case report: Intravenous and oral pyridoxine trial for diagnosis of pyridoxine-dependent epilepsy. Pediatrics. 136(1):e257–61.CrossRefGoogle ScholarPubMed
Clayton, P.T. (2006). B6-responsive disorders: A model of vitamin dependency. J Inherit Metab Dis. 29(2–3):317–26.CrossRefGoogle Scholar
Jansen, L.A., Hevner, R.F., Roden, W.H., et al. (2014). Glial localization of antiquitin: Implications for pyridoxine-dependent epilepsy. Ann Neurol. 75(1):2232.CrossRefGoogle ScholarPubMed

Bibliography

Burrage, L.C., Nagamani, S.C., Campeau, P.M., et al. (2014). Branched-chain amino acid metabolism: From rare Mendelian diseases to more common disorders. Hum Mol Genet. 23(R1):R1–8.CrossRefGoogle ScholarPubMed
Chin, H.L., Aw, M.M., Quak, S.H., et al. (2015). Two consecutive partial liver transplants in a patient with classic maple syrup urine disease. Mol Genet Metab Rep. 4:4952.Google Scholar

Bibliography

Iqbal, M., Prasad, M., Mordekar, S.R. (2015). Nonketotic hyperglycinemia case series. J Pediatr Neurosci. 10(4):355–8.Google ScholarPubMed
Noble-Jamieson, G., Jamieson, N., Clayton, P., et al. (1994). Neurological crisis in hereditary tyrosinaemia and complete reversal after liver transplantation. Arch Dis Child. 70(6):544–5.CrossRefGoogle ScholarPubMed
Ogier de Baulny, H., Schiff, M., Dionisi-Vici, C. (2012). Lysinuric protein intolerance (LPI): A multi organ disease by far more complex than a classic urea cycle disorder. Mol Genet Metab. 106(1):1217.CrossRefGoogle ScholarPubMed

Bibliography

Freeze, H.H., Eklund, E.A., Ng, B.G., et al. (2015). Neurological aspects of human glycosylation disorders. Annu Rev Neurosci. 38:105–25.CrossRefGoogle ScholarPubMed
Vesela, K., Honzik, T., Hansikova, H., et al. (2009). A new case of ALG8 deficiency (CDG Ih). J Inherit Metab Dis. 32 Suppl 1.CrossRefGoogle ScholarPubMed
Wolfe, L.A., Krasnewich, D. (2013). Congenital disorders of glycosylation and intellectual disability. Dev Disabil Res Rev. 17(3):211–25.CrossRefGoogle ScholarPubMed

Bibliography

Al Hafid, N., Christodoulou, J. (2015). Phenylketonuria: a review of current and future treatments. Transl Pediatr. 4(4):304–17.Google ScholarPubMed
Koch, R., Verma, S., Gilles, F.H. (2008). Neuropathology of a 4-month-old infant born to a woman with phenylketonuria. Dev Med Child Neurol. 50(3):230–3.CrossRefGoogle ScholarPubMed
Steiner, C.E., Acosta, A.X., Guerreiro, M.M., et al. (2007). Genotype and natural history in unrelated individuals with phenylketonuria and autistic behavior. Arq Neuropsiquiatr. 65(2A):202–5.CrossRefGoogle ScholarPubMed

Bibliography

El-Hattab, AW. (2015). Inborn errors of metabolism. Clin Perinatol. 42(2):413–39.CrossRefGoogle ScholarPubMed
Seijo-Martínez, M., Navarro, C., Castro del Río, M., et al. (2005). L-2-hydroxyglutaric aciduria: Clinical, neuroimaging, and neuropathological findings. Arch Neurol. 62(4):666–70.CrossRefGoogle ScholarPubMed

Bibliography

da Silva, V., Vassella, F., Bischoff, A., et al. (1975). Clinical, biochemical and ultrastructural findings in a case of the infantile form. J Neurol. 211(1):61–8. Niemann-Pick’s disease.CrossRefGoogle Scholar
Schuchman, E.H., Wasserstein, M.P. (2015). Types A and B Niemann-Pick disease Best Pract Res Clin Endocrinol Metab. 29(2):237–47.CrossRefGoogle ScholarPubMed

Bibliography

Bonten, E.J., Annunziata, I., d’Azzo, A. (2014). Lysosomal multienzyme complex: pros and cons of working together. Cell Mol Life Sci. 71(11):2017–32.CrossRefGoogle ScholarPubMed
Gravel, R.A., Lowden, J.A., Callahan, J.W., et al. (1979). Infantile sialidosis: a phenocopy of type 1 GM1 gangliosidosis distinguished by genetic complementation and urinary oligosaccharides. Am J Hum Genet. 31(6):669–79.Google ScholarPubMed
Heroman, J.W., Rychwalski, P., Barr, C.C. (2008). Cherry red spot in sialidosis (mucolipidosis type I). Arch Ophthalmol. 126(2):270–1.CrossRefGoogle ScholarPubMed

Bibliography

Darin, N., Kyllerman, M., Hård, A.L., et al. (2009). Juvenile galactosialidosis with attacks of neuropathic pain and absence of sialyloligosacchariduria. Eur J Paediatr Neurol. 13(6):553–5.CrossRefGoogle ScholarPubMed

