Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-5lx2p Total loading time: 0 Render date: 2024-07-25T16:30:35.843Z Has data issue: false hasContentIssue false

Section 6 - Embryo Assessment: Morphology and Beyond

Published online by Cambridge University Press:  07 August 2023

Markus H. M. Montag
Affiliation:
ilabcomm GmbH, St Augustin, Germany
Dean E. Morbeck
Affiliation:
Kindbody Inc, New York City
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Principles of IVF Laboratory Practice
Laboratory Set-Up, Training and Daily Operation
, pp. 213 - 254
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Verlinsky, Y., Ginsberg, N., Lifchez, A., et al. Analysis of the first polar body: preconception genetic diagnosis. Hum Reprod 1990; 5:826–9.CrossRefGoogle ScholarPubMed
Munne, S., Dailey, T., Sultan, K. M., et al. The use of first polar bodies for preimplantation diagnosis of aneuploidy. Mol Hum Reprod 1995; 10:1014–20.Google ScholarPubMed
Handyside, A. H., Montag, M., Magli, M. C., et al. Multiple meiotic errors caused by predivision of chromatids in woman of advanced maternal age undergoing in vitro fertilisation. Eur J Hum Genet 2012; 20:742–7.CrossRefGoogle ScholarPubMed
Montag, M., van der Ven, K., Delacrétaz, G., et al. Laser assisted microdissection of zona pellucida facilitates polar body biopsy. Fertil Steril 1998; 69:539–42.CrossRefGoogle ScholarPubMed
Harton, G. L., Magli, M. C., Lundin, K., et al. ESHRE PGD Consortium/ Embryology Special Interest Group: best practice guidelines for polar body and embryo biopsy for preimplantation genetic diagnosis/screening (PGD/PGS). Hum Reprod 2011; 26:41–6.Google Scholar
Magli, C., Montag, M., Köster, M., et al. Polar body array CGH for prediction of the status of the corresponding oocyte: I. Technical aspects. Hum Reprod 2011; 26:3181–5.CrossRefGoogle Scholar
Verpoest, W., Staessen, C., Bossuyt, P. M., et al. Preimplantation genetic testing for aneuploidy by microarray analysis of polar bodies in advanced maternal age: a randomized clinical trial. Hum Reprod 2018; 33:1767–76.CrossRefGoogle ScholarPubMed
Montag, M., Köster, M.. Strowitzki, T. and Toth, B. Polar body biopsy. Fertil Steril 2013; 100:603–7.Google Scholar
Salvaggio, C. N., Forman, E. J., Garnsey, H. M., et al. Polar body based aneuploidy screening is poorly predictive of embryo ploidy and reproductive potential. J Assist Reprod Genet 2014; 31: 1221–6.CrossRefGoogle ScholarPubMed
Cieslak, J., Ivakhenko, V., Wolf, G., et al. Three-dimensional partial zona dissection for preimplantation genetic diagnosis and assisted hatching. Fertil Steril 1999; 71:308–13.CrossRefGoogle ScholarPubMed

