Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-4hcbs Total loading time: 3.19 Render date: 2021-12-05T08:46:15.030Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

IV - Solar system

Published online by Cambridge University Press:  05 May 2015

Ludmilla Kolokolova
Affiliation:
University of Maryland, College Park
James Hough
Affiliation:
University of Hertfordshire
Anny-Chantal Levasseur-Regourd
Affiliation:
Université de Paris VI (Pierre et Marie Curie)
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anusha, L. S., Nagendra, K. N., Bianda, M.et al. (2011). Analysis of the forward-scattering Hanle effect in the Ca I 4227 Å Line. The Astrophysical Journal, 737(2), 95.CrossRefGoogle Scholar
Auer, L. H. and Heasley, J. N. (1978). The origin of broad-band circular polarization in sunspots. Astronomy and Astrophysics, 64, 6771.Google Scholar
Belluzzi, L. (2009). On the physical origin of the Second Solar Spectrum of the Sc II line at 4247 Å. Astronomy and Astrophysics, 508, 933940.CrossRefGoogle Scholar
Belluzzi, L., Trujillo Bueno, J., and Landi Degl’Innocenti, E. (2007). The magnetic sensitivity of the Ba II D1 and D2 lines of the Fraunhofer spectrum. The Astrophysical Journal, 666(1), 588.CrossRefGoogle Scholar
Belluzzi, L., Landi Degl’Innocenti, E., and Trujillo Bueno, J. (2009). The physical origin and the diagnostic potential of the scattering polarization in the Li I resonance doublet at 6708 Å. The Astrophysical Journal, 705(1), 218.CrossRefGoogle Scholar
Berdyugina, S. V., Nagendra, K. N., and Ramelli, R., eds. (2009). Solar Polarization 5: In Honor of Jan Olof Stenflo. Astronomical Society of the Pacific Conference Series, Vol. 405. San Francisco CA: Astronomical Society of the Pacific.Google Scholar
Bianda, M., Ramelli, R., Anusha, L. S.et al. (2011). Observations of the forward scattering Hanle effect in the Cal 4227 Å line. Astronomy and Astrophysics, 530, L13 (4pp).CrossRefGoogle Scholar
Bommier, V. (1980). Quantum theory of the Hanle effect. II – Effect of level-crossings and anti-level-crossings on the polarization of the D3 helium line of solar prominences. Astronomy and Astrophysics, 87, 109120.Google Scholar
Bommier, V. (1997a). Master equation theory applied to the redistribution of polarized radiation, in the weak radiation field limit. I – Zero magnetic field case. Astronomy and Astrophysics, 328, 706725.Google Scholar
Bommier, V. (1997b). Master equation theory applied to the redistribution of polarized radiation, in the weak radiation field limit. II – Arbitrary magnetic field case. Astronomy and Astrophysics, 328, 726751.Google Scholar
Bommier, V. and Sahal-Bréchot, S. (1978). Quantum theory of the Hanle effect – Calculations of the Stokes parameters of the D3 helium line for quiescent prominences. Astronomy and Astrophysics, 69, 5764.Google Scholar
Casini, R. and Manso Sainz, R. (2005). Line formation theory for the multiterm atom with hyperfine structure in a magnetic field. The Astrophysical Journal, 624(2), 1025.CrossRefGoogle Scholar
Casini, R., Landi Degl’Innocenti, E., Landolfi, M., and Trujillo Bueno, J. (2002). On the atomic polarization of the ground level of Na I. The Astrophysical Journal, 573(2), 864.CrossRefGoogle Scholar
del Toro Iniesta, J. C. (2003). Introduction to Spectropolarimetry. Cambridge University Press.CrossRefGoogle Scholar
Golub, L., De Moortel, I., and Shimizu, T., eds. (2012). Fifth Hinode Science Meeting. Astronomical Society of the Pacific Conference Series, Vol. 456. San Francisco: Astronomical Society of the Pacific.Google Scholar
Hale, G. E. (1908). On the probable existence of a magnetic field in sun-spots. The Astrophysical Journal, 28, 315343.CrossRefGoogle Scholar
Hanle, W. (1924). Über magnetische Beeinflussung der Polarisation der Resonanzfluoreszenz. Zeitschrift für Physik, 30(1), 93105.CrossRefGoogle Scholar
Holzreuter, R. and Stenflo, J. (2007). Scattering polarization in strong chromospheric lines. Astronomy and Astrophysics, 472(3), 919928.CrossRefGoogle Scholar
Illing, R. M. E., Landman, D. A., and Mickey, D. L. (1975). Broad-band circular polarization of sunspots – Spectral dependence and theory. Astronomy and Astrophysics, 41, 183185.Google Scholar
Ivanov, V. V. (1991). Analytical methods of line formation theory: Are they still alive?. In Crivellari, L., Hubeny, I., and Hummer, D. G., eds., Stellar Atmospheres: Beyond Classical Models. Dordrecht: Springer, pp. 81104.CrossRefGoogle Scholar
Kuhn, J. R., Harrington, D. M., Lin, H.et al., eds. (2011). Solar Polarization 6. Astronomical Society of the Pacific Conference Series, Vol. 437. San Francisco: Astronomical Society of the Pacific.Google Scholar
Landi Degl’innocenti, E. (1982). The determination of vector magnetic fields in prominences from the observations of the Stokes profiles in the D3 line of helium. Solar Physics, 79(2), 291322.CrossRefGoogle Scholar
Landi Degl’Innocenti, E. (1983). Polarization in spectral lines. I – A unifying theoretical approach. Solar Physics, 85(1), 331.CrossRefGoogle Scholar
Landi Degl’Innocenti, E. (1984). Polarization in spectral lines. III – Resonance polarization in the non-magnetic, collisionless regime. Solar Physics, 91(1), 126.Google Scholar
Landi Degl’Innocenti, E. (1998). Evidence against turbulent and canopy-like magnetic fields in the solar chromosphere. Nature, 392(6673), 256258.CrossRefGoogle Scholar
Landi Degl’Innocenti, E. and Landolfi, M. (2004). Polarization in Spectral Lines. Astrophysics and Space Science Library, Vol. 307. Dordrecht: Kluwer.CrossRefGoogle Scholar
Landolfi, M. and Landi Degl’Innocenti, E. (1982). Magneto-optical effects and the determination of vector magnetic fields from Stokes profiles. Solar Physics, 78, 355.CrossRefGoogle Scholar
Leroy, J. L., Ratier, G., and Bommier, V. (1977). The polarization of the D3 emission line in prominences. Astronomy and Astrophysics, 54, 811816.Google Scholar
Lites, B. W., Kubo, M., Socas-Navarro, H.et al. (2008). The horizontal magnetic flux of the quiet-Sun internetwork as observed with the Hinode spectro-polarimeter. The Astrophysical Journal, 672(2), 1237.CrossRefGoogle Scholar
Manso Sainz, R. and Trujillo Bueno, J. (2003). Zero-field dichroism in the solar chromosphere. Physical Review Letters, 91(11), 111102.CrossRefGoogle Scholar
Manso Sainz, R. and Trujillo Bueno, J. (2007). Scattering polarization of the Ca II infrared triplet as diagnostic of the quiet solar chromosphere. In Heinzel, P., Dorotovic, I., and Rutten, R. J., eds., The Physics of Chromospheric Plasmas. Astronomical Society of the Pacific Conference Series, Vol. 368. San Francisco: Astronomical Society of the Pacific, p. 155.Google Scholar
Narukage, N., Tsuneta, S., Bando, T.et al. (2011). Overview of chromospheric Lyman-alpha spectropolarimeter (CLASP). In SPIE Optical Engineering + Applications. Bellingham WA: International Society for Optics and Photonics, p. 81480H.Google Scholar
Omont, A., Smith, E. W., and Cooper, J. (1973). Redistribution of resonance radiation. II – The effect of magnetic fields. The Astrophysical Journal, 182, 283300.CrossRefGoogle Scholar
Povel, H. P. (2001). Ground-based instrumentation for solar magnetic field studies, with special emphasis on the Zurich Imaging Polarimeters ZIMPOL-I and II. In Mathys, G., Solanki, S. K., and Wickramasinghe, D. T., eds., Magnetic Fields Across the Hertzsprung-Russell Diagram. Astronomical Society of the Pacific Conference Series, Vol. 248. San Francisco: Astronomical Society of the Pacific, p. 543.Google Scholar
Rachkovsky, D. N. (1962a). Magneto-optical effects in spectral lines of sunspots. Crimean Astrophysical Observatory, 27, 148161.Google Scholar
Rachkovsky, D. N. (1962b). Magnetic rotation effects in spectral lines. Crimean Astrophysical Observatory, 28, 259270.Google Scholar
Sahal-Bréchot, S., Bommier, V., and Leroy, J. L. (1977). The Hanle effect and the determination of magnetic fields in solar prominences. Astronomy and Astrophysics, 59, 223231.Google Scholar
Solanki, S. K. (1993). Small-scale solar magnetic fields: An overview. Space Science Reviews, 63(1–2), 1188.CrossRefGoogle Scholar
Stenflo, J. O. (1973). Magnetic-field structure of the photospheric network. Solar Physics, 32(1), 4163.CrossRefGoogle Scholar
Stenflo, J. O. (1980). Resonance-line polarization. V. Quantum-mechanical interference between states of different total angular momentum. Astronomy and Astrophysics, 84, 6874.Google Scholar
Stenflo, J. O. (1982). The Hanle effect and the diagnostics of turbulent magnetic fields in the solar atmosphere. Solar Physics, 80(2), 209226.CrossRefGoogle Scholar
Stenflo, J. O. (1987). Observational constraints on a “hidden,” turbulent magnetic field of the sun. Solar Physics, 114(1), 119.Google Scholar
Stenflo, J. O. (1994). Solar Magnetic Fields: Polarized Radiation Diagnostics. Astrophysics and Space Science Library, Vol. 189. Dordrecht: Kluwer.CrossRefGoogle Scholar
Stenflo, J. O. (1997). Quantum interferences, hyperfine structure, and Raman scattering on the Sun. Astronomy and Astrophysics, 324, 344356.Google Scholar
Stenflo, J. O. (1998). Hanle-Zeeman scattering matrix. Astronomy and Astrophysics, 338, 301310.Google Scholar
Stenflo, J. O. (2003). Scattering polarization in magnetic fields: Anomalies, surprises and enigmas. In Trujillo Bueno, J. and Sanchez Almeida, J., eds., Solar Polarization 3. Astronomical Society of the Pacific Conference Series, Vol. 307. San Francisco: Astronomical Society of the Pacific, pp. 385398.Google Scholar
Stenflo, J. O. (2005). Polarization of the Sun’s continuous spectrum. Astronomy and Astrophysics, 429(2), 713730.CrossRefGoogle Scholar
Stenflo, J. O. (2006). Second Solar Spectrum: A brief overview. In Casini, R. and Lites, B. W., eds., Solar Polarization 4. Astronomical Society of the Pacific Conference Series, Vol. 358. San Francisco: Astronomical Society of the Pacific, pp. 215224.Google Scholar
Stenflo, J. O. (2009). The Sun as a Rosetta stone for polarization physics. In Berdyugina, S., Nagendra, K. N., and Ramelli, R., eds., Solar Polarization 5: In Honor of Jan Olof Stenflo. Astronomical Society of the Pacific Conference Series, Vol. 405. San Francisco: Astronomical Society of the Pacific, pp. 316.Google Scholar
Stenflo, J. O. (2011). Unsolved problems in solar polarization. In Kuhn, J. R., Harrington, D. M., Lin, H.et al., eds., Solar Polarization 6. Astronomical Society of the Pacific Conference Series, Vol. 437. San Francisco: Astronomical Society of the Pacific, pp. 317.Google Scholar
Stenflo, J. O. (2012). Scaling laws for magnetic fields on the quiet Sun. Astronomy and Astrophysics, 541, A17 (12pp).CrossRefGoogle Scholar
Stenflo, J. O. (2013a). Horizontal or vertical magnetic fields on the quiet Sun. Angular distributions and their height variations. Astronomy and Astrophysics, 555, A132 (12pp).CrossRefGoogle Scholar
Stenflo, J. O. (2013b). Solar magnetic fields as revealed by Stokes polarimetry. The Astronomy and Astrophysics Review, 21(1), 158.CrossRefGoogle Scholar
Stenflo, J. O. and Keller, C. U. (1997). The Second Solar Spectrum. A new window for diagnostics of the Sun. Astronomy and Astrophysics, 321, 927934.Google Scholar
Stenflo, J. O., Dravins, D., Wihlborg, N.et al. (1980). Search for spectral line polarization in the solar vacuum ultraviolet. Solar Physics, 66(1), 1319.CrossRefGoogle Scholar
Stenflo, J. O., Twerenbold, D., and Harvey, J. W. (1983a). Coherent scattering in the solar spectrum – Survey of linear polarization in the range 3165–4230 Å. Astronomy and Astrophysics Supplement Series, 52, 161180.Google Scholar