Bibliography

Niida, Y., Yokoi, A., Kuroda, M., et al. (2016). A girl with infantile neuronal ceroid lipofuscinosis caused by novel PPT1 mutation and paternal uniparental isodisomy of chromosome 1. Brain Dev. pii:S0387–7604.Google Scholar
Anderson, G.W., Goebel, H.H., Simonati, A. (2013). Human pathology in NCL. Biochim Biophys Acta. 1832(11):1807–26.Google ScholarPubMed

Bibliography

Ahmad, A., Mazhar, A.U., Anwar, M. (2009). Farber disease: A rare neurodegenerative disorder. J Coll Physicians Surg Pak. Jan;19(1):67–8.Google ScholarPubMed
Sands, M.S. (2013). Farber disease: understanding a fatal childhood disorder and dissecting ceramide biology. EMBO Mol Med. Jun;5(6):799801.CrossRefGoogle ScholarPubMed
Zhou, J., Tawk, M., Tiziano, F.D., et al. (2012). Spinal muscular atrophy associated with progressive myoclonic epilepsy is caused by mutations in ASAH1. Am J Hum Genet. Jul 13;91(1):514.CrossRefGoogle ScholarPubMed

Bibliography

Coker, M., Kalkan-Uçar, S., Kitiş, O., et al. (2009). Salla disease in Turkish children: Severe and conventional type. Turk J Pediatr. 51(6):605–9.Google ScholarPubMed
Paavola, L.E., Remes, A.M., Harila, M.J., et al. (2015). A 13-year follow-up of Finnish patients with Salla disease. J Neurodev Disord. 7(1):20.CrossRefGoogle ScholarPubMed
Sagné, C., Gasnier, B. (2008). Molecular physiology and pathophysiology of lysosomal membrane transporters. J Inherit Metab Dis. 31(2):258–66.CrossRefGoogle ScholarPubMed

Bibliography

Freeze, H.H. (2009). Towards a therapy for phosphomannomutase 2 deficiency, the defect in CDG-Ia patients. Biochim Biophys Acta. Sep;1792(9):835–40.Google ScholarPubMed
Grünewald, S. (2009). The clinical spectrum of phosphomannomutase 2 deficiency (CDG-Ia). Biochim Biophys Acta. Sep;1792(9):827–34.Google ScholarPubMed
Messenger, W.B, Yang, P., Pennesi, M.E. (2014). Ophthalmic findings in an infant with phosphomannomutase deficiency. Doc Ophthalmol. Apr;128(2):149–53.CrossRefGoogle Scholar

Bibliography

Braissant, O., Henry, H., Béard, E., et al. (2011). Creatine deficiency syndromes and the importance of creatine synthesis in the brain. Amino Acids; 40(5):1315–24.CrossRefGoogle ScholarPubMed
Clark, J.F., Cecil, K.M. (2015). Diagnostic methods and recommendations for the cerebral creatine deficiency syndromes. Pediatr Res. 77(3):398405.CrossRefGoogle ScholarPubMed

Bibliography

Angelini, C. (2015). Spectrum of metabolic myopathies. Biochim Biophys Acta. 1852(4):615–21.Google ScholarPubMed
Boustany, R.M. (2013). Lysosomal storage diseases–the horizon expands. Nat Rev Neurol.; 9(10):583–98.CrossRefGoogle ScholarPubMed
Pascual, J.M, Roe, C.R. (2013). Systemic metabolic abnormalities in adult-onset acid maltase deficiency: Beyond muscle glycogen accumulation. JAMA Neurol. 70(6):756–63.CrossRefGoogle ScholarPubMed

Bibliography

Saneto, R.P., Cohen, B.H., Copeland, W.C., et al. (2013). Alpers-Huttenlocher syndrome. Pediatr Neurol. 48(3):167–78.CrossRefGoogle ScholarPubMed

Bibliography

Gerards, M., Sallevelt, S.C., Smeets, H.J. (2016). Leigh syndrome: Resolving the clinical and genetic heterogeneity paves the way for treatment options. Mol Genet Metab. 117(3):300–12.CrossRefGoogle ScholarPubMed
Leigh, D. (1951). Subacute necrotizing encephalomyelopathy in an infant. J Neurol Neurosurg Psychiatry. 14(3):216–21.CrossRefGoogle ScholarPubMed

Bibliography

Kurian, M.A., Zhen, J., Cheng, S.Y., et al. (2009). Homozygous loss-of-function mutations in the gene encoding the dopamine transporter are associated with infantile parkinsonism-dystonia. J Clin Invest. 119(6):1595–603.Google ScholarPubMed
Ng, J., Zhen, J., Meyer, E., et al. (2014). Dopamine transporter deficiency syndrome: Phenotypic spectrum from infancy to adulthood. Brain. 137(Pt 4):1107–19.CrossRefGoogle ScholarPubMed

Bibliography

Matalon, R., Michals-Matalon, K., Surendran, S., et al. (2006). Canavan disease: studies on the knockout mouse. Adv Exp Med Biol. 576:7793.CrossRefGoogle ScholarPubMed
Zhang, H., Liu, X., Gu, X. (2010). Two novel missense mutations in the aspartoacylase gene in a Chinese patient with congenital Canavan disease. Brain Dev. 32(10):879–82.CrossRefGoogle Scholar

Bibliography

Ghai, S.J., Shago, M., Shroff, M., et al. ( 2011). Cockayne syndrome caused by paternally inherited 5 Mb deletion of 10q11.2 and a frameshift mutation of ERCC6. Eur J Med Genet. 54(3):272–6.CrossRefGoogle Scholar
Itoh, M., Hayashi, M., Shioda, K., et al. (1999). Neurodegeneration in hereditary nucleotide repair disorders. Brain Dev. 21(5):326–33.CrossRefGoogle ScholarPubMed