References

Hill, G. A., Freeman, M., Bastias, M. C., et al. The influence of oocyte maturity and embryo quality on pregnancy rate in a program for in vitro fertilization-embryo transfer. Fertil Steril 1989; 52:801–6.CrossRefGoogle Scholar
Hardarson, T., Hanson, C., Sjogren, A. and Lundin, K. Human embryos with unevenly sized blastomeres have lower pregnancy and implantation rates: indications for aneuploidy and multinucleation. Hum Reprod 2001; 16:313–18.CrossRefGoogle ScholarPubMed
Jackson, K. V., Ginsburg, E. S., Hornstein, M. D., Rein, M. S. and Clarke, R. N. Multinucleation in normally fertilized embryos is associated with an accelerated ovulation induction response and lower implantation and pregnancy rates in in vitro fertilization-embryo transfer cycles. Fertil Steril 1998; 70:60–6.CrossRefGoogle Scholar
Munne, S. Chromosome abnormalities and their relationship to morphology and development of human embryos. Reprod Biomed Online 2006; 12:234–53.CrossRefGoogle ScholarPubMed
Prados, F. J., Debrock, S., Lemmen, J. G. and Agerholm, I. The cleavage stage embryo. Hum Reprod 2012; 27(Suppl. 1): i50–71.CrossRefGoogle ScholarPubMed
Perez, G. I., Tao, X. J. and Tilly, J. L. Fragmentation and death (aka apoptosis) of ovulated oocytes. Mol Hum Reprod 1999; 5:414–20.CrossRefGoogle ScholarPubMed
Alikani, M., Cohen, J., Tomkin, G., et al. Human embryo fragmentation in vitro and its implications for pregnancy and implantation. Fertil Steril 1999; 71:836–42.Google Scholar
Chi, H. J., Koo, J. J., Choi, S. Y., Jeong, H. J. and Roh, S. I. Fragmentation of embryos is associated with both necrosis and apoptosis. Fertil Steril 2011; 96:187–92.CrossRefGoogle ScholarPubMed
Steer, C. V., Mills, C. L., Tan, S. L., Campbell, S. and Edwards, R. G. The cumulative embryo score: a predictive embryo scoring technique to select the optimal number of embryos to transfer in an in-vitro fertilization and embryo transfer programme. Hum Reprod 1992; 7:117–19.CrossRefGoogle Scholar
Racowsky, C., Vernon, M., Mayer, J., et al. Standardization of grading embryo morphology. Fertil Steril 2010; 94:1152–3.CrossRefGoogle ScholarPubMed
Alpha Scientists in Reproductive M, Embryology ESIGo. The Istanbul Consensus Workshop on Embryo Assessment: proceedings of an expert meeting. Hum Reprod 2011; 26:1270–83.Google Scholar

