Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-wpx84 Total loading time: 0 Render date: 2024-08-15T02:22:44.807Z Has data issue: false hasContentIssue false

5 - Cloud droplets, ice particles and precipitation

Published online by Cambridge University Press:  10 October 2009

Get access

Summary

By the start of the twentieth century a simple basic understanding of how cloud droplets form had been reached. It is useful to review these findings before going forward to fill in the details learnt during the last century. Recall, for example, the experimental work of Guericke in the seventeenth century with his air pump and cloud chamber in which a few large droplets might form one day, a large number of smaller drops on another. He wrongly concluded that two different processes were in action. A century later Kratzenstein repeated Guericke's experiments but was confused by the colours he saw and wrongly concluded that the drops were bubbles (or ‘vesicles’). In the nineteenth century, Waller collected cloud droplets on spider webs and concluded that they were drops, not bubbles. Then in 1875 the Frenchman, Coulier, while doing experiments with a cloud chamber, deduced correctly that droplets only form if there is ‘dust’ in the air. This finding was ignored at the time, but soon afterwards John Aitken, in Scotland, made a similar discovery. Aitken acknowledged Coulier's work when his attention was drawn to it, but went on to conclude that the fewer the ‘dust’ particles, the larger the drop sizes and the smaller their number, suggesting that the available water vapour was shared amongst the particles. He also concluded that most probably dried sea spray in the form of fine powder was the main source of nuclei, other possible causes being volcanic and meteoric dust, along with smoke from combustion.

Type
Chapter
Information
Precipitation
Theory, Measurement and Distribution
, pp. 106 - 118
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beard, K. V. and Pruppacher, H. R. (1969). A determination of the terminal velocity and drag of small water drops by means of a wind tunnel. Journal of the Atmospheric Sciences, 26, 1066–10722.0.CO;2>CrossRefGoogle Scholar
Hobbs, P. V. (1974). Ice Physics. Oxford: Clarendon PressGoogle Scholar
Hobbs, P. V. and Rango, A. L. (1985). Ice particle concentrations in clouds. Journal of the Atmospheric Sciences, 42, 2523–25492.0.CO;2>CrossRefGoogle Scholar
Houze, R. A. Jr. (1993) Cloud Dynamics. San Diego, CA:Academic PressGoogle Scholar
Libbrecht, K. and Rasmussen, P. (2004). The Snowflake. Grantown-on-Spey: Colin Baxter PhotographyGoogle Scholar
Magono, C. and Lee, C. (1966). Meteorological classification of natural snow crystals. Journal of the Faculty of Science, Hokkaido University, Ser. VII, 2, 321–325Google Scholar
Nakaya, U. and Terada, T. (1935). Simultaneous observations of the mass, falling velocity, and form of individual snow crystals. Journal of the Faculty of Science, Hokkaido University, Ser. II, 1, 191–201Google Scholar
Pruppacher, H. R. and Klett, J. D. (1978). Microphysics of Clouds and Precipitation. Dordrecht: Reide.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×