Bibliography

Smpokou, P., Samanta, M., Berry, G.T., et al. (2015). Menkes disease in affected females: The clinical disease spectrum. Am J Med Genet A. 167A(2):417–20.Google ScholarPubMed
Tümer, Z. (2013). An overview and update of ATP7A mutations leading to Menkes disease and occipital horn syndrome. Hum Mutat. 34(3):417–29.CrossRefGoogle ScholarPubMed

Bibliography

Hiebler, S., Masuda, T., Hacia, J.G., et al. (2014). The Pex1-G844D mouse: A model for mild human Zellweger spectrum disorder Mol Genet Metab. 111(4):522–32.CrossRefGoogle Scholar
Poll-The, B.T., Saudubray, J.M., Ogier, H.A., et al. (1987). Infantile Refsum disease: An inherited peroxisomal disorder. Comparison with Zellweger syndrome and neonatal adrenoleukodystrophy. Eur J Pediatr. 146(5):477–83.CrossRefGoogle ScholarPubMed

Bibliography

Graziano, A.C., Cardile, V. (2015). History, genetic, and recent advances on Krabbe disease. Gene. 555(1):213.CrossRefGoogle ScholarPubMed
Li, Y., Sands, M.S. (2014). Experimental therapies in the murine model of globoid cell leukodystrophy. Pediatr Neurol. 51(5):600–6.CrossRefGoogle ScholarPubMed

Bibliography

Eymard-Pierre, E., Yamanaka, K., Haeussler, M., et al. (2006). Novel missense mutation in ALS2 gene results in infantile ascending hereditary spastic paralysis. Ann Neurol. 59(6):976–80.CrossRefGoogle ScholarPubMed
Racis, L., Tessa, A., Pugliatti, M., et al. (2014). Infantile-onset ascending hereditary spastic paralysis: A case report and brief literature review. Eur J Paediatr Neurol. 18(2):235–9.CrossRefGoogle ScholarPubMed

Bibliography

Deconinck, N., Messaaoui, A., Ziereisen, F., et al. (2008). Metachromatic leukodystrophy without arylsulfatase A deficiency: A new case of saposin-B deficiency. Eur J Paediatr Neurol. Jan;12(1):4650.CrossRefGoogle ScholarPubMed
van Rappard, D.F., Boelens, J.J., Wolf, N.I. (2015). Metachromatic leukodystrophy: Disease spectrum and approaches for treatment. Best Pract Res Clin Endocrinol Metab. 29(2):261–73.CrossRefGoogle ScholarPubMed

Bibliography

Quinlan, R.A., Brenner, M., Goldman, J.E., et al. (2007). GFAP and its role in Alexander disease. Exp Cell Res. 313(10):2077–87.CrossRefGoogle ScholarPubMed
Sawaishi, Y. (2009). Review of Alexander disease: Beyond the classical concept of leukodystrophy. Brain Dev. 31(7):493–8.CrossRefGoogle ScholarPubMed

Bibliography

Hobson, G.M., Garbern, J.Y. (2012). Pelizaeus-Merzbacher disease, Pelizaeus-Merzbacher-like disease 1, and related hypomyelinating disorders. Semin Neurol. 32(1):62–7.Google ScholarPubMed
Masliah-Planchon, J., Dupont, C., Vartzelis, G., et al. (2015). Boespflug-Tanguy O. Insertion of an extra copy of Xq22.2 into 1p36 results in functional duplication of the PLP1 gene in a girl with classical Pelizaeus-Merzbacher disease. BMC Med Genet. Sep 2; 16:77.CrossRefGoogle Scholar

Bibliography

Chapleau, C.A., Lane, J., Larimore, J., Li, W., Pozzo-Miller, L., Percy, A.K. (2013). Recent progress in Rett syndrome and MeCP2 dysfunction: Assessment of potential treatment options. Future Neurol. 8(1): doi:10.2217/fnl.12.79.CrossRefGoogle ScholarPubMed
Gharesouran, J., Khalili, A.F., Azari, N.S., Vahedi, L. (2015). First case report of Rett syndrome in the Azeri Turkish population and brief review of the literature. Epilepsy Behav Case Rep. 3:1519.CrossRefGoogle ScholarPubMed

Bibliography

Kolb, S.J., Kissel, J.T. (2015). Spinal muscular atrophy. Neurol Clin. 33(4):831–46.CrossRefGoogle ScholarPubMed
Malerba, K.H., Tecklin, J.S. (2013). Clinical decision making in hypotonia and gross motor delay: A case report of type 1 spinal muscular atrophy in an infant. Phys Ther. Jun;93(6):833–41.CrossRefGoogle Scholar

Bibliography

Solomons, J., Ridgway, O., Hardy, C., et al. (2014). Infantile neuroaxonal dystrophy caused by uniparental disomy. Dev Med Child Neurol. 56(4):386–9.CrossRefGoogle ScholarPubMed
Kurian, M.A., McNeill, A., Lin, J.P., Maher, E.R. (2011). Childhood disorders of neurodegeneration with brain iron accumulation (NBIA). Dev Med Child Neurol. 53(5):394404.CrossRefGoogle ScholarPubMed