Stenflo, J. O., Twerenbold, D., Harvey, J. W., and Brault, J. W. (1983b). Coherent scattering in the solar spectrum – Survey of linear polarization in the range 4200–9950 Å. Astronomy and Astrophysics Supplement Series, 54(3), 505514.Google Scholar
Stenflo, J. O., Harvey, J. W., Brault, J. W., and Solanki, S. (1984). Diagnostics of solar magnetic fluxtubes using a Fourier transform spectrometer. Astronomy and Astrophysics, 131(2), 333346.Google Scholar
Stenflo, J. O., Keller, C. U., and Gandorfer, A. (2000). Anomalous polarization effects due to coherent scattering on the Sun. Astronomy and Astrophysics, 355, 789803.Google Scholar
Stepanov, V. E. (1958). The absorption coefficient of atoms in the case of reverse Zeeman effect for arbitrary directed magnetic fields. Crimean Astrophysical Observatory, 18, 136150.Google Scholar
Stepanov, V. E. and Severny, A. B. (1962). A photoelectric method for measurements of the magnitude and direction of the solar magnetic field. Crimean Astrophysical Observatory, 28, 166193.Google Scholar
Thalmann, C., Stenflo, J. O., Feller, A., and Cacciani, A. (2009). Magnetic field dependence of polarized scattering on potassium. In Berdyugina, S., Nagendra, K. N., and Ramelli, R., eds., Solar Polarization 5: In Honor of Jan Olof Stenflo. Astronomical Society of the Pacific Conference Series, Vol. 405. San Francisco: Astronomical Society of the Pacific, pp. 113118.Google Scholar
Trujillo Bueno, J. (2001). Atomic polarization and the Hanle effect. In Sigwarth, M., ed., Advanced Solar Polarimetry – Theory, Observation, and Instrumentation. Astronomical Society of the Pacific Conference Series, Vol. 236. San Francisco: Astronomical Society of the Pacific, pp. 161195.Google Scholar
Trujillo Bueno, J. T. and Landi Degl’Innocenti, E. (1997). Linear polarization due to lower level depopulation pumping in stellar atmospheres. The Astrophysical Journal Letters, 482(2), L183L186.CrossRefGoogle Scholar
Trujillo Bueno, J., Casini, R., Landolfi, M., and Landi Degl’Innocenti, E. (2002a). The physical origin of the scattering polarization of the Na I D lines in the presence of weak magnetic fields. The Astrophysical Journal Letters, 566(1), L53L57.CrossRefGoogle Scholar
Trujillo Bueno, J., Landi Degl’Innocenti, E., Collados, M., Merenda, L., and Manso Sainz, R. (2002b). Selective absorption processes as the origin of puzzling spectral line polarization from the Sun. Nature, 415(6870), 403406.CrossRefGoogle ScholarPubMed
Trujillo Bueno, J., Shchukina, N., and Asensio-Ramos, A. (2004). A substantial amount of hidden magnetic energy in the quiet Sun. Nature, 430(6997), 326329.CrossRefGoogle Scholar
Trujillo Bueno, J., Štěpán, J., and Casini, R. (2011). The Hanle effect of the hydrogen Lyα line for probing the magnetism of the solar transition region. The Astrophysical Journal Letters, 738(1), L11 (5pp).CrossRefGoogle Scholar
Trujillo Bueno, J., Štěpán, J., and Belluzzi, L. (2012). The Lyα lines of H I and He II: A differential Hanle effect for exploring the magnetism of the solar transition region. The Astrophysical Journal Letters, 746(1), L9 (5pp).CrossRefGoogle Scholar
Unno, W. (1956). Line formation of a normal Zeeman triplet. Publications of the Astronomical Society of Japan, 8, 108.Google Scholar
Watanabe, H., Narukage, N., Kubo, M.et al. (2011). Ly-alpha polarimeter design for CLASP rocket experiment. In SPIE Optical Engineering + Applications. Bellingham WA: International Society for Optics and Photonics, p. 81480T.Google Scholar
Ariste, A. L., Leblanc, F., Casini, R.et al. (2012). Resonance scattering polarization in the magnetosphere of Mercury. Icarus, 220, 11041111.CrossRefGoogle Scholar
Bohren, C. and Huffman, D. (1998). Absorption and Scattering of Light by Small Particles. New York: John Wiley & Sons.CrossRefGoogle Scholar
Cantor, B. A., Wolff, M. J., James, P. B., and Higgs, E. (1998). Regression of Martian north polar cap: 1990–1997 Hubble Space Telescope observations. Icarus, 136, 175191.CrossRefGoogle Scholar
Clancy, R. T., Wolff, M. J., and Christensen, P. R. (2003). Mars aerosol studies with the MGS TES emission phase function observations: Optical depths, particle sizes, and ice cloud types versus latitude and solar longitude. Journal of Geophysical Research, 108, 5098.CrossRefGoogle Scholar
Coffeen, D. L. (1979). Polarization and scattering characteristics in the atmospheres of Earth, Venus, and Jupiter. Journal of the Optical Society of America, 69, 10511064.CrossRefGoogle Scholar
Coffeen, D. and Hansen, J. (1974). Polarization studies of planetary atmospheres. In Planets, Stars, and Nebular Studies with Photopolarimetry. Tucson: University of Arizona Press.Google Scholar
Dlugach, Z. and Petrova, E. (2003). Polarimetry of Mars in high-transparency periods: How reliable are the estimates of aerosol optical properties?Solar System Research, 37, 87100.CrossRefGoogle Scholar
Dollfus, A. and Auriere, M. (1974). Optical polarimetry of planet Mercury. Icarus, 23, 465482.CrossRefGoogle Scholar
Dollfus, A. and Focas, J. (1969). La planete Mars: La nature de sa surface et les proprietes de son atmosphere, d’apres la polarisation de sa lumiere. Observations. Astronomy and Astrophysics, 2, 6374.Google Scholar
Dollfus, A., Auriere, M., and Santer, R. (1979). Wavelength dependence of polarization. XXXVII. Regional observations of Venus. The Astronomical Journal, 84(9), 14191436.CrossRefGoogle Scholar
Dollfus, A., Deschaps, M., and Ksanfomality, L. (1983). The surface texture of the Martian soil from Soviet spacecraft Mars 5 photopolarimeter. Astronomy and Astrophysics, 123, 225237.Google Scholar
Dollfus, A., Bowell, E., and Ebisawa, S. (1984). The Martian dust storms of 1973: A polarimetric analysis. Astronomy and Astrophysics, 134, 343353.Google Scholar
Dollfus, A., Ebisawa, S., and Crussaire, D. (1996). Hoods, mists, frosts, and ice caps at the poles of Mars. Journal of Geophysical Research, 101(E4), 92079226.CrossRefGoogle Scholar
Ebisawa, S. and Dollfus, A. (1993). Dust in the Martian atmosphere: Polarimetric sensing. Astronomy and Astrophysics, 272, 671686.Google Scholar
Fox, G., Code, A., Anderson, C.et al. (1997). Solar system observations by the Wisconsin Ultraviolet Photopolarimeter experiment. I. The first ultraviolet linear spectropolarimetry of Mars. The Astronomical Journal, 113, 11521157.CrossRefGoogle Scholar
Gehrels, T., Gradie, J., Howes, M., and Vrba, F. (1979). Wavelength dependence of polarization. XXXIV. Observations of Venus. The Astronomical Journal, 84, 671682.CrossRefGoogle Scholar
Gehrels, T., Landau, R., and Coyne, G. V. (1987). Mercury: Wavelength and longitude dependence of polarization. Icarus, 71, 386396.CrossRefGoogle Scholar
Grinspoon, D., Polack, J., Sitton, B.et al. (1993). Probing Venus’s cloud structure with Galileo NIMS. Planetary and Space Science, 41(7), 515542.CrossRefGoogle Scholar
Hansen, J. E. and Arking, A. (1971). Clouds of Venus: Evidence for their nature. Science, 171, 669672.CrossRefGoogle ScholarPubMed
Hansen, J. E. and Hovenier, J. W. (1974). Interpretation of the polarization of Venus. Journal of the Atmospheric Sciences, 31, 11371160.2.0.CO;2>CrossRefGoogle Scholar
Hapke, B. (2012) Theory of Reflectance and Emittance Spectroscopy. Cambridge University Press.Google Scholar
James, P. B., Clancy, R. T., Lee, S. W.et al. (1994). Monitoring Mars with the Hubble Space Telescope: 1990–1991 observations. Icarus, 109, 79101.CrossRefGoogle Scholar
Kawabata, K. and Hansen, J. (1975). Interpretation of the variation of polarization over the disk of Venus. Journal of the Atmospheric Sciences, 32, 11331139.2.0.CO;2>CrossRefGoogle Scholar
Kawabata, K., Coffeen, D., Hansen, J.et al. (1980). Cloud and haze properties from Pioneer Venus polarimetry. Journal of Geophysical Research, 85(AI3), 81298140.CrossRefGoogle Scholar
Kaydash, V., Kreslavsky, M., Shkuratov, Yu. et al. (2006). Measurements of winds on Mars with Hubble Space Telescope images in 2003 opposition. Icarus, 185, 97101.CrossRefGoogle Scholar
Kemp, G., Henson, G., Steiner, C., and Powell, E. (1987). The optical polarization of the Sun measured at a sensitivity of parts in ten million. Nature, 326(6110), 270273.CrossRefGoogle Scholar
Knibbe, W., de Haan, J., Hovenier, J., and Travis, L. (1997). A biwavelength analysis of Pioneer Venus polarization observations. Journal of Geophysical Research, 102(E5), 1094510957.CrossRefGoogle Scholar
Können, G., Schoenmaker, A., and Tinbergen, J. (1993). A polarimetric search for ice crystals in the upper atmosphere of Venus. Icarus, 102, 6275.CrossRefGoogle Scholar
Korablev, O., Fedorova, A., Bertaux, J.-L.et al. (2012). SPICAV IR acousto-optic spectrometer experiment on Venus Express. Planetary and Space Science, 65, 3857.CrossRefGoogle Scholar
Ksanfomality, L., Harmon, J., Petrova, E.et al. (2007). Earth-based visible and near-IR imaging of Mercury. Space Science Reviews, 132, 351397.CrossRefGoogle Scholar
Laven, P. (2004). Simulation of rainbows, coronas and glories using Mie theory and the Debye series. Journal of Quantitative Spectroscopy and Radiative Transfer, 89, 257269.CrossRefGoogle Scholar
Lee, P., Ebisawa, S., and Dollfus, A. (1990). Crystal clouds in the Martian atmosphere. Astronomy and Astrophysics, 240, 520532.Google Scholar
Limaye, S. (1984). Morphology and movements of polarization features on Venus as seen in the Pioneer Orbiter Cloud Photopolarimeter data. Icarus, 57, 362385.CrossRefGoogle Scholar
Lupishko, D. and Kiselev, N. (2004). Disk-integrated polarimetry of Mercury in 2000–2002. In Videen, G., Yatskiv, Ya., and Mishchenko, M., eds., Photopolarimetry in Remote Sensing. Dordrecht, The Netherlands: Kluwer Academic Publishers, pp. 385392.Google Scholar
Lyot, B. (1929). Recherches sur la polarisation de la lumière des planètes et de quelques substances terrestres. Annales de l’Observatoire de Paris, section de Meudon, 8, 1161.Google Scholar
Marov, M. Y., Lystsev, V. T., Lebedev, V. N., Lukashevich, N. L., and Shari, V. P. (1980). The structure and microphysical properties of the Venus clouds: Venera 9, 10, and 11 data. Icarus, 44, 608639.CrossRefGoogle Scholar
Mishchenko, M., Lacis, A., Carlson, B., and Travis, L. (1995). Nonsphericity of dust-like tropospheric aerosols: Implications for aerosol remote sensing and climate modeling. Geophysical Research Letters, 22, 10771080.CrossRefGoogle Scholar
Mishchenko, M., Dlugach, J., Liu, L.et al. (2009). Direct solutions of the Maxwell equations explain opposition phenomena observed for high-albedo solar system objects. The Astrophysical Journal Letters, 705, L118L122.CrossRefGoogle Scholar
Ovcharenko, A., Shkuratov, Y., Pinet, P., Cord, A., and Daydou, Y. (2002). Additional characterization of Martian regolith analogs used for spectral imaging by the facility of observatory Midi-Pyrenees. Microsymposium Vernadsky-Brown, 36, MS075.Google Scholar
Petrova, E. V. (1999). Mars aerosol optical thickness retrieved from measurements of the polarization inversion angle and the shape of dust particles. Journal of Quantitative Spectroscopy and Radiative Transfer, 63, 667676.CrossRefGoogle Scholar
Petrova, E. V. and Tishkovets, V. P. (2011). Light scattering by morphologically complex objects and opposition effects (a review). Solar System Research, 45(4), 304322.CrossRefGoogle Scholar
Petrova, E., Shalygina, O., Markiewicz, W., and Almeida, M. (2013). VMC/VEX photometry at small phase angles: Glory and the properties of particles in the upper cloud layer of Venus. European Geosciences Union, General Assembly (EGU2013-7839).