References

Van de Velde, H., Cauffman, G., Tournaye, H., Devroey, P. and Liebaers, I. The four blastomeres of a 4-cell stage embryo are able to develop individually into blastocysts with inner cell mass and trophectoderm. Hum Reprod 2008; 23:1742–7.CrossRefGoogle ScholarPubMed
Sozen, B., Can, A. and Demir, N. Cell fate regulation during preimplantation development: a view of adhesion-linked molecular interactions. Dev Biol 2014; 395:7383.CrossRefGoogle ScholarPubMed
Nikas, G., Ao, A., Winston, R. M. L. and Handyside, A. H. Compaction and surface polarity in the human embryo. Biol Reprod 1996; 55:32–7.CrossRefGoogle ScholarPubMed
Fierro-Gonzalez, J. C., White, M. D., Silva, J. C. and Plachta, N. Cadherin-dependent filopodia control preimplantation embryo compaction. Nature Cell Biol 2013; 15:1424–33.CrossRefGoogle ScholarPubMed
Kovacs, P. Embryo selection: the role of time-lapse monitoring. Reprod Biol Endocrinol 2014; 12:124.CrossRefGoogle ScholarPubMed
Iwata, K., Yumoto, K., Sugishima, M., et al. Analysis of compaction initiation in human embryos by using time-lapse cinematography. J Assist Reprod Genet 2014; 31:421–6.Google Scholar
Kort, J. D., Lathi, R. B., Brookfield, K., et al. Aneuploidy rates and blastocyst formation after biopsy of morulae and early blastocysts on day 5. J Assist Reprod Genet 2015; 32:925–30.CrossRefGoogle ScholarPubMed
Tao, J., Tamis, R., Fink, K., et al. The neglected morula/compact stage embryo transfer. Hum Reprod 2002; 17:1513–18.Google Scholar
Kang, S. M., Lee, S. W., Jeong, H. J., et al. Clinical outcomes of elective single morula embryo transfer versus elective single blastocyst transfer in IVF-ET. J Assist Reprod Genet 2012; 29:423–8.CrossRefGoogle ScholarPubMed
Lee, S. H., Lee, H. S., Lim, C. K., et al. Comparison of the clinical outcomes of day 4 and 5 embryo transfer cycles. Clin Exp Reprod Med 2013; 40:122–5.Google Scholar
Prado, F. J., Debrock, S., Lemmen, J. G. and Agerholm, I. The cleavage stage embryo. Hum Reprod 2012; 27(Suppl. 1):150–71.Google Scholar
Tao, J., Tamis, R. and Fink, K. Pregnancies achieved after transferring frozen morula/compact stage embryos. Fertil Steril 2001; 75:629–31.CrossRefGoogle ScholarPubMed
Tao, J., Craig, R. H., Johnson, M., et al. Cryopreservation of human embryos at the morula stage and outcomes after transfer. Fertil Steril 2004; 82:108–18.CrossRefGoogle ScholarPubMed
Vanderzwalmen, P., Bertin, G., Debauche, Ch., et al. Births after vitrification at morula and blastocyst stages: effect of artificial reduction of the blastocoelic cavity before vitrification. Hum Reprod 2002; 17:744–51.CrossRefGoogle ScholarPubMed
Harada, Y., Maeda, T., Fukunaga, E., et al. Selection of high-quality and viable blastocysts based on timing or morula compaction and blastocyst formation. Reprod Med Bio 2020; 19:5864.CrossRefGoogle ScholarPubMed
Edashige, K. The movement of water and cryoprotectants across the plasma membrane of mammalian oocytes and embryos and its relevance to vitrification. J Reprod Dev 2016; 62:317–21.CrossRefGoogle ScholarPubMed
Edashige, K. Permeability of the plasma membrane to water and cryoprotectants in mammalian oocytes and embryos: its relevance to vitrification. Reprod Med Bio 2017; 16:36–9.Google ScholarPubMed
Li, R.-S., Hwu, Y.-M., Lee, R. K.-K., Li, S.-H. and Lin, M.-H. Day 4 good morula embryo transfer provided compatible live birth rate with day 5 blastocyst embryo transfer in fresh IVF/ET cycles. Taiwan J Obstet Gyne 2018; 57:52–7.Google ScholarPubMed
Malik, S., Balassiano, E., Hobeika, E., Knochenhauer, E. S. and Traub, M. L. Fresh blastocyst embryo transfer is superior to morula embryo transfer in young patients undergoing in vitro fertilization. Austin J Reprod Med Infertil 2015; 2:id1015.Google Scholar
Hui, D., Han, X., Wang, X., et al. Morula transfer achieves better clinical outcomes than post-thawed cleavage embryos after overnight culture in frozen embryo transfer (FET) cycles. J Assist Reprod Genet 2020; 37:945–52.CrossRefGoogle ScholarPubMed
Tsai, N.-C., Su, Y.-T., Lin, Y.-J., et al. Developmental potential of surplus morulas with delayed and/or incomplete compaction after freezing–thawing procedures. Reprod Biol Endocrinol 2019; 17 (manuscript 87):8 pages.CrossRefGoogle ScholarPubMed
Haas, J., Meriano, J., Bassil, R., et al. Developmental potential of slow-developing embryos: day-5 morulae compared with day-5 cavitating morulae. Fertil Steril 2019; 111:105–11.CrossRefGoogle ScholarPubMed
Irani, M., Zaninovic, N., Canon, C., et al. A rationale for biopsying embryos reaching the morula stage on Day 6 in women undergoing preimplantation genetic testing for aneuploidy. Hum Reprod 2018; 33:935–41.Google Scholar