Bibliography

Choi, Y.J., Hyun, Y.S., Nam, S.H., et al. (2015). Novel compound heterozygous nonsense PRX mutations in a Korean Dejerine-Sottas neuropathy family. J Clin Neurol. 11(1):92–6.CrossRefGoogle Scholar
Jani-Acsadi, A., Ounpuu, S., Pierz, K., et al. (2015). Pediatric Charcot-Marie-tooth disease. Pediatr Clin North Am. 62(3):767–86.CrossRefGoogle ScholarPubMed

Bibliography

Echenne, B., Rideau, A., Roubertie, A., et al. (2008). Myotonic dystrophy type I in childhood Long-term evolution in patients surviving the neonatal period. Eur J Paediatr Neurol. 12(3):210–23.CrossRefGoogle ScholarPubMed
Ho, G., Cardamone, M., Farrar, M. (2015). Congenital and childhood myotonic dystrophy: Current aspects of disease and future directions. World J Clin Pediatr. 4(4):6680.CrossRefGoogle ScholarPubMed

Bibliography

Cullup, T., Kho, A.L., Dionisi-Vici, C., et al. (2013). Recessive mutations in EPG5 cause Vici syndrome, a multisystem disorder with defective autophagy. Nat Genet. 45(1):83–7.CrossRefGoogle ScholarPubMed

Bibliography

Ramantani, G., Häusler, M., Niggemann, P., et al. (2011). Aicardi-Goutières syndrome and systemic lupus erythematosus (SLE) in a 12-year-old boy with SAMHD1 mutations. J Child Neurol. 26(11:1425–8.CrossRefGoogle Scholar
Rice, G.I., Forte, G.M., Szynkiewicz, M., et al. (2013). Assessment of interferon-related biomarkers in Aicardi-Goutières syndrome associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, and ADAR: a case-control study. Lancet Neurol. 12(12):1159–69.CrossRefGoogle ScholarPubMed

Bibliography

Taratuto, A.L., Akman, H.O., Saccoliti, M., et al. (2010). Branching enzyme deficiency/glycogenosis storage disease type IV presenting as a severe congenital hypotonia: Muscle biopsy and autopsy findings, biochemical and molecular genetic studies. Neuromuscul Disord. 20(12):783–90.CrossRefGoogle ScholarPubMed
Tay, S.K., Akman, H.O., Chung, W.K., et al. (2004). Fatal infantile neuromuscular presentation of glycogen storage disease type IV. Neuromuscul Disord. 14(4):253–60.CrossRefGoogle ScholarPubMed

Bibliography

Basel-Vanagaite, L., Muncher, L., Straussberg, R., et al. (2006). Mutated nup62 causes autosomal recessive infantile bilateral striatal necrosis. Ann Neurol. 60(2):214–22.CrossRefGoogle ScholarPubMed
Lal, D., Becker, K., Motameny, S., et al. (2013). Homozygous missense mutation of NDUFV1 as the cause of infantile bilateral striatal necrosis. Neurogenetics. 14(1):85–7.CrossRefGoogle ScholarPubMed
Straussberg, R., Shorer, Z., Weitz, R., et al. (2002). Familial infantile bilateral striatal necrosis: clinical features and response to biotin treatment. Neurology. 59(7):983–9.CrossRefGoogle ScholarPubMed

Bibliography

Biancheri, R., Cerone, R., Schiaffino, M.C., et al. (2001). Cobalamin (Cbl) C/D deficiency: Clinical, neurophysiological and neuroradiologic findings in 14 cases. Neuropediatrics. 32(1):1422.CrossRefGoogle Scholar
Grünert, S.C., Fowler, B., Superti-Furga, A., et al. (2011) Hyperpyrexia resulting in encephalopathy in a 14-month-old patient with cblC disease. Brain Dev. 33(5):432–6.CrossRefGoogle Scholar
Martinelli, D., Deodato, F., Dionisi-Vici, C. (2011). Cobalamin C defect: Natural history, pathophysiology, and treatment. J Inherit Metab Dis. 34(1):127–35.CrossRefGoogle ScholarPubMed

Bibliography

Serrano, M., Pérez-Dueñas, B., Montoya, J., et al. (2012). Genetic causes of cerebral folate deficiency: Clinical, biochemical and therapeutic aspects. Drug Discov Today. 17(23–24):1299–306.CrossRefGoogle ScholarPubMed
Wang, Q., Li, X., Ding, Y., et al. (2015). The first Chinese case report of hereditary folate malabsorption with a novel mutation on SLC46A1. Brain Dev. 37(1):163–7.CrossRefGoogle ScholarPubMed

Bibliography

Joensuu, T., Lehesjoki, A.E., Kopra, O. (2008). Molecular background of EPM1-Unverricht–Lundborg disease. Epilepsia. 49(4):557–63.CrossRefGoogle ScholarPubMed
Kälviäinen, R., Khyuppenen, J., Koskenkorva, P., et al. (2008). Clinical picture of EPM1-Unverricht–Lundborg disease. Epilepsia. 49(4).549–56.CrossRefGoogle ScholarPubMed
Saadah, M., El Beshari, M., Saadah, L., et al. (2014). Progressive myoclonic epilepsy type 1: Report of an Emirati family and literature review. Epilepsy Behav Case Rep. 2:112–17.Google ScholarPubMed