Ragent, B. and Blamont, J. (1980). The structure of the clouds of Venus: Results of the Pioneer Venus nephelometer experiment. Journal of Geophysical Research, 85(A13), 80898105.CrossRefGoogle Scholar
Ragent, B., Esposito, L., Tomasko, M.et al. (1985). Particulate matter in the Venus atmosphere. Advances in Space Research, 5, 85115.CrossRefGoogle Scholar
Roggemann, M. C. and Welsh, B. M. (1996). Imaging Through Turbulence. Boca Raton: CRC Press.Google Scholar
Rossi, L., Montmessin, F., Marcq, M.et al. (2013). Study of Venus’ cloud layers by polarimetry with SPICAV/Vex. European Planetary Science Congress 2013, 8, EPSC2013–504.Google Scholar
Santer, R., Deschaps, M., Ksanfomality, L., and Dollfus, A. (1985). Photopolarimetric analysis of the Martian atmosphere by Soviet MARS-5 orbiter. 1. White clouds and dust veils. Astronomy and Astrophysics, 150, 217228.Google Scholar
Santer, R., Deschaps, M., Ksanfomality, L., and Dollfus, A. (1986). Photopolarimetric analysis of the Martian atmosphere by Soviet MARS-5 orbiter. 2. Limb and terminator measurements. Astronomy and Astrophysics, 158, 247258.Google Scholar
Sato, M., Travis, L. D., and Kawabata, K. (1996). Photopolarimetry analysis of the Venus atmosphere in polar regions. Icarus, 124, 569585.CrossRefGoogle Scholar
Shkuratov, Y. G. (1987). Negative polarization of sunlight scattered from celestial bodies: Interpretation of the wavelength dependence. Soviet Astronomy Letters, 13, 182183.Google Scholar
Shkuratov, Y. G. and Opanasenko, N. V. (1992). Polarimetric and photometric study of the Moon: Telescope observation and laboratory simulation. 2. The positive polarization. Icarus, 99, 468484.CrossRefGoogle Scholar
Shkuratov, Yu. and Zubko, E. (2008). Comment on “Modeling of opposition effects with ensembles of clusters: Interplay of various scattering mechanisms” by E. V. Petrova, V. P. Tishkovets, K. Jockers, 2007 [Icarus, 188, 233–245]. Icarus, 194, 850852.CrossRefGoogle Scholar
Shkuratov, Y., Ovcharenko, A., Zubko, E.et al. (2002). The opposition effect and negative polarization of structurally simulated planetary regoliths. Icarus, 159, 396416.CrossRefGoogle Scholar
Shkuratov, Y., Kreslavsky, M., Kaydash, V.et al. (2005). Hubble Space Telescope imaging polarimetry of Mars during the 2003 opposition. Icarus, 176, 111.CrossRefGoogle Scholar
Shkuratov, Y., Bondarenko, S., Ovcharenko, A.et al. (2006). Comparative studies of the reflectance and degree of linear polarization of particulate surfaces and independently scattering particles. Journal of Quantitative Spectroscopy and Radiative Transfer, 100, 340358.CrossRefGoogle Scholar
Shkuratov, Y., Kaydash, V., Korokhin, V.et al. (2011). Optical measurements of the Moon as a tool to study its surface. Planetary and Space Science, 59, 13261371.CrossRefGoogle Scholar
Sparks, W., Hough, J., and Bergeron, L. (2005). A search for chiral signatures on Mars. Astrobiology, 5, 737748.CrossRefGoogle ScholarPubMed
Sparks, W., Hough, J., Geremer, T., Robb, F., and Kolokolova, L. (2012). Remote sensing of chiral signatures on Mars. Planetary and Space Science, 72, 111115.CrossRefGoogle Scholar
Starodubtseva, O. M. (1987). Temporal variations of polarized light on Venus. Astronomicheskii Tsirkulyar, 1511, 3 [in Russian].Google Scholar
Starodubtseva, O. M. (1991). Variability of polarized light of Venus from ground-based observations. In 22nd Lunar Planetary Science Conference. Houston: LPI, p. 1315.Google Scholar
Taylor, F. (2006). Venus before Venus Express. Planetary and Space Science, 54, 12491262.CrossRefGoogle Scholar
Tishkovets, V. P. and Shkuratov, Y. G. (1982). Polarization properties of the surface and atmosphere of Mars. Soviet Astronomy, 26, 599601.Google Scholar
Travis, L. D., Coffeen, D. L., Hansen, J. E.et al. (1979). Orbiter cloud photopolarimeter investigation. Science, 203, 781785.CrossRefGoogle ScholarPubMed
Veverka, J., Helfenstein, P., Hapke, B., and Goguen, J. D. (1988). Photometry and polarimetry of Mercury. In Vilas, F., Chapman, C. R., and Matthews, M. S., eds., Mercury. Tucson: University of Arizona Press, pp. 3758.Google Scholar
Wolff, M. and Clancy, R. (2003). Constraints on the size of Martian aerosols from Thermal Emission Spectrometer observations. Journal of Geophysical Research, 108, 5097.CrossRefGoogle Scholar
Wolff, M. J., BellIII, J. F., James, P. B., Clancy, R. T., and Lee, S. W. (1999). Hubble Space Telescope observations of the Martian aphelion cloud belt prior to the Mars Pathfinder mission: Seasonal and interannual variations. Journal of Geophysical Research, 104(E4), 90279041.CrossRefGoogle Scholar
Young, A. (1973). Are the clouds of Venus sulfuric acid?Icarus, 18, 564582.CrossRefGoogle Scholar
Zubko, E., Shkuratov, Y., Mishchenko, M., and Videen, G. (2008). Light scattering in a finite multi-particle system. Journal of Quantitative Spectroscopy and Radiative Transfer, 109, 21952206.CrossRefGoogle Scholar
Akimov, L. A. and Shkuratov, Yu. G. (1983). Optical research on lunar soil samples of different degrees of maturity. Solar System Research, 17, 152158.Google Scholar
Arago, F. (1858). Les Comètes. Paris: Gide Editeur.Google Scholar
Bandermann, L. W., Kemp, L. C., and Wolstencroft, R. D. (1972). Circular polarization of light scattered from rough surfaces. Monthly Notices of the Royal Astronomical Society, 158, 291304.CrossRefGoogle Scholar
Bohren, C. F. and Huffman, D. R. (2004). Absorption and Scattering of Light by Small Particles. WILEY-VCH Verlag GmbH & Co.Google Scholar
Bowell, E. and Zellner, B. (1974). Polarizations of asteroids and satellites. In Gehrels, T., ed., Planets, Stars, and Nebulae Studied with Photopolarimetry. Tucson: University of Arizona Press, pp. 381404.Google Scholar
Bowell, E., Dollfus, A., and Geake, J. (1972). Polarimetric properties of the Lunar surface and its interpretation. Part 5: Apollo 14 and Luna 16 lunar samples. Proceedings of the 3rd Lunar Science Conference. Houston, USA: LPI, pp. 31033126.Google Scholar
Burns, R. (1993). Mineralogical Applications of Crystal Field Theory. Cambridge University Press.CrossRefGoogle Scholar
Degtyarev, V. and Kolokolova, L. (1992). Possible application of circular polarization for remote sensing of cosmic bodies. Earth, Moon, and Planets, 57, 213223.CrossRefGoogle Scholar
Dollfus, A. (1962). The polarization of moonlight. Chapter 18. In Kopal, Z., ed., Physics and Astronomy of the Moon. Academic Press Inc., pp. 131139.Google Scholar
Dollfus, A. (1998). Lunar surface imaging polarimetry: I. Roughness and grain size. Icarus, 136, 69103.CrossRefGoogle Scholar
Dollfus, A. (1999). Lunar surface imaging polarimetry: II. Mare Fecunditatis and Messier. Icarus, 140, 313327.CrossRefGoogle Scholar
Dollfus, A. (2000). Lunar surface imaging polarimetry. III. Langrenus. Icarus, 146, 420429.CrossRefGoogle Scholar
Dollfus, A. and Bowell, E. (1971). Polarimetric properties of the lunar surface and interpretation. I. Telescope observation. Astronomy and Astrophysics, 10, 2953.Google Scholar
Dollfus, A. and Titulaer, C. (1971). Polarimetric properties of the lunar surface and its interpretation. Part III. Astronomy and Astrophysics, 12, 199209.Google Scholar
Dzhapiashvili, V. P. and Korol, A. N. (1982). Polarimetric Atlas of the Moon. Tbilisi: Metsniereba.Google Scholar
Engelhardt, W., Hurrle, H., and Luft, E. (1976). Microimpact-induced changes of textural parameters and modal composition of the lunar regolith. Proceedings of the 7th Lunar Planetary Science Conference. Houston, USA: LPI, pp. 373392.Google Scholar
Evsyukov, N. N., and Shestopalov, D. I. (1976). Polarimetric mapping of the Moon. Soviet Astronomy, 19, 772775.Google Scholar
Fox, G., Code, A., Anderson, C.et al. (1998). Solar system observations by the Wisconsin Ultraviolet Photopolarimeter Experiment – III. The first ultraviolet spectropolarimetry of the Moon. Monthly Notices of the Royal Astronomical Society, 298, 303309.CrossRefGoogle Scholar
Grynko, E. and Shkuratov, Yu. (2003). Scattering matrix for semitransparent particles of different shapes in geometric optics approximation. Journal of Quantitative Spectroscopy and Radiative Transfer, 78, 319340.CrossRefGoogle Scholar
Grynko, E. S. and Shkuratov, Yu. G. (2007). Ray tracing sumulation of light scattering by spherical clusters consisting of particles with different shapes. Journal of Quantitative Spectroscopy and Radiative Transfer, 106, 5662.CrossRefGoogle Scholar
Hapke, B. (1971). Optical properties of the lunar surface. In Kopal, Z., ed., Physics and Astronomy of the Moon. New York: Academic Press, pp. 155211.Google Scholar
Hapke, B. (2012). Theory of Reflectance and Emittance Spectroscopy. Cambridge University Press.Google Scholar
Hapke, B. W., Nelson, R. M., and Smythe, W. D. (1974). The opposition effect of the moon: The contribution of coherent backscatter. Science, 260(5107), 509511.CrossRefGoogle ScholarPubMed
Heiken, G. H., McKay, D. S., and Brown, R. W. (1974). Lunar deposits of possible pyroclastic origin. Geochimica et Cosmochimica Acta, 38, 17031718.CrossRefGoogle Scholar
Kaydash, V., Shkuratov, Y., and Videen, G. (2012). Phase-ratio imagery as a tool of lunar remote sensing. Journal of Quantitative Spectroscopy and Radiative Transfer, 113, 26012607.CrossRefGoogle Scholar
Kemp, J. C., Wolstencroft, R. D., and Swedlung, J. B. (1971). Circular polarization: Jupiter and other planets. Nature, 232, 165168.CrossRefGoogle ScholarPubMed
Kornienko, Y. V., Shkuratov, Y. G., Bychinskii, V. I., and Stankevich, D. G. (1982). Correlation between albedo and polarization characteristics of the Moon – application of digital image processing. Soviet Astronomy, 26, 345348.Google Scholar
Korokhin, V. V. and Velikodsky, Y. I. (2005). Parameters of the positive polarization maximum of the Moon: Mapping. Solar System Research, 39, 4553.CrossRefGoogle Scholar
Kvaratskhelia, O. I. (1988). Spectropolarimetry of the lunar surface and samples of the lunar soil. Bulletin of Abastumari Astrophysical Observatory, 64, 1312.Google Scholar
Lipsky, Y. N. and Pospergelis, M. M. (1967). Several results of measuring the complete Stokes vector for lunar surface features. Astronomicheskii Zhurnal, 44, 410412.Google Scholar
Lyot, B. (1929). Recherches sur la polarisation de la lumière des planètes et de quelques substances terrestres. Annales de l’Observatoire de Paris, section de Meudon, 8, 1161.Google Scholar
Mishchenko, M., Dlugach, J., Liu, L. et al. (2009). Direct solutions of the Maxwell equations explain opposition phenomena observed for high-albedo solar system objects. The Astrophysical Journal Letters, 705, L118L122.CrossRefGoogle Scholar
Muinonen, K. (1989). Electromagnetic scattering by two interacting dipoles. In Proceedings of the 1989 URSI International Symposium on Electromagnetic Theory. Stockholm: Royal Institute of Technology (Stockholm), pp. 428430.Google Scholar
Novikov, V. V. (1980). Polarimetry as a tool of remote sensing selenochemistry. Trudy Shternberg Gosudarstvennogo Astronomicheskogo Instituta Moscow, 50, 135149.Google Scholar
Opanasenko, N. V. and Shkuratov, Y. G. (1994). Results of simultaneous polarimetry and photometry of the Moon. Solar System Research, 28, 398417.Google Scholar
Opanasenko, N. V., Dolukhanyan, A. A., Shkuratov, Y. G.et al. (1994). Polarization map of the Moon at the minimum of the negative branch. Solar System Research, 28, 98105.Google Scholar
Opanasenko, N. V., Opanasenko, A. N., Shkuratov, Y. G.et al. (2009). The negative polarization parameters of the light scattered by the lunar surface: Mapping. Solar System Research, 43, 210214.CrossRefGoogle Scholar
Opanasenko, N., Shkuratov, Y., Kaydash, V.et al. (2013). Preliminary mapping negative polarization of the lunar nearside. In Proceedings of the 44th Lunar and Planetary Science Conference. Houston: LPI, p. 1354.Google Scholar
Shestopalov, D. I., McFadden, L. A., Golubeva, L. F., Khomenko, V. M., and Gasanova, L. O. (2008). Vestoid surface composition from analysis of faint absorption bands in visible reflectance spectra. Icarus, 195, 649662.CrossRefGoogle Scholar
Shkuratov, Y. G. (1981). Connection between the albedo and polarization properties of the Moon. Fresnel component of reflected light. Soviet Astronomy, 25(4), 490494.Google Scholar
Shkuratov, Y. G. (1985). On the origin of the opposition effect and negative polarization for cosmic bodies with solid surface. In Astronomicheskii Circular, No. 1400. Moscow: Sternberg State Astronomy Institute, pp. 36.Google Scholar
Shkuratov, Y. G. (1987). Negative polarization of sunlight scattered from celestial bodies: Interpretation of the wavelength dependence. Soviet Astronomy Letters, 13, 182183.Google Scholar
Shkuratov, Y. (1988). Diffraction model of the brightness surge of complex structure surfaces. Kinematics and Physics of Celestial Bodies, 4, 3339.Google Scholar
Shkuratov, Y. G. and Basilevsky, A. T. (1981). An attempt at mapping the parameter of surface micro porosity of lunar regolith: Correlation between albedo and polarization properties of the Moon. In Proceedings of the 12th Lunar and Planetary Science Conference. Houston, USA: LPI, pp. 19811983.Google Scholar
Shkuratov, Y. and Grynko, Y. (2005). Scattering by semitransparent particles of different shapes and media consisting of these particles in geometric optics approximation: Consequences for photometry and spectroscopy of the planetary regoliths. Icarus, 173, 1628.CrossRefGoogle Scholar
Shkuratov, Y. G. and Opanasenko, N. V. (1990). On the limb polarimetric effect in the Moon discovered by Lyot. Astronomicheskii Vestnik, 24(4), 333336 [in Russian].Google Scholar
Shkuratov, Y. G. and Opanasenko, N. V. (1992). Polarimetric and photometric study of the Moon: Telescope observation and laboratory simulation. 2. The positive polarization. Icarus, 99, 468484.CrossRefGoogle Scholar
Shkuratov, Y. G., Opanasenko, N. V., and Kreslavsky, M. A. (1992a). Polarimetric and photometric properties of the Moon: Telescope observation and laboratory simulation. 1. The negative polarization. Icarus, 95, 283299.CrossRefGoogle Scholar
Shkuratov, Y. G., Kreslavsky, M. A., and Opanasenko, N. V. (1992b). Analysis of a mechanism of negative polarization of light scattered by the surfaces of atmosphereless celestial bodies. Solar System Research, 26, 3338.Google Scholar