References

Dokras, A., Sargent, I. L. and Barlow, D. H. Human blastocyst grading: an indicator of developmental potential? Hum Reprod 1993; 8:2119–27.CrossRefGoogle ScholarPubMed
Balaban, B., Urman, B., Sertac, A., et al. Blastocyst quality affects the success of blastocyst-stage embryo transfer. Fertil Steril 2000; 74:282–7.CrossRefGoogle ScholarPubMed
Gardner, D. K., Lane, M., Stevens, J., Schlenker, T. and Schoolcraft, W. B. Blastocyst score affects implantation and pregnancy outcome: towards a single blastocyst transfer. Fertil Steril 2000; 73:1155–8.CrossRefGoogle ScholarPubMed
Racowsky, C., Combelles, C. M., Nureddin, A., et al. Day 3 and day 5 morphological predictors of embryo viability. Reprod Biomed Online 2003; 6:323–31.CrossRefGoogle ScholarPubMed
Gardner, D. K. and Balaban, B. Choosing between day 3 and day 5 embryo transfers. Clin Obstet Gynecol 2006; 49:8592.CrossRefGoogle ScholarPubMed
Blake, D. A., Farquhar, C. M., Johnson, N. and Proctor, M. Cleavage stage versus blastocyst stage embryo transfer in assisted conception. Cochrane Database Syst Rev 2007; 4:CD002118.Google Scholar
Glujovsky, D., Blake, D., Farquhar, C. and Bardach, A. Cleavage stage versus blastocyst stage embryo transfer in assisted reproductive technology. Cochrane Database Syst Rev 2012; 7:CD002118.Google Scholar
Gardner, D. and Schoolcraft, W. In vitro culture of the human blastocyst, in Towards Reproductive Certainty: Infertility and Genetics Beyond, ed. Jansen, R. and Mortimer, D., pp. 378–88 (Carnforth: Parthenon Publishing, 1999).Google Scholar
Veeck, L. L. and Zaninović, N. An Atlas of Human Blastocysts (New York: Parthenon Publishing, 2003).CrossRefGoogle Scholar
Richter, K. S., Harris, D. C., Daneshmand, S. T. and Shapiro, B. S. Quantitative grading of a human blastocyst: optimal inner cell mass size and shape. Fertil Steril 2001; 76:1157–67.CrossRefGoogle ScholarPubMed
Kovacic, B., Vlaisavljevic, V., Reljic, M. and Cizek-Sajko, M. Developmental capacity of different morphological types of day 5 human morulae and blastocysts. Reprod Biomed Online 2004; 8:687–94.Google Scholar
Alpha Scientists in Reproductive Medicine, ESHRE Special Interest Group of Embryology. The Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting. Hum Reprod 2011; 26:1270–83.Google Scholar
Racowsky, C., Vernon, M., Mayer, J., et al. Standardization of grading embryo morphology. Fertil Steril 2010; 94:1152–3.CrossRefGoogle ScholarPubMed
Hardy, K., Handyside, A. H. and Winston, R. M. The human blastocyst: cell number, death and allocation during late preimplantation development in vitro. Development 1989; 107:597604.CrossRefGoogle ScholarPubMed
Magli, M. C., Jones, G. M., Lundin, K. and van den Abbeel, E. Atlas of human embryology: from oocytes to preimplantation embryos. Hum Reprod 2012; 27(Suppl. 1):i1.CrossRefGoogle ScholarPubMed

References

Scott, R. T., Upham, K. M., Forman, E. J., Zhao, T. and Treff, N. R. Cleavage-stage biopsy significantly impairs human embryonic implantation potential while blastocyst biopsy does not: a randomized and paired clinical trial. Fertil Steril 2013; 100(3):624–30.CrossRefGoogle Scholar
Tiegs, A. W., Tao, X., Zhan, Y., et al. A multicenter, prospective, blinded, nonselection study evaluating the predictive value of an aneuploid diagnosis using a targeted next-generation sequencing-based preimplantation genetic testing for aneuploidy assay and impact of biopsy. Fertil Steril 2021; 115(3):627–37.Google Scholar
Cimadomo, D., Ubaldi, F. M., Capalbo, A., et al. Failure mode and effects analysis of witnessing protocols for ensuring traceability during PGD/PGS cycles. Reprod Biomed Online 2016; 33(3):360–9.CrossRefGoogle ScholarPubMed
Capalbo, A., Ubaldi, F. M., Cimadomo, D., et al. Consistent and reproducible outcomes of blastocyst biopsy and aneuploidy screening across different biopsy practitioners: a multicentre study involving 2586 embryo biopsies. Hum Reprod 2016; 31(1):199208.CrossRefGoogle ScholarPubMed
McArthur, S. J., Leigh, D., Marshall, J. T., de Boer, K. A. and Jansen, R. P. S. Pregnancies and live births after trophectoderm biopsy and preimplantation genetic testing of human blastocysts. Fertil Steril 2005; 84(6):1628–36.CrossRefGoogle ScholarPubMed
Capalbo, A., Rienzi, L., Cimadomo, D., et al. Correlation between standard blastocyst morphology, euploidy and implantation: an observational study in two centers involving 956 screened blastocysts. Hum Reprod 2014; 29(6):1173–81.Google Scholar
ESHRE PGT Consortium Steering Committee C, Carvalho, F., Coonen, E., et al. ESHRE PGT Consortium good practice recommendations for the organisation of PGT. Hum Reprod Open 2020; 2020(3):hoaa021.CrossRefGoogle ScholarPubMed
Cimadomo, D., Rienzi, L., Romanelli, V., et al. Inconclusive chromosomal assessment after blastocyst biopsy: prevalence, causative factors and outcomes after re-biopsy and re-vitrification. A multicenter experience. Hum Reprod 2018; 33(10):1839–46.CrossRefGoogle ScholarPubMed