Bibliography

Monaghan, T.S., Delanty, N. (2010). Lafora disease: epidemiology, pathophysiology and management. CNS Drugs. 24(7):549–61.CrossRefGoogle ScholarPubMed
Poyrazoğlu, H.G., Karaca, E., Per, H., et al. (2015). Three patients with lafora disease: Different clinical presentations and a novel mutation. J Child Neurol. 30(6):777–81.CrossRefGoogle Scholar

Bibliography

Kulikova-Schupak, R., Knupp, K.G., Pascual, J.M., et al. (2004). Rectal biopsy in the diagnosis of neuronal intranuclear hyaline inclusion disease. J Child Neurol. 19(1):5962.CrossRefGoogle ScholarPubMed

Bibliography

Cooper, J.D., Tarczyluk, M.A., Nelvagal, H.R. (2015). Towards a new understanding of NCL pathogenesis. Biochim Biophys Acta. 1852(10 Pt B):2256–61.Google ScholarPubMed
Patiño, L.C., Battu, R., Ortega-Recalde, O., et al. (2014). Exome sequencing is an efficient tool for variant late-infantile neuronal ceroid lipofuscinosis molecular diagnosis. PLoS One. 9(10):e109576.CrossRefGoogle ScholarPubMed

Bibliography

Adams, H.R., Mink, J.W. (2013). Neurobehavioral features and natural history of juvenile neuronal ceroid lipofuscinosis (Batten disease). J Child Neurol. 28(9):1128–36.CrossRefGoogle ScholarPubMed
Cárcel-Trullols, J., Kovács, A.D., Pearce, D.A. (2015). Cell biology of the NCL proteins: What they do and don’t do. Biochim Biophys Acta. 1852(10 Pt B):2242–55.Google Scholar
Dy, M.E., Sims, K.B., Friedman, J. (2015). TPP1 deficiency: Rare cause of isolated childhood-onset progressive ataxia. Neurology. 85(14):1259–61.CrossRefGoogle ScholarPubMed

Bibliography

Desbats, M.A., Lunardi, G., Doimo, M., et al. (2015). Genetic bases and clinical manifestations of coenzyme Q10 (CoQ 10) deficiency. J Inherit Metab Dis. 38(1):145–56.CrossRefGoogle ScholarPubMed
Laredj, L.N., Licitra, F., Puccio, H.M. (2014). The molecular genetics of coenzyme Q biosynthesis in health and disease. Biochimie. 100:7887.CrossRefGoogle ScholarPubMed
Sobreira, C., Hirano, M., Shanske, S., et al. (1997). Mitochondrial encephalomyopathy with coenzyme Q10 deficiency. Neurology. 48(5):1238–43.CrossRefGoogle ScholarPubMed

Bibliography

El-Hattab, A.W., Scaglia, F. (2016). Mitochondrial cytopathies. Cell Calcium. pii:S0143–4160(16)30021–5.Google Scholar
Sarnat, H.B., Marín-García, J. (2005). Pathology of mitochondrial encephalomyopathies. Can J Neurol Sci. 32(2):152–66.CrossRefGoogle ScholarPubMed

Bibliography

Singh, R.R., Sedani, S., Lim, M., et al. (2015). RANBP2 mutation and acute necrotizing encephalopathy: 2 cases and a literature review of the expanding clinico-radiological phenotype. Eur J Paediatr Neurol. 19(2):106–13.CrossRefGoogle Scholar

Bibliography

Filocamo, M., Mazzotti, R., Stroppiano, M., et al. (2004). Early visual seizures and progressive myoclonus epilepsy in neuronopathic Gaucher disease due to a rare compound heterozygosity (N188S/S107L). Epilepsia. 45(9):1154–7.CrossRefGoogle ScholarPubMed
Mistry, P.K., Belmatoug, N., vom Dahl, S., et al. (2015). Understanding the natural history of Gaucher disease. Am J Hematol. 90 Suppl 1:S6–11.CrossRefGoogle ScholarPubMed

Bibliography

Benussi, A., Alberici, A., Premi, E., et al. (2015). Phenotypic heterogeneity of Niemann–Pick disease type C in monozygotic twins. J Neurol. 262(3):642–7.CrossRefGoogle ScholarPubMed

Bibliography

Kenney, D., Wickremasinghe, A.C., Ameenuddin, N., et al. (2014). A 19-month-old girl of South Indian parents presented to a general pediatric clinic for evaluation of global developmental regression. Semin Pediatr Neurol. 21(2):88–9.CrossRefGoogle ScholarPubMed
Sandhoff, K., Harzer, K. (2013). Gangliosides and gangliosidoses: Principles of molecular and metabolic pathogenesis. J Neurosci. 33(25):10195–208.CrossRefGoogle ScholarPubMed

Bibliography

Ballabio, A., Gieselmann, V. (2009). Lysosomal disorders: from storage to cellular damage. Biochim Biophys Acta. 1793(4):684–96.Google ScholarPubMed
Cimaz, R., La Torre, F. (2014). Mucopolysaccharidoses. Curr Rheumatol Rep. 16(1):389.CrossRefGoogle ScholarPubMed
Lehman, T.J., Miller, N., Norquist, B., Underhill, L., Keutzer, J. (2011). Diagnosis of the mucopolysaccharidoses. Rheumatology (Oxford). 50 Suppl 5:v41–8.CrossRefGoogle ScholarPubMed
Rasheeedah, I., Patrick, O., Abdullateef, A., et al. (2015). Challenges in the management of mucopolysaccharidosis Type II (Hunter’s syndrome) in a developing country: A case report. Ethiop J Health Sci.; 25(3):279–82.Google Scholar