Shkuratov, Y., Muinonen, K., Bowell, E.et al. (1994). A critical review of theoretical models for the negative polarization of light scattered by atmosphereless solar system bodies. Earth, Moon, and Planets, 65, 201246.CrossRefGoogle Scholar
Shkuratov, Y., Ovcharenko, A., Zubko, E. et al. (2002). The opposition effect and negative polarization of structurally simulated planetary regoliths. Icarus, 159, 396416.CrossRefGoogle Scholar
Shkuratov, Yu., Ovcharenko, A., Zubko, E.et al. (2004). The negative polarization of light scattered from particulate surfaces and of independently scattering particles. Journal of Quantitative Spectroscopy and Radiative Transfer, 88, 267284.CrossRefGoogle Scholar
Shkuratov, Y., Opanasenko, N., Zubko, E.et al. (2007). Multispectral polarimetry as a tool to investigate texture and chemistry of lunar regolith particles. Icarus, 187, 406416.CrossRefGoogle Scholar
Shkuratov, Yu., Opanasenko, N., Opanasenko, A.et al. (2008). Polarimetric mapping of the Moon at a phase angle nearby minimum of polarization degree. Icarus, 198, 16.CrossRefGoogle Scholar
Shkuratov, Y., Kaydash, V., Korokhin, V.et al. (2011). Optical measurements of the Moon as a tool to study its surface. Planetary and Space Science, 59, 13261371.CrossRefGoogle Scholar
Stankevich, D., Istomina, L., Shkuratov, Yu., and Videen, G. (2007). The coherent backscattering effects in a random medium as calculated using a ray tracing technique for large non-transparent spheres. Journal of Quantitative Spectroscopy and Radiative Transfer, 106, 509519.CrossRefGoogle Scholar
Sterzik, M. F., Bagnulo, S., and Palle, E. (2012). Biosignatures as revealed by spectropolarimetry of Earthshine. Nature, 483 (7387), 6466, doi: 10.1038/nature10778.CrossRefGoogle ScholarPubMed
Takashi, J., Iton, Y., Akitaya, H. et al. (2013). Phase variation of Earthshine polarization spectra. Publications of the Astronomical Society of Japan, 65, 381–9.CrossRefGoogle Scholar
Umov, N. (1905). Chromatische depolarisation durch Lichtzerstreuung. Physikalische Zeitschrift, 6, 674676.Google Scholar
Wolff, M. (1980). Theory and application of the polarization-albedo rules. Icarus, 44, 780792.CrossRefGoogle Scholar
Zellner, B., Leake, M., Lebertre, T., Duseaux, M., and Dollfus, A. (1977). The asteroid albedo scale. I. Laboratory polarimetry of meteorites. Proceedings of the 8th Lunar Science Conference. Houston, USA: LPI, pp. 10911110.Google Scholar
Zubko, E., Kimura, H., Shkuratov, Y.et al. (2009). Effect of absorption on light scattering by agglomerated debris particles. Journal of Quantitative Spectroscopy and Radiative Transfer, 110, 17411749.CrossRefGoogle Scholar
Zubko, E., Videen, G., Shkuratov, Y., Muinonen, K., and Yamamoto, T. (2011). The Umov effect for single irregularly shaped particles with size comparable with wavelength. Icarus, 212, 403415.CrossRefGoogle Scholar
Baker, A. L., Baker, L. R., Beshore, E.et al. (1975). Imaging photopolarimeter experiment on Pioneer 11. Science, 188, 468472.CrossRefGoogle ScholarPubMed
Bar-Nun, A., Kleinfeld, I., and Ganor, E. (1988). Shape and optical properties of aerosols formed by photolysis of acetylene, ethylene, and hydrogen cyanide. Journal of Geophysical Research, 93, 83838387.CrossRefGoogle Scholar
Bar-Nun, A., Dimitrov, V., and Tomasko, M. (2008). Titan’s aerosols: Comparison between our model and DISR findings. Planetary and Space Science, 56, 708714.CrossRefGoogle Scholar
Barrado-Izagirre, N., Sánchez-Lavega, A., Pérez-Hoyos, S., and Hueso, R. (2008). Jupiter’s polar clouds and waves from Cassini and HST images: 1993–2006. Icarus, 194, 173185.CrossRefGoogle Scholar
Bazzon, A., Schmid, H. M., and Buenzli, E. (2010). HST observations of the limb polarization of Titan. In Boccaletti, A., ed., Proceedings of the Conference In the Spirit of Lyot 2010: Direct Detection of Exoplanets and Circumstellar Disks. October 25–29, 2010. University of Paris Diderot, Paris, France.Google Scholar
Beebe, R. F., Suggs, R. M., and Little, T. (1986). Seasonal north-south asymmetry in solar radiation incident on Jupiter’s atmosphere. Icarus, 66(2), 359365.CrossRefGoogle Scholar
Braak, C. J., de Haan, J. F., van der Mee, C. V. M., Hovenier, J. W., and Travis, L. D. (2001). Parameterized scattering matrices for small particles in planetary atmospheres. Journal of Quantitative Spectroscopy and Radiative Transfer, 69, 585604.CrossRefGoogle Scholar
Braak, C. J., de Haan, J. F., Hovenier, J. W., and Travis, L. D. (2002). Galileo photopolarimetry of Jupiter at 678.5 nm. Icarus, 157, 401418.CrossRefGoogle Scholar
Buenzli, E. and Schmid, H. M. (2009). A grid of polarization models for Rayleigh scattering planetary atmospheres. Astronomy and Astrophysics, 504, 259276.CrossRefGoogle Scholar
Cabane, M., Chassefiere, E., and Israel, G. (1992). Formation and growth of photochemical aerosols in Titan’s atmosphere. Icarus, 96, 176189.CrossRefGoogle Scholar
Cabane, M., Rannou, P., Chassefiere, E., and Israel, G. (1993). Fractal aggregates in Titan’s atmosphere. Planetary and Space Science, 41, 257267.CrossRefGoogle Scholar
Coffeen, D. L. (1974a). Optical polarimeters in space. In Gehrels, T, ed., Planets, Stars, and Nebulae Studied with Photopolarimetry. Tucson AZ: University of Arizona Press, pp. 189217.Google Scholar
Coffeen, D. L. (1974b). Optical polarization measurements of Jupiter atmosphere at 103 degrees phase angle. Journal of Geophysical Research, 79, 36453652.CrossRefGoogle Scholar
Dlugach, J. A. and Mishchenko, M. I. (2004). The effect of particle shape on microphysical properties of Jovian aerosols retrieved from ground-based spectropolarimetric observations. Journal of Quantitative Spectroscopy and Radiative Transfer, 88, 3746.CrossRefGoogle Scholar
Dlugach, J. M. and. Mishchenko, M. I. (2008). Photopolarimetry of planetary atmospheres: What observational data are essential for a unique retrieval of aerosol microphysics?Monthly Notices of the Royal Astronomical Society, 384, 6470.CrossRefGoogle Scholar
Dollfus, A. (1978). Optical reflectance polarimetry of Saturn’s globe and rings. I. Measurements on the B ring. Icarus, 37, 404442.CrossRefGoogle Scholar
Dollfus, A. (1979). Optical reflectance polarimetry of Saturn’s globe and rings. II. Interpretations for the B Ring. Icarus, 40, 171179.CrossRefGoogle Scholar
Doose, L. R. (1976). Light scattering properties of Jupiter’s red spot. Ph.D. dissertation, The University of Arizona, Tucson AZ.
Draine, B. T. (1988). The discrete-dipole approximation and its application to interstellar graphite grains. The Astrophysical Journal, 333, 848872.CrossRefGoogle Scholar
Fimmel, R. O., Van Allen, J., and Burgess, E. (1980). Pioneer First to Jupiter, Saturn and Beyond. Washington DC: NASA SP-446.Google Scholar
Fountain, J. W., Coffeen, D. L., Doose, L. R.et al. (1974). Jupiter’s clouds – Equatorial plumes and other cloud forms in Pioneer-10 images. Science, 184, 12791281.CrossRefGoogle ScholarPubMed
Friedson, A. J., Wong, A.-S., and Yung, Y. L. (2002). Models for polar haze formation in Jupiter’s stratosphere. Icarus, 158(2), 389400.CrossRefGoogle Scholar
Gehrels, T., Herman, B. M., and Owen, T. (1969). Wavelength dependence of polarization XIV. Atmosphere of Jupiter. The Astronomical Journal, 74, 190199.CrossRefGoogle Scholar
Gehrels, T., Coffeen, D., Tomasko, M.et al. (1974). The imaging photopolarimeter experiment on Pioneer 10. Science, 183, 318320.CrossRefGoogle ScholarPubMed
Gehrels, T., Baker, L. R., Beshore, E.et al. (1980). Imaging photopolarimeter on Pioneer Saturn. Science, 207, 434439.CrossRefGoogle ScholarPubMed
Hall, J. S. and Riley, L. A. (1969). Polarization studies of Jupiter and Saturn. Journal of the Atmospheric Sciences, 26, 920923.2.0.CO;2>CrossRefGoogle Scholar
Hall, J. S. and Riley, L. A. (1976). A polarimetric search for fine structure on Jupiter’s disk. Icarus, 29, 231234.CrossRefGoogle Scholar
Hansen, J. E. and Hovenier, J. W. (1974). Interpretation of the polarization of Venus. Journal of the Atmospheric Sciences, 31, 11371160.2.0.CO;2>CrossRefGoogle Scholar
Hord, C. W., West, R. A., Simmons, K. E.et al. (1979). Photometric observations of Jupiter at 2400 Å. Science, 806, 956958.CrossRefGoogle Scholar
Joos, F. and Schmid, H. M. (2007). Limb polarization of Uranus and Neptune. II. Spectropolarimetric observations. Astronomy and Astrophysics, 463, 12011210.CrossRefGoogle Scholar
Karkoschka, E. and Tomasko, M. (2005). Saturn’s vertical and latitudinal cloud structure 1991–2004 from HST imaging in 30 filters. Icarus, 179, 195221.CrossRefGoogle Scholar
Karkoschka, E. and Tomasko, M. (2009). The haze and methane distributions on Uranus from HST-STIS spectroscopy. Icarus, 202, 287309.CrossRefGoogle Scholar
Kawata, Y. (1978). Circular polarization of sunlight reflected by planetary atmospheres. Icarus, 33, 217232.CrossRefGoogle Scholar
Kemp, K. G., Rudy, R. J., Lebofsky, M. J., and Reike, G. H. (1978). Near infrared polarization studies of Saturn and Jupiter. Icarus, 35(2), 263271.CrossRefGoogle Scholar
Kim, S. J., Drossart, P., and Caldwell, J. (1991). The 2-µm polar haze of Jupiter. Icarus, 91, 145153.CrossRefGoogle Scholar
Korokhin, V. V., Beletskii, S. A., and Velikodsky, Yu. I. (2000). The experience of application of CCD-photodetectors at the Astronomical Observatory of the Kharkiv National University. Kinematics and Physics of Celestial Bodies, 16(1), 6367.Google Scholar
Kuiper, G. P. (1944). Titan: A satellite with atmosphere. The Astrophysical Journal, 100, 378383.CrossRefGoogle Scholar
Lane, A. L., Hord, C. W., West, R. A.et al. (1982). Photopolarimetry from Voyager 2. Preliminary Results on Saturn, Titan and the Rings. Science, 215, 537543.CrossRefGoogle ScholarPubMed
Lavvas, P., Yelle, R. V., and Vuitton, V. (2009). The detached haze layer in Titan’s mesosphere. Icarus, 201, 626633.CrossRefGoogle Scholar
Lillie, C. F., Hord, C. W., Pang, K., Coffeen, D. L., and Hansen, J. E. (1977). The Voyager mission photopolarimeter experiment. Space Science Reviews, 21, 159181.CrossRefGoogle Scholar
Lyot, B. (1929). Recherches sur le polarization de la lumière des planèts et de quelques substances terrestres. Annales de l'Observatoire de Paris, section de Meudon VIII (in English, NASA TT F-187).Google Scholar
Mallama, A., Krobusek, B. F., Collins, D. A. (2000). The radius of Jupiter and its polar haze. Icarus, 144, 99103.CrossRefGoogle Scholar
Mishchenko, M. I. (1990). Physical properties of the upper tropospheric aerosols in the equatorial region of Jupiter. Icarus, 84, 296304.CrossRefGoogle Scholar
Morozhenko, A. V. and Yanovitskii, E. G. (1973). The optical properties of Venus and the Jovian planets. I. The atmosphere of Jupiter according to polarimetric observations. Icarus, 18, 583592.CrossRefGoogle Scholar
Owen, T. and Terrile, R. J. (1981). Colors on Jupiter. Journal of Geophysical Research, 86, 87978814.CrossRefGoogle Scholar
Pellicori, S. F., Russell, E. E., and Watts, L. A. (1973). Pioneer imaging photopolarimeter optical system. Applied Optics, 12, 12461258.CrossRefGoogle ScholarPubMed
Pope, S. K., Tomasko, M. G., Williams, M. S.et al. (1992). Clouds of ammonia ice: Laboratory measurements of the single-scattering properties. Icarus, 100, 203220.CrossRefGoogle Scholar
Porco, C. C., West, R. A., Squyres, S.et al. (2004). Cassini imaging science: Instrument characteristics and anticipated scientific investigations at Saturn. Space Science Reviews, 115, 363497.CrossRefGoogle Scholar
Pryor, W. R. and Hord, C. W. (1991). A study of photopolarimeter system UV absorption data on Jupiter, Saturn, Uranus, and Neptune: Implications for auroral haze formation. Icarus, 91, 161172.CrossRefGoogle Scholar
Pryor, W. R., West, R. A., Simmons, K. E., and Delitsky, M. (1992). High-phase-angle observations of Neptune at 2650-Angstrom and 7500-Angstrom – Haze structure and particle properties. Icarus, 99, 302317.CrossRefGoogle Scholar
Rages, K. and Pollack, J. B. (1981). High phase angle Voyager images of Titan’s main aerosol layer. Bulletin of the American Astronomical Society, 13, 703.Google Scholar
Rannou, P., McKay, C. P., and Lorenz, R. D. (2003). A model of Titan’s haze of fractal aerosols constrained by multiple observations. Planetary and Space Science, 51, 963976.CrossRefGoogle Scholar
Russell, E. E., Brown, F. G., Chandos, R. A.et al. (1992). Galileo photopolarimeter/radiometer experiment. Space Science Reviews, 60, 531563.CrossRefGoogle Scholar
Sato, T. M., Satoh, T., and Kasaba, Y. (2013). Retrieval of Jovian cloud structure from the Cassini ISS limb-darkening data I. Continuum scattering phase functions for cloud and haze in the South Tropical Zone. Icarus, 222, 100121.CrossRefGoogle Scholar
Schmid, H. M., Joos, F., Buenzli, E., and Gisler, D. (2011). Long-slit polarimetry of Jupiter and Saturn. Icarus, 212(2), 701713.CrossRefGoogle Scholar
Shalygina, O. S., Korokhin, V. V., Starukhina, L. V.et al. (2008). The north-south asymmetry of polarization of Jupiter: The causes of seasonal variations. Solar System Research, 42(1), 817, doi: 10.1134/S0038094608010024.CrossRefGoogle Scholar
Shalygina, O. S., Shalygin, E. V., Korokhin, V. V., and Velikodsky, Yu. I. (2011). Appearance of linear polarization at polar regions of Jupiter. Proceedings of the 42nd Lunar and Planetary Science Conference. Houston, USA: LPI.Google Scholar
Smith, P. H. and Tomasko, M. G. (1984). Photometry and polarimetry of Jupiter at large phase angles. II. Polarimetry of the South Tropical Zone, South Equatorial Belt, and the Polar Regions from the Pioneer 10 and 11 Missions. Icarus, 58, 3573.CrossRefGoogle Scholar
Sromovsky, L. A. and Fry, P. M. (2010). The source of widespread 3-μm absorption in Jupiter’s clouds: Constraints from 2000 Cassini VIMS observations. Icarus, 210, 230257.CrossRefGoogle Scholar
Starodubtseva, O. M. and Tejfel, V. G. (1984). Light polarization in the polar regions of Jupiter. Solar System Research, 18(3), 115122.Google Scholar
Starodubtseva, O. M., Akimov, L. A., and Korokhin, V. V. (1997). Temporal changes in the north-south asymmetry of polarized light of Jupiter may be associated with the comet SL9 visit to the Jovian system. Planetary and Space Science, 45, 11831188.CrossRefGoogle Scholar
Starodubtseva, O. M., Akimov, L. A., and Korokhin, V. V. (2002). Seasonal variation of the north-south asymmetry of polarized light of Jupiter. Icarus, 157(2), 419425.CrossRefGoogle Scholar
Stoll, C. P. (1980). Polarimetry of Jupiter at large phase angles. Ph.D. dissertation, The University of Arizona, Tucson AZ.
