Book contents
- Frontmatter
- Dedication
- Contents
- Figures
- Tables
- Examples
- Preface
- 1 Introduction to GPU Kernels and Hardware
- 2 Thinking and Coding in Parallel
- 3 Warps and Cooperative Groups
- 4 Parallel Stencils
- 5 Textures
- 6 Monte Carlo Applications
- 7 Concurrency Using CUDA Streams and Events
- 8 Application to PET Scanners
- 9 Scaling Up
- 10 Tools for Profiling and Debugging
- 11 Tensor Cores
- Appendix A A Brief History of CUDA
- Appendix B Atomic Operations
- Appendix C The NVCC Compiler
- Appendix D AVX and the Intel Compiler
- Appendix E Number Formats
- Appendix F CUDA Documentation and Libraries
- Appendix G The CX Header Files
- Appendix H AI and Python
- Appendix I Topics in C++
- Index
7 - Concurrency Using CUDA Streams and Events
Published online by Cambridge University Press: 04 May 2022
- Frontmatter
- Dedication
- Contents
- Figures
- Tables
- Examples
- Preface
- 1 Introduction to GPU Kernels and Hardware
- 2 Thinking and Coding in Parallel
- 3 Warps and Cooperative Groups
- 4 Parallel Stencils
- 5 Textures
- 6 Monte Carlo Applications
- 7 Concurrency Using CUDA Streams and Events
- 8 Application to PET Scanners
- 9 Scaling Up
- 10 Tools for Profiling and Debugging
- 11 Tensor Cores
- Appendix A A Brief History of CUDA
- Appendix B Atomic Operations
- Appendix C The NVCC Compiler
- Appendix D AVX and the Intel Compiler
- Appendix E Number Formats
- Appendix F CUDA Documentation and Libraries
- Appendix G The CX Header Files
- Appendix H AI and Python
- Appendix I Topics in C++
- Index
Summary
Chapter 7 explores the ability of GPUs to perform multiple tasks simultaneously, including overlapping IO with computation and the simultaneous running of multiple kernels. CUDA streams and events are advanced features that allow users to manage multiple asynchronous tasks running on the GPU. Examples are given and the NVIDIA visual profiler (NVVP) is used to visualise the timeline for tasks in multiple CUDA streams. Asynchronous disk IO on the host PC can also be performed and examples using the C++ <threads> are given. Finally, the new CUDA graphs feature is introduced. This provides a wrapper for efficiently launching large numbers of kernel calls for complex workloads.
- Type
- Chapter
- Information
- Programming in Parallel with CUDAA Practical Guide, pp. 209 - 238Publisher: Cambridge University PressPrint publication year: 2022