Bibliography

Lund, T.C., Cathey, S.S., Miller, W.P., et al. (2014). Outcomes after hematopoietic stem cell transplantation for children with I-cell disease. Biol Blood Marrow Transplant. 20(11):1847–51.CrossRefGoogle ScholarPubMed
Wakabayashi, K., Gustafson, A.M., Sidransky, E, et al. (2011). Mucolipidosis type IV: An update. Mol Genet Metab. 104(3):206–13.CrossRefGoogle ScholarPubMed
Wraith, J.E. (2013). Mucopolysaccharidoses and mucolipidoses. Handb Clin Neurol. 113:1723–9.CrossRefGoogle ScholarPubMed

Bibliography

Kılıç, E., Kılıç, M., Ütine, G.E., et al. (2014). A case of fucosidosis type II: Diagnosed with dysmorphological and radiological findings. Turk J Pediatr. 56(4).430–3.Google ScholarPubMed
Michalski, JC, Klein, A. (1999). Glycoprotein lysosomal storage disorders: Alpha- and beta-mannosidosis, fucosidosis and alpha-N-acetylgalactosaminidase deficiency. Biochim Biophys Acta. 1455(2–3):6984.CrossRefGoogle ScholarPubMed
Willems, P.J., Seo, H.C., Coucke, P, et al. (1999); Spectrum of mutations in fucosidosis. Eur J Hum Genet. 7(1):60–7.CrossRefGoogle ScholarPubMed

Bibliography

Borgwardt, L., Lund, A.M., Dali, C.I. (2014). Alpha-mannosidosis – A review of genetic, clinical findings and options of treatment. Pediatr Endocrinol Rev. 12 Suppl 1:185–91.Google ScholarPubMed
Malm, D., Nilssen, Ø. (2008). Alpha-mannosidosis. Orphanet J Rare Dis. 3:21.CrossRefGoogle ScholarPubMed

Bibliography

Brunetti-Pierri, N., Scaglia, F. (2008). GM1 gangliosidosis: review of clinical, molecular, and therapeutic aspects. Mol Genet Metab. 94(4):391–6.CrossRefGoogle ScholarPubMed
Sandhoff, K., Harzer, K. (2013). Gangliosides and gangliosidoses: Principles of molecular and metabolic pathogenesis. J Neurosci. 33(25):10195–208.CrossRefGoogle ScholarPubMed
Takenouchi, T., Kosaki, R., Nakabayashi, K., et al. (2015). Paramagnetic signals in the globus pallidus as late radiographic sign of juvenile-onset GM1 gangliosidosis. Pediatr Neurol. 52(2):226–9.CrossRefGoogle ScholarPubMed

Bibliography

Ellaway, C. (2016). Paediatric Fabry disease. Transl Pediatr. 2016; 5(1):3742.Google ScholarPubMed
Silva, L.B., Badiz, T.C., Enokihara, M.M., et al. (2014). Fabry disease: Clinical and genotypic aspects of three cases in first degree relatives. An Bras Dermatol. 89(1):141–3.CrossRefGoogle ScholarPubMed

Bibliography

Bröer, S. (2009). The role of the neutral amino acid transporter B0AT1 (SLC6A19) in Hartnup disorder and protein nutrition. IUBMB Life. 61(6):591–9.CrossRefGoogle ScholarPubMed
Cheon, C.K., Lee, B.H., Ko, J.M., et al. (2010). Novel mutation in SLC6A19 causing late-onset seizures in Hartnup disorder. Pediatr Neurol. 42(5):369–71.CrossRefGoogle ScholarPubMed
Tahmoush, A.J., Alpers, D.H, Feigin, R.D., et al. (1976). Hartnup disease: Clinical, pathological, and biochemical observations. Arch Neurol. 33(12):797807.CrossRefGoogle ScholarPubMed

Bibliography

Desnick, R.J., Wang, A.M. (1990). Schindler disease: An inherited neuroaxonal dystrophy due to alpha-N-acetylgalactosaminidase deficiency. J Inherit Metab Dis. 13(4):549–59.CrossRefGoogle ScholarPubMed
Rudolf, J., Grond, M., Schindler, D., et al. (1999). Cerebral glucose metabolism in type I alpha-N-acetylgalactosaminidase deficiency: An infantile neuroaxonal dystrophy. J Child Neurol. 14(8):543–7.CrossRefGoogle ScholarPubMed
Westaway, S.K., Gregory, A., Hayflick, S.J. (2007). Mutations in PLA2G6 and the riddle of Schindler disease.J Med Genet. 44(1):e64.CrossRefGoogle ScholarPubMed

Bibliography

Ferrer, I., Aubourg, P., Pujol, A. (2010). General aspects and neuropathology of X-linked adrenoleukodystrophy. Brain Pathol. 20(4):817–30.CrossRefGoogle ScholarPubMed
Kemp, S., Berger, J., Aubourg, P. (2012). X-linked adrenoleukodystrophy: Clinical, metabolic, genetic and pathophysiological aspects. Biochim Biophys Acta; 1822(9):1465–74.Google ScholarPubMed
Wiesinger, C., Eichler, F.S., Berger, J. (2015). The genetic landscape of X-linked adrenoleukodystrophy: Inheritance, mutations, modifier genes, and diagnosis. Appl Clin Genet. 8:109–21.Google ScholarPubMed