Swedlund, J. B., Kemp, J. C., and Wolstencroft, R. D. (1973). Circular polarization of Saturn. The Astrophysical Journal, 178, 257266.CrossRefGoogle Scholar
Tejfel, V. G. (1985). Polar regions of Jupiter and Saturn. Solar System Research, 19(1), 3344.Google Scholar
Tomasko, M. G. (1980). Preliminary results of polarimetry and photometry of Titan at large phase angles from Pioneer 11. Journal of Geophysical Research, 85, 59375942.CrossRefGoogle Scholar
Tomasko, M. G. and Doose, L. R. (1984). Polarimetry and photometry of Saturn from Pioneer 11: Observations and constraints on the distribution and properties of cloud and aerosol particles. Icarus, 58, 134.CrossRefGoogle Scholar
Tomasko, M. G. and Smith, P. H. (1982). Photometry and polarimetry of Titan: Pioneer 11 observations and their implications for aerosol properties. Icarus, 51, 6595.CrossRefGoogle Scholar
Tomasko, M. G., Buchhauser, D., Bushroe, M.et al. (2002). The Descent Imager/Spectral Radiometer (DISR) experiment on the Huygens entry probe of Titan. Space Science Reviews, 104, 469551.CrossRefGoogle Scholar
Tomasko, M. G., Archinal, B., Becker, T.et al. (2005). Rain, winds and haze during the Huygens probe’s descent to Titan’s surface. Nature, 438, 765778.CrossRefGoogle ScholarPubMed
Tomasko, M. G., Doose, L., Engel, S.et al. (2008). A model of Titan’s aerosols based on measurements made inside the atmosphere. Planetary and Space Science, 56, 669707.CrossRefGoogle Scholar
Tomasko, M. G., Doose, L. R., Dafoe, L. E., and See, C. (2009). Limits on the size of aerosols from measurements of linear polarization in Titan’s atmosphere. Icarus, 204, 271283.CrossRefGoogle Scholar
Veverka, J. (1973). Titan: Polarimetric evidence for an optically thick atmosphere?Icarus, 18, 657660.CrossRefGoogle Scholar
Wauben, W. M. F., de Haan, J. F., and Hovenier, J. W. (1993). Influence of particle shape on the polarized radiation in planetary atmospheres. J. Quant. Spectrosc. Radiat. Transfer, 50, 237246.CrossRefGoogle Scholar
West, R. A. (1979). Spatially resolved methane band photometry of Jupiter. I. Absolute reflectivity and center-to-limb variations in the 6190-, 7250-, and 8900-A bands. Icarus, 38, 1233.CrossRefGoogle Scholar
West, R. A. (1988). Voyager 2 imaging eclipse observations of the Jovian high altitude haze. Icarus, 75, 381398.CrossRefGoogle Scholar
West, R. A. (1991). Optical properties of aggregate particles whose outer diameter is comparable to the wavelength. Applied Optics, 30, 53165324.CrossRefGoogle ScholarPubMed
West, R. A. and Smith, P. H. (1991). Evidence for aggregate particles in the atmospheres of Titan and Jupiter. Icarus, 90, 330333.CrossRefGoogle Scholar
West, R. A. and Tomasko, M. G. (1980). Spatially resolved methane band photometry of Jupiter. III. Cloud vertical structures for several axisymmetric bands and the great red spot. Icarus, 41, 278292.CrossRefGoogle Scholar
West, R. A., Tomasko, M. G., Smith, B. A.et al. (1982). Spatially resolved methane band photometry of Saturn. I. Absolute reflectivity and center-to-limb variations in the 6190, 7250 and 8900 Å Bands. Icarus, 51, 5164.CrossRefGoogle Scholar
West, R. A., Sato, M., Hart, H.et al. (1983a). Photometry and polarimetry of Saturn at 2640 and 7500 Å. Journal of Geophysical Research, 88, 86798697.CrossRefGoogle Scholar
West, R. A., Lane, A. L., Hart, H.et al. (1983b). Voyager 2 photopolarimeter observations of Titan. Journal of Geophysical Research, 88, 86998708.CrossRefGoogle Scholar
West, R. A., Orton, G. S., Draine, B. T., and Hubbell, E. A. (1989). Infrared absorption features for tetrahedral ammonia ice crystals. Icarus, 80, 220223.CrossRefGoogle Scholar
West, R. A., Baines, K. H., Friedson, J. A.et al. (2004). Jovian clouds and haze. In Bagenal, F., Dowling, T., and McKinnon, W., eds., Jupiter the Planet, Satellites and Magnetosphere. Cambridge University Press.Google Scholar
West, R. A., Baines, K. H., Karkoschka, E., and Sánchez-Lavega, A. (2009). Clouds and aerosols in Saturn’s atmosphere. In Dougherty, M., Esposito, L. W., and, Krimigis, S. M., eds., Saturn from Cassini/Huygens. New York: Springer.Google Scholar
West, R. W., Knowles, B., Birath, E.et al. (2010). In-flight calibration of the Cassini imaging science sub-system cameras. Planetary and Space Science, 58, 14751488.CrossRefGoogle Scholar
Wolstencroft, R. D. (1976). The circular polarization of the light from Jupiter. Icarus, 29, 235243.CrossRefGoogle Scholar
Afanasiev, V. L. and Amirkhanyan, V. R. (2012). Technique of polarimetric observations of faint objects at the 6-m BTA telescope. Astrophysical Bulletin, 67, 438452.CrossRefGoogle Scholar
Afanasiev, V. L. and Moiseev, A. V. (2011). Scorpio on the 6 m telescope: Current state and perspectives for spectroscopy of galactic and extragalactic objects. Baltic Astronomy, 20, 363370.Google Scholar
Afanasiev, V. L., Rosenbush, V. K., and Kiselev, N. N. (2014). Polarimetry of Uranian satellites at the 6-m BTA telescope. Astrophysical Bulletin, 69(2), 121133.CrossRefGoogle Scholar
Albers, S. (2008). Index of /albers/sos/saturn/Iapetus. Available online at: http://laps.noaa.gov/albers/sos/saturn/iapetus/ (accessed January 12, 2015).
Avramchuk, V. V. and Shavlovskij, V. I. (1998). Microstructure and properties of particles on the surface of Callisto. Analysis of phase variations in brightness. Kinematics and Physics of Celestial Bodies, 14, 111.Google Scholar
Avramchuk, V. V., Rosenbush, V. K., and Bul’ba, T. P. (2007). Photometric study of the major satellites of Uranus. Solar System Research, 41, 186202.CrossRefGoogle Scholar
Bagenal, F., Dowling, T. E., and McKinnon, W. B., eds. (2004). Jupiter. The planet, satellites and magnetosphere. Cambridge University Press.Google Scholar
Bagnulo, S., Belskaya, I., Muinonen, K.et al. (2008). Discovery of two distinct polarimetric behaviours of trans-Neptunian objects. Astronomy and Astrophysics, 491, L33L36.CrossRefGoogle Scholar
Bagnulo, S., Belskaya, I., Boehnhardt, H.et al. (2011). Polarimetry of small bodies of the solar system with large telescopes. Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 20592067.CrossRefGoogle Scholar
Belskaya, I. N., Bagnulo, S., Barucci, M. A.et al. (2010). Polarimetry of Centaurs (2060) Chiron, (5145) Pholus and (10199) Chariklo. Icarus, 210, 472479.CrossRefGoogle Scholar
Belskaya, I. N., Bagnulo, S., Stinson, A.et al. (2012). Polarimetry of trans-Neptunian objects (136472) Makemake and (90482) Orcus. Astronomy and Astrophysics, 547, 5pp.CrossRefGoogle Scholar
Bergstralh, J. T., Miner, E. D., and Matthews, M. S., eds. (1991). Uranus. Tucson: University of Arizona Press.Google Scholar
Blackburn, D. G., Buratti, B. J., Ulrich, R., and Mosher, J. A. (2010). Solar phase curves and phase integrals for the leading and trailing hemispheres of Iapetus from the Cassini Visual Infrared Mapping Spectrometer. Icarus, 209, 738744.CrossRefGoogle Scholar
Blackburn, D. G., Buratti, B. J., and Rivera-Valentin, E. G. (2012). Exploring the impact of thermal segregation on Dione through a bolometric bond albedo map. In Proceedings of the 43rd Lunar and Planetary Science Conference. Houston TX: LPI, LPI Contribution, No. 1659, id. 1536.Google Scholar
Botvinova, V. V. and Kucherov, V. A. (1980). Multicolour polarimetry of Galilean satellites of Jupiter. Astrometriia i Astrofizika, 41, 5963 [in Russian].Google Scholar
Buratti, B. J. (1991). Ganymede and Callisto: Surface textural dichotomies and photometric analysis. Icarus, 92, 312323.CrossRefGoogle Scholar
Buratti, B. J. and Mosher, J. A. (1995). The dark side of Iapetus: Additional evidence for an exogenous origin. Icarus, 115, 219227.CrossRefGoogle Scholar
Buratti, B. J. and Thomas, P. C. (2007). Planetary satellites. In McFadden, L.-A., Weissman, P., and Johnson, T., eds., Encyclopedia of the Solar System. Academic Press, pp. 365382.CrossRefGoogle Scholar
Chigladze, R. A. (1989). Investigation of the polarimetric properties of the Galilean satellites of Jupiter and planet Uranus. Ph.D. thesis. Abastumany Astrophys. Obs. [in Russian].