References

Pribenszky, C., Matyas, S., Kovacs, P., et al. Pregnancy achieved by transfer of a single blastocyst selected by time-lapse monitoring. Reprod Biomed Online 2010; 21:533–6.CrossRefGoogle ScholarPubMed
Cruz, M., Gadea, B., Garrido, N., et al. Embryo quality, blastocyst and ongoing pregnancy rates in oocyte donation patients whose embryos were monitored by time-lapse imaging. J Assist Reprod Genet 2011; 28:569–73.CrossRefGoogle ScholarPubMed
Kragh, M. F., Rimestad, J., Berntsen, J. and Karstoft, H. Automatic grading of human blastocysts from time-lapse imaging. Comput Biol Med 2019; 115:103494.Google Scholar
Hammond, E. R., Foong, A. K. M., Rosli, N. and Morbeck, D.E.. Should we freeze it? Agreement on fate of borderline blastocysts is poor and does not improve with a modified blastocyst grading system. Hum Reprod 2020; 35:1045–53.Google Scholar
ESHRE SIG Embryology, Alpha Scientists in Reproductive Medicine. The Vienna consensus: report of an expert meeting on the development of ART laboratory performance indicators. Reprod Biomed Online 2017; 35:494510.CrossRefGoogle Scholar
Munch, E. M., Sparks, A. E., Duran, H. E. and Van Voorhis, B. J. Lack of carbon air filtration impacts early embryo development. J Assist Reprod Genet 2015; 32:1009–17.CrossRefGoogle ScholarPubMed
Morbeck, D. E. Time-lapse implementation in a clinical setting: management of laboratory quality, in Time-Lapse Microscopy in In-Vitro Fertilization, ed. Meseguer, M., pp. 128–30 (Cambridge: Cambridge University Press, 2016).Google Scholar
Turner, T. The identification of a toxic substance in the in vitro fertilization laboratory: the value of inter-laboratory communication. Fertil Mag 2010; 12:64–5.Google Scholar
Hammond, E. R. and Morbeck, D. E. Tracking quality: can embryology key performance indicators be used to identify clinically relevant shifts in pregnancy rate? Hum Reprod 2019; 34:3743.CrossRefGoogle ScholarPubMed
Wolff, H. S., Fredrickson, J. R., Walker, D. L. and Morbeck, D. E. Advances in quality control: mouse embryo morphokinetics are sensitive markers of in vitro stress. Hum Reprod 2013; 28:1776–82.CrossRefGoogle ScholarPubMed
Bormann, C. L., Curchoe, C. L., Thirumalaraju, P., et al. Deep learning early warning system for embryo culture conditions and embryologist performance in the ART laboratory. J Assist Reprod Genet 2021; 38:1641–6.Google ScholarPubMed
Mortimer, S. and Mortimer, D. How are we doing?: Benchmarking, in Quality and Risk Management in the IVF Laboratory, pp. 145–52 (Cambridge: Cambridge University Press, 2015).CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×