Bibliography

Hayflick, S.J. (2014). Defective pantothenate metabolism and neurodegeneration Biochem Soc Trans. 42(4):1063–8.CrossRefGoogle ScholarPubMed
Zolkipli, Z., Dahmoush, H., Saunders, D.E., et al. (2006). Pantothenate kinase 2 mutation with classic pantothenate-kinase-associated neurodegeneration without “eye-of-the-tiger” sign on MRI in a pair of siblings. Pediatr Radiol. 36(8):884–6.CrossRefGoogle Scholar

Bibliography

Sahama, I., Sinclair, K., Pannek, K., et al. (2014). Radiological imaging in ataxia telangiectasia: A review. Cerebellum. 13(4):521–30.CrossRefGoogle ScholarPubMed
Shiloh, Y., Lederman, H.M. (2016). Ataxia-Telangiectasia (A-T): An Emerging Dimension of Premature Ageing. Ageing Res Rev. pii:S1568–1637(16)30078–2.Google Scholar
Taylor, A.M., Lam, Z., Last, J.I., et al. (2015). Ataxia telangiectasia: More variation at clinical and cellular levels Clin Genet. 87(3):199208.CrossRefGoogle ScholarPubMed

Bibliography

Dhamija, R., Kirmani, S. (2014). A 7-year-old girl with hypertrophic cardiomyopathy and progressive scoliosis. Semin Pediatr Neurol. 21(2):6771.CrossRefGoogle ScholarPubMed
Pastore, A., Puccio, H. (2013). Frataxin: A protein in search for a function.J Neurochem. 126 Suppl 1:4352.CrossRefGoogle ScholarPubMed
Storey, E. (2014). Genetic cerebellar ataxias. Semin Neurol. 34(3):280–92.Google ScholarPubMed

Bibliography

Burnett, J.R., Hooper, A.J. (2015). Vitamin E and oxidative stress in abetalipoproteinemia and familial hypobetalipoproteinemia. Free Radic Biol Med. 88(Pt A):5962.CrossRefGoogle ScholarPubMed
Hammer, M.B., El Euch-Fayache, G., Nehdi, H., et al. (2014). Clinical features and molecular genetics of two Tunisian families with abetalipoproteinemia. J Clin Neurosci. 21(2):311–15.CrossRefGoogle ScholarPubMed
Levy, E. (2015). Insights from human congenital disorders of intestinal lipid metabolism. J Lipid Res. 56(5):945–62.CrossRefGoogle ScholarPubMed

Bibliography

Bugiani, M., Boor, I., Powers, J.M., et al. (2010). Leukoencephalopathy with vanishing white matter: A review. J Neuropathol Exp Neurol. 69(10):987–96.CrossRefGoogle ScholarPubMed
Renaud, D.L. (2012). Leukoencephalopathies associated with macrocephaly.Semin Neurol. 32(1):3441.Google ScholarPubMed

Bibliography

Dueñas, A.M., Goold, R., Giunti, P. (2006). Molecular pathogenesis of spinocerebellar ataxias. Brain. 129(Pt 6):1357–70.CrossRefGoogle ScholarPubMed
Edener, U., Wöllner, J., Hehr, U., et al. (2010). Early onset and slow progression of SCA28, a rare dominant ataxia in a large four-generation family with a novel AFG3L2 mutation. Eur J Hum Genet. 18(8):965–8.CrossRefGoogle Scholar
Storey, E. (2014). Genetic cerebellar ataxias. Semin Neurol. 34(3):280–92.Google ScholarPubMed
Sun, Y.M., Lu, C., Wu, Z.Y. (2016). Spinocerebellar ataxia: Relationship between phenotype and genotype-A Review. Clin Genet. 90(4):305–14.CrossRefGoogle ScholarPubMed

Bibliography

Hoyle, J.C., Isfort, M.C., Roggenbuck, J., et al. (2015). The genetics of Charcot-Marie-Tooth disease: Current trends and future implications for diagnosis and management.Appl Clin Genet. 8:235–43.Google ScholarPubMed
Jani-Acsadi, A., Ounpuu, S., Pierz, K., et al. (2015). Pediatric Charcot-Marie-Tooth disease.Pediatr Clin North Am. 62(3):767–86.CrossRefGoogle ScholarPubMed
Yang, Y., Li, L. (2016). A novel p.Val244Leu mutation in MFN2 leads to Charcot-Marie-Tooth disease type 2. Ital J Pediatr. 42(1):28.CrossRefGoogle ScholarPubMed

Bibliography

Kamate, M., Ramakrishna, S., Kambali, S., et al. (2014). Giant axonal neuropathy: A rare inherited neuropathy with simple clinical clues. BMJ Case Rep. 2014; pii:bcr2014204481.CrossRefGoogle Scholar

Bibliography

Kim, J.I., Choi, J.K., Lee, J.W., et al. (2015). A novel missense mutation in GCH1 gene in a Korean family with Segawa disease. Brain Dev.37(3):359–61.CrossRefGoogle Scholar
Rodan, L.H., Gibson, K.M., Pearl, P.L. (2015). Clinical use of CSF Neurotransmitters. Pediatr Neurol. 53(4):277–86.CrossRefGoogle ScholarPubMed

Bibliography

Ortigoza-Escobar, J.D., Molero-Luis, M., Arias, A., et al. (2016). Free-thiamine is a potential biomarker of thiamine transporter-2 deficiency: a treatable cause of Leigh syndrome. Brain. 139(Pt 1):31–8.CrossRefGoogle ScholarPubMed
Pérez-Dueñas, B., Serrano, M., Rebollo, M., et al. (2013). Reversible lactic acidosis in a newborn with thiamine transporter-2 deficiency. Pediatrics. 131(5):e1670–5.CrossRefGoogle Scholar