Clark, R. N., Cruikshank, D. P., Jaumann, R.et al. (2012). The surface composition of Iapetus: Mapping results from Cassini VIMS. Icarus, 218, 831860.CrossRefGoogle Scholar
Collins, G. and Johnson, T. (2007). Ganymede and Callisto. In McFadden, L.-A., Weissman, P., and Johnson, T., eds., Encyclopedia of the Solar System. Academic Press, pp. 449466.CrossRefGoogle Scholar
Cruikshank, D. P., Brown, R. H., and Calvin, W. (1998). Ices on the satellites of Jupiter, Saturn, and Uranus, In Schmitt, B., Bergh, C., and Festou, M., eds., Solar System Ices. Dordrecht: Kluwer Academic Publishers, pp. 579606.CrossRefGoogle Scholar
Denk, T., Neukum, G., Roatsch, T. et al. (2010). Iapetus: Unique surface properties and a global color dichotomy from Cassini Imaging. Science, 327, 435439.CrossRefGoogle Scholar
Dollfus, A. (1975). Optical polarimetry of the Galilean satellites of Jupiter. Icarus, 25, 416431.CrossRefGoogle Scholar
Dollfus, A. (1984). The Saturn ring particles from optical reflectance polarimetry. In CNES Planetary Rings (SEE N85-26473 15–91). CNES, pp. 121143.Google Scholar
Dollfus, A. and Zellner, B. (1979). Optical polarimetry of asteroids and laboratory samples. In Gehrels, T., ed., Asteroids. Tucson: University of Arizona Press, pp. 170183.Google Scholar
Ejeta, C., Boehnhardt, H., Bagnulo, S., and Tozzi, G. P. (2012). Spectro-polarimetry of the bright side of Saturn’s moon Iapetus. Astronomy and Astrophysics, 537, A23.CrossRefGoogle Scholar
Ejeta, C., Boehnhardt, H., Bagnulo, S.et al. (2013a). Polarization of Saturn’s moon Iapetus. II. Comparison of the dark and the bright sides. Astronomy and Astrophysics, 549, A61.CrossRefGoogle Scholar
Ejeta, C., Muinonen, K., Boehnhardt, H.et al. (2013b). Polarization of Saturn’s moon Iapetus. III. Models of the bright and the dark sides. Astronomy and Astrophysics, 554, A117.CrossRefGoogle Scholar
Franklin, F. A. and Cook, A. F. (1974). Photometry of Saturn’s satellites: The opposition effect of Iapetus at maximum light and the variability of Titan. Icarus, 23, 355362.CrossRefGoogle Scholar
Geake, J. E. and Geake, M. (1990). A remote sensing method for sub-wavelength grains on planetary surfaces by optical polarimetry. Monthly Notices of the Royal Astronomical Society, 245, 4655.Google Scholar
Gradie, J. and Zellner, B. (1973). A polarimetric survey of the Galilean satellites. Bulletin of the American Astronomical Society, 5, 404405.Google Scholar
Gudipati, M. S. and Castillo-Rogez, J., eds. (2012). The Science of Solar System Ices. New York: Springer.Google Scholar
Hapke, B. (1986). Bidirectional reflectance spectroscopy: VI. The extinction coefficient and opposition effect. Icarus, 67, 264280.CrossRefGoogle Scholar
Hapke, B. W. (2002). Bidirectional reflectance spectroscopy. 5. The coherent backscatter opposition effect and anisotropic scattering. Icarus, 157, 523534.CrossRefGoogle Scholar
Harris, A. W., Young, J. W., Contreiras, L.et al. (1989). Phase relations of high-albedo asteroids: The unusual opposition brightening of 44 Nysa and 64 Angelina. Icarus, 81, 365374.CrossRefGoogle Scholar
Heiles, C. (2000). 9286 stars: An agglomeration of stellar polarization catalogs. The Astronomical Journal, 119, 923927.CrossRefGoogle Scholar
Helfenstein, P., Currier, N., Clark, B.et al. (1998). Galileo observations of Europa’s opposition effect. Icarus, 135, 4163.CrossRefGoogle Scholar
Hough, J. (2011). High sensitivity polarimetry: Techniques and applications. In Mishchenko, M. I., Yatskiv, Ya. S., Rosenbush, V. K., and Videen, G., eds., Polarimetric Detection, Characterization, and Remote Sensing. Dordrecht, the Netherlands: Springer, pp. 177204.CrossRefGoogle Scholar
Johnson, P. E., Kemp, J. C., King, R., Parker, T. E., and Barbour, M. S. (1980). New results from optical polarimetry of Saturn rings. Nature, 283, 146149.CrossRefGoogle Scholar
Johnston, W. R. (2013). TNO and centaur diameters, albedos, and densities, V1.0, EAR-A-COMPIL-5-TNOCENALB-V1.0, NASA Planetary Data System. Available online at: www.johnstonsarchive.net/astro/tnodiam.html (accessed January 15, 2015).
Kiselev, N., Rosenbush, V., Velichko, F., and Zaitsev, S. (2009). Polarimetry of the Galilean satellites and Jupiter near opposition. Journal of Quantitative Spectroscopy and Radiative Transfer, 110, 17131718.CrossRefGoogle Scholar
Kulyk, I. (2012). Brightness and polarization opposition effects at low phase angles of the Saturnian satellites Tethys, Dione, and Rhea. Planetary and Space Science, 73, 407424.CrossRefGoogle Scholar
Lockwood, G. W. (1983). Photometry of planets and satellites. In Genet, R. M., ed., Solar System Photometry Handbook. Richmond: Willmann-Bell, Inc.Google Scholar
Lumme, K. and Muinonen, K. O. (1993). A two-parameter system for linear polarization of some solar system objects. In IAU Symposium 160: Asteroids, Comets, Meteors, LPI Contribution 810. Houston: LPI, pp. 194197.Google Scholar
Lyot, B. (1929). Recherches sur la polarisation de la lumière des planètes et de quelques substances terrestres. Annales de l'Observatoire de Paris, section de Meudon, 8(1). English translation: Research on the polarization of light from planets and from some terrestrial substances, NASA Tech. Transl. NASA TT F−187, 1964, Washington, DC, 144pp.Google Scholar
Mackowski, D. W. and Mishchenko, M. I. (2011). A multiple sphere T-matrix Fortran code for use on parallel computer clusters. Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 21822192.CrossRefGoogle Scholar
Martin, T. Z., Goguen, J. D., Travis, L. D.et al. (2000). Galileo PPR polarimetric phase curves for the Galilean satellites. Bulletin of the American Astronomical Society, 32, 1069.Google Scholar
McCarthy, M. F. (1980). New techniques in stellar photometry and polarimetry. Ricerche Astronomiche Specola Vaticana, 10.Google Scholar
Miner, E. D. (1998). Uranus: The Planet, Rings, and Satellites. Chichester: Wiley.Google Scholar
Mishchenko, M. I. (1993). On the nature of the polarization opposition effect exhibited by Saturn’s rings. The Astrophysical Journal, 411, 351361.CrossRefGoogle Scholar
Mishchenko, M. I., Luck, J. -M., and Nieuwenhuizen, Th. M. (2000). Full angular profile of the coherent polarization opposition effect. Journal of the Optical Society of America A, 17, 888891.CrossRefGoogle ScholarPubMed
Mishchenko, M., Tishkovets, V., and Litvinov, P. (2002). Exact results of the vector theory of coherent backscattering from discrete random media: An overview. In Videen, G. and Kocifaj, M., eds., Optics of Cosmic Dust. Dordrecht: Kluwer Academic Publishers, pp. 239260.CrossRefGoogle Scholar
Mishchenko, M. I., Rosenbush, V. K., and Kiselev, N. N. (2006). Weak localization of electromagnetic waves and opposition phenomena exhibited by high-albedo atmosphereless solar system objects. Applied Optics, 45, 44594463.CrossRefGoogle ScholarPubMed
Mishchenko, M. I., Dlugach, J. M., Liu, L.et al. (2009). Direct solutions of the Maxwell equations explain opposition phenomena observed for high-albedo Solar system objects. The Astrophysical Journal, 705, L118L122.CrossRefGoogle Scholar
Mishchenko, M. I., Rosenbush, V. K., Kiselev, N. N.et al. (2010). Polarimetric Remote Sensing of Solar System Objects. Kyiv: Akademperiodika.Google Scholar
Mishchenko, M. I., Tishkovets, V. P., Travis, L. D.et al. (2011). Electromagnetic scattering by a morphologically complex object: Fundamental concepts and common misconceptions. Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 671692.CrossRefGoogle Scholar
Moore, J. M., Chapman, C. R., Bierhaus, E. B.et al. (2004). Callisto. In Bagenal, F., Dowling, T. E., and McKinnon, W. B., eds., Jupiter. The Planet, Satellites and Magnetosphere. Cambridge University Press, pp. 397426.Google Scholar
Morrison, D. and Morrison, N. D. (1977). Photometry of the Galilean satellites. In Burns, J. A., ed., Planetary Satellites. Tucson: University of Arizona Press, pp. 363378.Google Scholar
Muinonen, K. and Videen, G. (2012). A phenomenological single scatterer for studies of complex particulate media. Journal of Quantitative Spectroscopy and Radiative Transfer, 113, 23852390.CrossRefGoogle Scholar
Muinonen, K., Videen, G., Zubko, E., and Shkuratov, Yu. (2002). Numerical techniques for backscattering by random media. In Videen, G. and Kocifaj, M., eds., Optics of Cosmic Dust. Dordrecht: Kluwer Academic Publishers, pp. 261282.CrossRefGoogle Scholar
Muinonen, K., Tyynelä, J., Zubko, E., and Videen, G. (2010). Scattering parameterization for interpreting asteroid polarimetric and photometric phase effects. Earth, Planets and Space, 62, 4752.CrossRefGoogle Scholar
Muinonen, K., Mishchenko, M. I., Dlugach, J. M.et al. (2012). Coherent backscattering verified numerically for a finite volume of spherical particles. The Astrophysical Journal, 760, 118128.CrossRefGoogle Scholar
Naghizadeh-Khouei, J. and Clarke, D. (1993). On the statistical behaviour of the position angle of linear polarization. Astronomy and Astrophysics, 274, 968–974.Google Scholar
Nelson, M. L., Britt, D. T., and Lebofsky, L. F. (1993). Review of asteroid compositions. In Lewis, J. S., Matthews, M. S., and Guerrieri, M. L., eds., Resources of Near-Earth Space. Tucson: The University of Arizona Press, pp. 493522.Google Scholar
Nelson, R. M., Smythe, W. D., Hapke, B. W., and Hale, A. S. (2002). Low phase angle laboratory studies of the opposition effect: Search for wavelength dependence. Planetary Space Science, 50, 849856.CrossRefGoogle Scholar
Noland, M., Veverka, J., Morrison, D.et al. (1974). Six-color photometry of Iapetus, Titan, Rhea, Dione and Tethys. Icarus, 23, 334354.CrossRefGoogle Scholar
Patat, F. and Romaniello, M. (2006). Error analysis for dual-beam optical linear polarimetry. Publications of the Astronomical Society of the Pacific, 118, 146161.CrossRefGoogle Scholar
Petrova, E. V. and Tishkovets, V. P. (2011a). Light scattering by morphologically complex objects and opposition effects (a review). Solar System Research, 45, 304322.CrossRefGoogle Scholar
Petrova, E. V. and Tishkovets, V. P. (2011b). Light scattering by aggregates of varying porosity and the opposition phenomena observed in the low-albedo particulate media. Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 22262233.CrossRefGoogle Scholar
Petrova, E. V., Tishkovets, V. P., and Jockers, K. (2007). Modeling of opposition effects with ensembles of clusters: Interplay of various scattering mechanisms. Icarus, 188, 233245.CrossRefGoogle Scholar
Rathbun, J. A., Rodriguez, N. J., and Spencer, J. R. (2010). Galileo PPR observations of Europa: Hotspot detection limits and surface thermal properties. Icarus, 210, 763769.CrossRefGoogle Scholar
Rosenbush, V. K. (2002). The phase-angle and longitude dependence of polarization for Callisto. Icarus, 159, 145155.CrossRefGoogle Scholar
Rosenbush, V. K. (2006). The scattered light properties of small Solar System bodies. Habilitation dissertation, Main Astronomical Observatory of National Academy of Sciences of Ukraine, Kyiv.
Rosenbush, V. (2012). Polarimetry of atmosphereless Solar System bodies. Available online at: www.polarisation.eu/projectdir/Warsaw-Rosenbush.pdf (accessed January 29, 2015).
Rosenbush, V. K. and Avramchuk, V. V. (1999). New polarimetric effects observed for the Galilean satellites of Jupiter. Solar System Research, 33, 267277.Google Scholar
Rosenbush, V. K. and Kiselev, N. N. (2005). Polarization opposition effect for the Galilean satellites of Jupiter. Icarus, 179, 490496.CrossRefGoogle Scholar
Rosenbush, V. K. and Mishchenko, M. I. (2011). Opposition optical phenomena in planetary astrophysics: Observational results. In Mishchenko, M. I., Yatskiv, Ya. S., Rosenbush, V. K., and Videen, G., eds., Polarimetric Detection, Characterization, and Remote Sensing. Dordrecht, the Netherlands: Springer, pp. 409436.CrossRefGoogle Scholar
Rosenbush, V. K., Avramchuk, V. V., Rosenbush, A. E., and Mishchenko, M. I. (1997). Polarization properties of the Galilean satellites of Jupiter: Observations and preliminary analysis. The Astrophysical Journal, 487, 402414.CrossRefGoogle Scholar
Rosenbush, V. K., Kiselev, N. N., Jockers, K.et al. (2000). Optical polarimetry of the Galilean satellites, Iapetus, and 64 Angelina near opposition. Kinematics and Physics of Celestial Bodies, Supplement Series, 3, 227230.Google Scholar
Rosenbush, V., Kiselev, N., Avramchuk, V., and Mishchenko, M. (2002). Photometric and polarimetric opposition phenomena exhibited by solar system bodies. In Videen, G. and Kocifaj, M., eds., Optics of Cosmic Dust. Dordrecht: Kluwer Academic Publishers, pp. 191224.CrossRefGoogle Scholar
Rosenbush, V. K., Kiselev, N. N., Shevchenko, V. G.et al. (2005). Polarization and brightness opposition effects for the E-type asteroid 64 Angelina. Icarus, 178, 222234.CrossRefGoogle Scholar
Rosenbush, V. K., Shevchenko, V. G., Kiselev, N. N.et al. (2009). Polarization and brightness opposition effects for the E-type asteroid 44 Nysa. Icarus, 201, 655665.CrossRefGoogle Scholar
Rosenbush, V. K., Kiselev, N. N., Zaitsev, S. V.et al. (2012). Opposition optical phenomena in Solar System bodies: Observational results. In Asteroids, Comets, Meteors. Houston: LPI. LPI Contribution No. 1667, id. 6130.Google Scholar
Russell, E. E., Brown, F. G., Chandos, R. A.et al. (1992). Galileo Photopolarimeter/Radiometer experiment. Space Science Reviews, 60, 531563.CrossRefGoogle Scholar
Schmitt, B., De Bergh, C., and Festou, M., eds. (1998). Ices in the Solar System, Dordrecht, the Netherlands: Kluwer.CrossRefGoogle Scholar
Serkowsky, K. (1974). Polarimeters for optical astronomy. In Gehrels, T., ed., Planets, Stars and Nebulae Studied with Photopolarimetry. Tucson: University of Arizona Press, pp. 135174.Google Scholar
Shakhovskoj, N. M. (1994). Methods for analysis of polarization observations. Bulletin of the Crimean Astrophysical Observatory, 91, 106123 [in Russian].Google Scholar
Shakhovskoy, N. M. and Efimov, Yu. S. (1972). Polarization observations of nonstable stars and extragalactic objects. I: Equipment, method of observation and reduction. Bulletin of the Crimean Astrophysical Observatory, 45, 90110 [in Russian].Google Scholar
Shakhovskoy, N. M. and Efimov, Yu. S. (1976). Observations of linear polarization of optical emission from X-ray sources. Bulletin of the Crimean Astrophysical Observatory, 54, 99119 [in Russian].Google Scholar
Shevchenko, V. G., Belskaya, I. N., and Tereschenko, I. A. (2010). The diversity of the opposition effect of dark asteroids. In Proceedings of the 41st Lunar and Planetary Science Conference. Houston: LPI. LPI Contribution No. 1533, 1131.Google Scholar
Shkuratov, Yu. G. (1987). Interpretation of spectral dependence of negative polarization parameters of light scattered by solid surfaces of celestial bodies. Pis’ma Astronomicheskii Zhurnal, 13, 444448 [in Russian].Google Scholar
Shkuratov, Yu. G., Muinonen, K., Bowell, E.et al. (1994). A critical review of theoretical models of negatively polarized light scattered by atmosphereless solar system bodies. Earth, Moon, and Planets, 65, 201246.CrossRefGoogle Scholar
Shkuratov, Yu., Ovcharenko, A., Zubko, E.et al. (2002). The opposition effect and negative polarization of structural analogs of planetary regoliths. Icarus, 159, 396416.CrossRefGoogle Scholar
Spencer, J. R. and Denk, T. (2010). Formation of Iapetus’ extreme albedo dichotomy by exogenically triggered thermal ice migration. Science, 327, 432435.CrossRefGoogle ScholarPubMed
Thompson, D. T. and Lockwood, G. W. (1992). Photoelectric photometry of Europa and Callisto 1976−1991. Journal of Geophysical Research, 97, 1476114772.CrossRefGoogle Scholar
Tishkovets, V. (2007). Incoherent and coherent backscattering of light by a layer of densely packed random medium. Journal of Quantitative Spectroscopy and Radiative Transfer, 108, 454463.CrossRefGoogle Scholar
Tishkovets, V. P. (2008). Light scattering by closely packed clusters: Shielding of particles by each other in the near field. Journal of Quantitative Spectroscopy and Radiative Transfer, 109, 26652672.CrossRefGoogle Scholar
Tishkovets, V. P. and Jockers, K. (2006). Multiple scattering of light by densely packed random media. Dense media vector radiative transfer equation. Journal of Quantitative Spectroscopy and Radiative Transfer, 101, 5472.CrossRefGoogle Scholar
Tishkovets, V. P. and Petrova, E. V. (2013). Coherent backscattering by discrete random media composed of clusters of spherical particles. Journal of Quantitative Spectroscopy and Radiative Transfer, 127, 192206.CrossRefGoogle Scholar
Tishkovets, V., Litvinov, P., Petrova, E., Jockers, K., and Mishchenko, M. (2004). Backscattering effects for discrete random media. In Videen, G., Yatskiv, Y., and Mishchenko, M., eds., Photopolarimetry in Remote Sensing. Dordrecht: Kluwer Academic Publishers, pp. 221242.Google Scholar
Tishkovets, V. P., Petrova, E. V., and Mishchenko, M. I. (2011). Scattering of electromagnetic waves by ensembles of particles and discrete random media. Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 20952127.CrossRefGoogle Scholar
Tosi, F., Turrini, D., Coradini, A., Filacchione, G., and the VIMS Team (2010). Probing the origin of the dark material on Iapetus. Monthly Notices of the Royal Astronomical Society, 403, 11131130.CrossRefGoogle Scholar
Travis, L. D., Martin, T. Z., Orton, G. S. (2002). Galileo orbiter PPR reduced data record (RDV) V1.0, GO-J-PPR-3RDV-V1.0, NASA Planetary Data System.