Bibliography

Granata, T., Andermann, F. (2013). Rasmussen encephalitis. Handb Clin Neurol. 111:511–19.CrossRefGoogle ScholarPubMed
Holec, M., Nagahama, Y., Kovach, C., et al. (2016). Rethinking the Magnetic Resonance Imaging Findings in Early Rasmussen Encephalitis: A Case Report and Review of the Literature.Pediatr Neurol. 59:85–9.CrossRefGoogle ScholarPubMed

Bibliography

Patell, R., Dosi, R., Joshi, H.K., et al. (2014). Atypical neuroimaging in Wilson’s disease. BMJ Case Rep. 2014. pii:bcr2013200100.CrossRefGoogle Scholar

Bibliography

Dusek, P., Schneider, S.A., Aaseth, J. (2016). Iron chelation in the treatment of neurodegenerative diseases. J Trace Elem Med Biol. pii:S0946–672X(16)30047–5.Google Scholar
Meyer, E., Kurian, M.A., Hayflick, S.J. (2015). Neurodegeneration with brain iron accumulation: Genetic diversity and pathophysiological mechanisms. Annu Rev Genomics Hum Genet. 16:257–79.CrossRefGoogle ScholarPubMed
Schulte, E.C., Claussen, M.C., Jochim, A., et al. (2013). Mitochondrial membrane protein associated neurodegeneration: A novel variant of neurodegeneration with brain iron accumulation. Mov Disord. 28(2):224–7.CrossRefGoogle ScholarPubMed

Bibliography

Kuhn, J., Bewermeyer, H., Miyajima, H., et al. (2007). Treatment of symptomatic heterozygous aceruloplasminemia with oral zinc sulphate. Brain Dev. 29(7):450–3.CrossRefGoogle ScholarPubMed
Meyer, E., Kurian, M.A., Hayflick, S.J. (2015). Neurodegeneration with brain iron accumulation: Genetic diversity and pathophysiological mechanisms. Annu Rev Genomics Hum Genet. 16:257–79.CrossRefGoogle ScholarPubMed

Bibliography

Jain, R.S., Sannegowda, R.B., Agrawal, A., et al. (2013). “Hot cross bun” sign in a case of cerebrotendinous xanthomatosis: A rare neuroimaging observation. BMJ Case Rep. 2013. pii:bcr2012006641.Google Scholar
Nie, S., Chen, G., Cao, X., et al. (2014). Cerebrotendinous xanthomatosis: A comprehensive review of pathogenesis, clinical manifestations, diagnosis, and management. Orphanet J Rare Dis. 9:179.CrossRefGoogle ScholarPubMed

Bibliography

Monrad, P., Renaud, D.L. (2013). Typical clinical findings should prompt investigation for juvenile Huntington disease. Pediatr Neurol. 48(4):333–4.CrossRefGoogle ScholarPubMed
Roos, R.A. (2010). Huntington’s disease: A clinical review. Orphanet J Rare Dis. 5:40.CrossRefGoogle ScholarPubMed

Bibliography

Chan, K.Y., Ching, C.K., Mak, C.M., et al. (2009). Hereditary spastic paraplegia: Identification of an SPG3A gene mutation in a Chinese family. Hong Kong Med J. 15(4):304–7.Google Scholar
de Souza, P.V., de Rezende Pinto, W.B., de Rezende Batistella, G.N., et al. (2016) Hereditary spastic paraplegia: Clinical and genetic hallmarks. Cerebellum. Jun 7.CrossRefGoogle Scholar

Bibliography

Andrade, D.M., Paton, T., Turnbull, J., et al. (2012). Mutation of the CLN6 gene in teenage-onset progressive myoclonus epilepsy. Pediatr Neurol. 47(3):205–8.CrossRefGoogle ScholarPubMed
Arsov, T., Smith, K.R., Damiano, J., et al. (2011). Kufs disease, the major adult form of neuronal ceroid lipofuscinosis, caused by mutations in CLN6. Am J Hum Genet. 88(5):566–73.CrossRefGoogle ScholarPubMed

Bibliography

Belzil, V.V., Langlais, J.S., Daoud, H., et al. (2012). Novel FUS deletion in a patient with juvenile amyotrophic lateral sclerosis. Arch Neurol. 69(5):653–6.Google Scholar
Finsterer, J., Burgunder, J.M. (2014). Recent progress in the genetics of motor neuron disease. Eur J Med Genet. 57(2–3):103–12.CrossRefGoogle ScholarPubMed
Sharma, A., Lyashchenko, A.K., L. L., et al. (2016). ALS-associated mutant FUS induces selective motor neuron degeneration through toxic gain of function. Nat Commun. 7:10465.CrossRefGoogle ScholarPubMed

Bibliography

Kalia, L.V., Lang, A.E. (2016). Parkinson disease in 2015: Evolving basic, pathological and clinical concepts in PD. Nat Rev Neurol. 12(2):65–6.CrossRefGoogle ScholarPubMed
Malakouti-Nejad, M., Shahidi, G.A., Rohani, M., et al. (2014). Identification of p.Gln858* in ATP13A2 in two EOPD patients and presentation of their clinical features. Neurosci Lett. 577:106–11.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×