Umov, N. A. (1905). Chromatische depolarisation durch lichtzerstreung. Zeitschrift fur Physik, 6, 674676.Google Scholar
Verbiscer, A. J., French, R. G., and McGhee, C. A. (2005). The opposition surge of Enceladus: HST observations 338–1022 nm. Icarus, 173, 6683.CrossRefGoogle Scholar
Verbiscer, A., French, R., Showalter, M., and Helfenstein, P. (2007). Enceladus: Cosmic graffiti artist caught in the act. Science, 315, 815.CrossRefGoogle Scholar
Veverka, J. (1971). Polarization measurements of the Galilean satellites of Jupiter. Icarus, 14, 355359.CrossRefGoogle Scholar
Veverka, J. (1977) Polarimetry of satellite surfaces. In Burns, J. A., ed., Planetary Satellites. Tucson: University of Arizona Press, pp. 210230.Google Scholar
Zaitsev, S. V., Kiselev, N. N., Rosenbush, V. K.et al. (2012a). Polarimetric observations of the Galilean satellites near opposition in 2011. Advances in Astronomy and Space Physics, 2, 177179.Google Scholar
Zaitsev, S., Rosenbush, V., and Kiselev, N., eds. (2012b). Polarimetry of Planetary Satellites V1.0. EAR-SA-COMPIL-3- SATPOL-V1.0. NASA Planetary Data System.
Zellner, B. H. (1972). On the nature of Iapetus. The Astrophysical Journal, 174, L107L109.CrossRefGoogle Scholar
Appenzeller, I., Fricke, K., Furtig, W.et al. (1998). Successful commissioning of FORS1 – the first optical instrument on the VLT. The Messenger, 94, 1.Google Scholar
Bagnulo, S., Belskaya, I. N., Boehnhardt, H.et al. (2011). Polarimetry of small bodies of the solar system with large telescopes. Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 20592067.CrossRefGoogle Scholar
Belskaya, I. N. and Shevchenko, V. G. (2000). Opposition effect of asteroids. Icarus, 147, 94105.CrossRefGoogle Scholar
Belskaya, I. N., Efimov, Y. S., Lupishko, D. F., and Shakhovskoy, N. M. (1985). Five color polarimetry of the asteroid 16-Psyche. Soviet Astronomy Letters, 11, 116118.Google Scholar
Belskaya, I. N., Lupishko, D. F., and Shakhovskoi, N. M. (1987). Negative polarization spectra for five asteroids. Soviet Astronomy Letters, 13, 219.Google Scholar
Belskaya, I. N., Kiselev, N. N., Lupishko, D., and Chernova, G. P. (1991). Polarimetry of CMEU asteroids. II – A peculiarity of M-type asteroids. Kinematics and Physics of Celestial Bodies, 7, 811.Google Scholar
Belskaya, I. N., Shevchenko, V. G., Kiselev, N. N.et al. (2003). Opposition polarimetry and photometry of S- and E-type asteroids. Icarus, 166, 276284.CrossRefGoogle Scholar
Belskaya, I. N., Shkuratov, Yu. G., Efimov, Yu. S.et al. (2005). The F-type asteroids with small inversion angles of polarization. Icarus, 178, 213221.CrossRefGoogle Scholar
Belskaya, I. N., Levasseur-Regourd, A.-C., Cellino, A. et al. (2009a). Polarimetry of main belt asteroids: Wavelength dependence. Icarus, 199, 97105.CrossRefGoogle Scholar
Belskaya, I. N., Fornasier, S., and Krugly, Y. N. (2009b). Polarimetry and BVRI photometry of the potentially hazardous near-Earth asteroid (23187) 2000 PN9. Icarus, 201, 167171.CrossRefGoogle Scholar
Belskaya, I. N., Fornasier, S., Krugly, Yu. N.et al. (2010). Puzzling asteroid 21 Lutetia: Our knowledge prior to the Rosetta fly-by. Astronomy and Astrophysics, 515, A29.CrossRefGoogle Scholar
Burbine, T. H., Gaffey, M. J., and Bell, J. F. (1992). S-asteroids 387 Aquitania and 980 Anacostia – Possible fragments of the breakup of a spinel-bearing parent body with CO3/CV3 affinities. Meteoritics, 27, 424434.CrossRefGoogle Scholar
Bus, S. J. and Binzel, R. P. (2002). Phase II of the small main-belt asteroid spectroscopic survey. A feature-based taxonomy. Icarus, 158, 146177.CrossRefGoogle Scholar
Cañada-Assandri, M., Gil-Hutton, R., and Benavidez, P. (2012). Polarimetric survey of main-belt asteroids. III. Results for 33 X-type objects. Astronomy and Astrophysics, 542, A11.CrossRefGoogle Scholar
Cellino, A., Gil-Hutton, R., Tedesco, E. F., Di Martino, M., and Brunini, A. (1999). Polarimetric observations of small asteroids: Preliminary results. Icarus, 138, 129140.CrossRefGoogle Scholar
Cellino, A., Zappalà, V., Doressoundiram, A.et al. (2001). The puzzling case of the Nysa-Polana family. Icarus, 152, 225237.CrossRefGoogle Scholar
Cellino, A., Gil-Hutton, R., di Martino, M.et al. (2005a). Asteroid polarimetric observations using the Torino UBVRI photopolarimeter. Icarus, 179, 304324.CrossRefGoogle Scholar
Cellino, A., Yoshida, F., Anderlucci, E.et al. (2005b). A polarimetric study of asteroid 25143 Itokawa. Icarus, 179, 297303.CrossRefGoogle Scholar
Cellino, A., Belskaya, I. N., Bendjoya, Ph.et al. (2006). The strange polarimetric behavior of asteroid (234) Barbara. Icarus, 180, 565567.CrossRefGoogle Scholar
Cellino, A., Delbò, M., Bendjoya, Ph., and Tedesco, E. F. (2010). Polarimetric evidence of close similarity between members of the Karin and Koronis dynamical families. Icarus, 209, 556563.CrossRefGoogle Scholar
Cellino, A., Dell’Oro, A., Bendjoya, Ph., Cañada-Assandri, M., and Di Martino, M. (2012). A new calibration of the albedo–polarization relation for the asteroids. Journal of Quantitative Spectroscopy and Radiative Transfer, 113, 25522560.CrossRefGoogle Scholar
Cellino, A., Bagnulo, S., Tanga, P., Novakovic, B., and Delbò, M. (2014). A successful search for hidden Barbarians in the Watsonia asteroid family. Monthly Notices of the Royal Astronomical Society Letters, 439, L75.CrossRefGoogle Scholar
Chamberlin, A. B., McFadden, L.-A., Schulz, R., Schleicher, D. G., and Bus, S. J. (1996). 4015 Wilson Harrington, 2201 Oljato, and 3200 Phaethon: Search for CN Emission. Icarus, 119, 173181.CrossRefGoogle Scholar
Chapman, C. R. (1996). S-type asteroids, ordinary chondrites, and space weathering: The evidence from Galileo’s fly-bys of Gaspra and Ida. Meteoritics and Planetary Science, 31, 699725.CrossRefGoogle Scholar
Chapman, C. R., Morrison, D., and Zellner, B. (1975). Surface properties of asteroids – A synthesis of polarimetry, radiometry, and spectrophotometry. Icarus, 25, 104130.CrossRefGoogle Scholar
Degtyarev, V. S. and Kolokolova, L. O. (1992). Possible application of circular polarization for remote sensing of cosmic bodies. Earth, Moon and Planets, 57, 213223.CrossRefGoogle Scholar
Delbò, M., Cellino, A., and Tedesco, E. F. (2007). Albedo and size determination of potentially hazardous asteroids: (99942) Apophis. Icarus, 188, 266269.CrossRefGoogle Scholar
De Luise, F., Perna, D., Dotto, E.et al. (2007). Physical investigation of the potentially hazardous asteroid (144898) 2004 VD17. Icarus, 191, 628635.CrossRefGoogle Scholar
DeMeo, F. E., Binzel, R. P., Slivan, S. M., and Bus, S. J. (2009). An extension of the Bus asteroid taxonomy into the near-infrared. Icarus, 202, 160180.CrossRefGoogle Scholar
Desidera, S., Giro, E., Munari, U.et al. (2004). Polarimetric evolution of V838 Monocerotis. Astronomy and Astrophysics, 414, 591600.CrossRefGoogle Scholar
Dollfus, A. and Zellner, B. (1979). Optical polarimetry of asteroids and laboratory samples. In Gehrels, T., ed., Asteroids. Tucson: University of Arizona Press, pp. 170183.Google Scholar
Dollfus, A., Wolff, M., Geake, J. E., Lupishko, D. F., and Dougherty, L. M. (1989). Photopolarimetry of asteroids. In Binzel, R. P., Gehrels, T., and Matthews, M. S., eds., Asteroids II. Tucson: University of Arizona Press, pp. 594616.Google Scholar
Fornasier, S., Belskaya, I. N., Fulchignoni, M., Barucci, M. A., and Barbieri, C. (2006a). First albedo determination of 2867 Steins, target of the Rosetta mission. Astronomy and Astrophysics, 449, L9L12.CrossRefGoogle Scholar
Fornasier, S., Beskaya, I. N., Shkuratov, Yu. G.et al. (2006b). Polarimetric survey of asteroids with the Asiago telescope. Astronomy and Astrophysics, 455, 371377.CrossRefGoogle Scholar
Gaffey, M. J., Bell, J. F., and Cruikshank, D. P. (1989). Reflectance spectroscopy and asteroid surface mineralogy. In Binzel, R. P., Gehrels, T., and Matthews, M. S., eds., Asteroids II. Tucson: University of Arizona Press, pp. 98127.Google Scholar
Gehrels, T., ed. (1974). Planets, Stars, and Nebulae Studied with Photopolarimetry. Tucson: University of Arizona Press.Google Scholar
Gil-Hutton, R. (2007). Polarimetry of M-type asteroids. Astronomy and Astrophysics, 464, 11271132.CrossRefGoogle Scholar
Gil-Hutton, R. and Cañada-Assandri, M. (2011). Polarimetric survey of main-belt asteroids. I. Results for fifty seven S-, L-, and K-type objects. Astronomy and Astrophysics, 529, A86.CrossRefGoogle Scholar
Gil-Hutton, R. and Cañada-Assandri, M. (2012). Polarimetric survey of main-belt asteroids. II. Results for 58 B- and C-type objects. Astronomy and Astrophysics, 539, A115.CrossRefGoogle Scholar
Gil-Hutton, R., Mesa, V., Cellino, A.et al. (2008). New cases of unusual polarimetric behavior in asteroids. Astronomy and Astrophysics, 482, 309314.CrossRefGoogle Scholar
Goidet-Devel, B., Renard, J. B., and Levasseur-Regourd, A.-C. (1995). Polarization of asteroids. Synthetic curves and characteristic parameters. Planetary and Space Science, 43, 779786.CrossRefGoogle Scholar
Gradie, J. and Tedesco, E. F. (1982). Compositional structure of the asteroid belt. Science, 216, 14051407.CrossRefGoogle ScholarPubMed
Gradie, J., Tedesco, E. F., and Zellner, B. (1978). Rotational variations in the optical polarization and reflection spectrum of Vesta. Bulletin of the American Astronomical Society, 10, 595.Google Scholar
Hadamcik, E., Levasseur-Regourd, A. C., Renard, J. B., Lasue, J., and Sen, A. K. (2011). Polarimetric observations and laboratory simulations of asteroidal surfaces: The case of 21-Lutetia. Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 18811890.CrossRefGoogle Scholar
Ishiguro, M., Nakayama, H., Kogachi, M.et al. (1997). Maximum visible polarization of 4179 Toutatis in the apparition of 1996. Publications of the Astronomical Society of Japan, 49, L31L34.CrossRefGoogle Scholar
Jenniskens, P., Shaddad, M. H., Numan, D.et al. (2009). The impact and recovery of asteroid 2008 TC3. Nature, 458, 485488.CrossRefGoogle Scholar
Kawabata, K., Okazaki, A., Akitaya, H. et al. (1999). A new spectropolarimeter at the Dodaira Observatory. Publications of the Astronomical Society of the Pacific, 111, 898908.CrossRefGoogle Scholar
Kiselev, N. N., Lupishko, D. F., Chernova, G. P., and Shkuratov, Yu. G. (1990). Polarimetry of the asteroid 1685 Toro. Kinematika i Fizika Nebesnykh Tel, 6, 7782.Google Scholar
Kiselev, N. N., Rosenbush, V. K., and Jockers, K. (1999). Polarimetry of asteroid 2100 Ra-Shalom at large phase angle. Icarus, 140, 464466.CrossRefGoogle Scholar
Kiselev, N. N., Rosenbush, V. K., Jockers, K.et al. (2002). Polarimetry of near-Earth asteroid 33342 (1998 WT24). Synthetic phase angle dependence of polarization for the E-type asteroids. In Warmbein, B., ed., Proceedings of Asteroids, Comets, Meteors – ACM 2002, ESA SP-500. The Netherlands: Noordwijk, pp. 887890.Google Scholar
Kolokolova, L. and Jockers, K. (1997). Composition of cometary dust from polarization spectra. Planetary and Space Science, 45, 15431550.CrossRefGoogle Scholar
Lupishko, D. F. (1998). Bimodality in the albedo distribution of S-asteroids. Solar System Research, 32, 233.Google Scholar
Lupishko, D. and Belskaya, I. N. (1989). On the surface composition of the M-type asteroids. Icarus, 78, 395401.CrossRefGoogle Scholar
Lupishko, D. F. and Mohamed, R. A. (1996). A new calibration of the polarimetric albedo scale of asteroids. Icarus, 119, 209213.CrossRefGoogle Scholar
Lupishko, D. F. and Vasilyev, S. V. (1997). Asteroid Polarimetric Database. Kinematics and Physics of Celestial Bodies, 13, 1723.Google Scholar
Lupishko, D. F., Belskaya, I. N., Kvaratskheliia, O. I., Kiselev, N. N., and Morozhenko, A. V. (1988). The polarimetry of Vesta during the 1986 opposition. Astronomicheskii Vestnik, 22, 142146 [in Russian].Google Scholar
Lupishko, D. F., Vasilyev, S. V., Efimov, Yu. S., and Shakhovskoy, N. M. (1995). UBVRI polarimetry of asteroid (4179) Toutatis. Icarus, 113, 200205.CrossRefGoogle Scholar
Lupishko, D. F., Efimov, Yu. S. and Shakhovskoi, N. M. (1999). Position angle variations of the polarization plane of asteroid 4 Vesta. Solar System Research, 33, 4548.Google Scholar
Lupishko, D. F. and Vasilyev, S. V., eds, (2012). Asteroid Polarimetric Database V7.0. EAR-A-3-RDR-APD-POLARI METRY-V7.0. NASA Planetary Data System, 2012. Available online at: http://sbn.psi.edu/pds/resource/apd.html (accessed January 13, 2015).
Magalhães, A. M., Rodriguez, C. V., Margoniner, V. E., Pereyra, A., and Heathcote, S. (1996). High precision CCD imaging polarimetry. In Roberge, W. G. and Whittet, D. C. B., eds., Polarimetry of the Interstellar Medium. Astronomical Society of the Pacific Conference Series, Vol. 97. San Francisco CA: Astronomical Society of the Pacific, p. 118.Google Scholar
Masiero, J., Hodapp, K., Harrington, D., and Lin, H. S. (2007). Commissioning of the dual-beam imaging polarimeter for the University of Hawaii 88 inch telescope. Publications of the Astronomical Society of the Pacific, 119, 11261132.CrossRefGoogle Scholar
Masiero, J., Hartzell, C., and Scheers, D. J. (2009). The effect of the dust size distribution on asteroid polarization. The Astronomical Journal, 138, 15571562.CrossRefGoogle Scholar
Masiero, J. R., Mainzer, A. K., Grav, T.et al. (2011). Main belt asteroids with WISE/NEOWISE. I. Preliminary albedos and diameters. The Astrophysical Journal, 741, 68.CrossRefGoogle Scholar
Masiero, J. R., Mainzer, A. K., Gray, T.et al. (2012). A revised asteroid polarization–albedo relationship using WISE/NEOWISE data. The Astrophysical Journal, 749, 104.CrossRefGoogle Scholar
Mignard, F., Cellino, A., Muinonen, K.et al. (2007). The Gaia Mission: Expected applications to asteroid science. Earth, Moon and Planets, 101, 97125.CrossRefGoogle Scholar
Muinonen, K., Piironen, J., Kaasalainen, S., and Cellino, A. (2002). Asteroid photometric and polarimetric phase curves: Joint linear-exponential modeling. Memorie Della Società Astronomica Italiana—Journal of the Italian Astronomical Society, 73, 716721.Google Scholar
Muinonen, K., Belskaya, I. N., Cellino, A. (2010). A three-parameter magnitude phase function for asteroids. Icarus, 209, 542555.CrossRefGoogle Scholar
Mukai, T., Iwata, T., Kikuchi, S.et al. (1997). Polarimetric observations of 4179 Toutatis in 1992/1993. Icarus, 127, 452460.CrossRefGoogle Scholar
Nesvorny, D., Enke, B. L., Bottke, W. F.et al. (2006). Karin cluster formation by asteroid impact. Icarus, 183, 296311.CrossRefGoogle Scholar
Novakovic, B., Cellino, A., and Knezevic, Z. (2011). Families among high-inclination asteroids. Icarus, 216, 6981.CrossRefGoogle Scholar
Penttilä, A., Lumme, K., Hadamcik, E., and Levasseur-Regourd, A.-C. (2005). Statistical analysis of asteroidal and cometary polarization phase curves. Astronomy and Astrophysics, 432, 10811090.CrossRefGoogle Scholar
Pernechele, C., Giro, E., and Fantinel, D. (2003). Device for optical linear polarization measurements with a single exposure. Proceedings of SPIE, 4843, 156163.CrossRefGoogle Scholar
Pernechele, C., Abe, L., Bendjoya, Ph.et al. (2012). A single-shot optical linear polarimeter for asteroid studies. Proceedings of SPIE, 8446, 84462H.CrossRefGoogle Scholar
Piirola, V. (1973). A double image chopping polarimeter. Astronomy and Astrophysics, 27, 383388.Google Scholar
Rivkin, A. S., Howell, E. S., Britt, D. T.et al. (1995). Three-micron spectrometric survey of M- and E-class asteroids. Icarus, 117, 90100.CrossRefGoogle Scholar
Rivkin, A. S., Howell, E. S., Lebofsky, L. A., Clark, B. E., and Britt, D. T. (2000). The nature of M-class asteroids from 3-micron observation. Icarus, 145, 351368.CrossRefGoogle Scholar
Rosenbush, V. K., Kiselev, N. N., Shevchenko, V. G.et al. (2005). Polarization and brightness opposition effects for the E-type asteroid 64 Angelina. Icarus, 178, 222234.CrossRefGoogle Scholar
Rosenbush, V. K., Shevchenko, V. G., Kiselev, N. N.et al. (2009). Polarization and brightness opposition effects for the E-type asteroid 44 Nysa. Icarus, 201, 655665.CrossRefGoogle Scholar
Ross Taylor, S. (1992). Solar System Evolution. New York: Cambridge University Press.Google Scholar
Scaltriti, F., Piirola, V., Cellino, A.et al. (1989). The UBVRI photopolarimeter of the Torino Astronomical Observatory. Memorie della Societa Astronomica Italiana, 60, 243246.Google Scholar
Shakhovskoj, N. M. (1994). Methods for analysis of polarization observations. Crimean Astrophysical Observatory, 91, 106123.Google Scholar
Shevchenko, V. G. and Tedesco, E. F. (2006). Asteroid albedos deduced from stellar occultations. Icarus, 184, 211220.CrossRefGoogle Scholar
Sunshine, J., Connolly, H. C., McCoy, T. J., and Bus, S. J. (2007). Refractory-rich asteroids: Concentrations of the most ancient materials in the Solar System. Bulletin of the American Astronomical Society, 39, 476.Google Scholar
Sunshine, J. M., Connolly, H. C., McCoy, T. J., Bus, S.J., and La Croix, L. M. (2008). Ancient asteroids enriched in refractory inclusions. Science, 320, 514517.CrossRefGoogle ScholarPubMed
Tedesco, E. F., Noah, P. V., Noah, M., and Price, S. D. (2002). The supplemental IRAS minor planet survey. The Astronomical Journal, 123, 10561085.CrossRefGoogle Scholar
Tholen, D. (1984). Asteroid taxonomy from cluster analysis of photometry. Ph.D. thesis, University of Arizona.
Tholen, D. J. and Barucci, M. A. (1989). Asteroid taxonomy. In Binzel, R., Gehrels, T., and Matthews, M. S., eds., Asteroids II. Tucson: University of Arizona Press, pp. 298315.Google Scholar
Vasil’Ev, S. V., Lupishko, D. F., Shakhovskoj, N. M., and Efimov, Yu. S. (1996). UBVRI polarimetry and photometry of the asteroid 1620 Geographos. Kinematics and Physics of Celestial Bodies, 12, 812.Google Scholar
Vernazza, P., Binzel, R. P., Rossi, A., Fulchignoni, M., and Birlan, M. (2009). Solar wind as the origin of rapid reddening of asteroid surfaces. Nature, 458, 993995.CrossRefGoogle ScholarPubMed
Wolff, M. (1980). Theory and application of the polarization–albedo rules. Icarus, 44, 780792.CrossRefGoogle Scholar
Wolff, M. (1981). Computing diffuse reflection from particulate planetary surface with a new function. Applied Optics, 20, 24932498.CrossRefGoogle ScholarPubMed
Zellner, B. and Gradie, J. (1976a). Minor planets and related objects. XX. Polarimetric evidence for the albedos and compositions of 94 asteroids. The Astronomy Journal, 81, 262280.CrossRefGoogle Scholar
Zellner, B. and Gradie, J. (1976b). Polarization of the reflected light of asteroid 433 Eros. Icarus, 28, 117123.CrossRefGoogle Scholar
Zellner, B., Gehrels, T., and Gradie, J. (1974). Minor planets and related objects. XVI. Polarimetric diameters. The Astronomy Journal, 79, 11001110.CrossRefGoogle Scholar
Zellner, B., Leake, M., Lebertre, T., and Dollfus, A. (1977). Polarimetry of meteorites and the asteroid albedo scale. Lunar and Planetary Science Conference, 8, 1041.Google Scholar
A’Hearn, M. F., Millis, R. L., Schleicher, D. G., Osip, D. J., and Birch, P. V. (1995). The ensemble properties of comets: Results from narrowband photometry of 85 comets, 1976–1992. Icarus, 118, 223270.CrossRefGoogle Scholar
A’Hearn, M. F., Belton, M. J. S., Delamere, W. A.et al. (2005). Deep impact: Excavating comet Tempel 1. Science, 310(5746), 258264.Google Scholar
Arago, F. (1854–1857). Astronomie Populaire, Vols. 1–4. Paris: Gide et Baudry.Google Scholar
Arpigny, C. (1995). Spectra of comets: Ultraviolet and optical regions. ASP Conference Series, 81, 362382.Google Scholar
Bagnulo, S., Tozzi, G. P., Boehnhardt, H., Vincent, J.-B., and Muinonen, K. (2010). Polarimetry and photometry of the peculiar main-belt object 7968 = 133P/Elst–Pizarro. Astronomy and Astrophysics, 514(A99), 13 pp.CrossRefGoogle Scholar
Boehnhardt, H. and ESO DI team (2005). The Deep Impact campaign at ESO: Dust and nucleus characterization. In IAU Symposium ACM-2005, Vol. 229. Buzios, Brazil.Google Scholar
Boehnhardt, H., Tozzi, G., Bagnulo, S.et al. (2008). Photometry and polarimetry of the nucleus of comet 2P/Encke. Astronomy and Astrophysics, 489, 13371343.CrossRefGoogle Scholar
Bonev, T., Boehnhardt, H., and Borisov, G. (2008). Broadband imaging and narrowband polarimetry of comet 73P/Schwassmann–Wachmann 3, components B and C, on 3, 4, 8, and 9 May 2006. Astronomy and Astrophysics, 480, 277287.CrossRefGoogle Scholar
Brooke, T. Y., Knacke, R. F., and Joyce, R. R. (1987). The near infrared polarization and color of comet P/Halley. Astronomy and Astrophysics, 187, 621624.Google Scholar
Brown, M. E., Bouchez, A. H., Spinrad, H., and Johns-Krull, C. M. (1996). A high-resolution catalog of cometary emission lines. The Astronomical Journal, 112, 11971202.CrossRefGoogle Scholar
Brownlee, D. E., Tomandl, D. A., and Olszewski, E. (1977). Interplanetary dust – A new source of extraterrestrial material for laboratory studies. In Proceedings of the Lunar Science Conference, Vol. 1. New York: Pergamon Press, Inc., pp. 149160.Google Scholar
Chernova, G. P., Kiselev, N. N., and Jockers, K. (1993). Polarimetric characteristic of dust particles as observed in 13 comets: Comparison with asteroids. Icarus, 103, 144158.CrossRefGoogle Scholar
Clarke, D. (1971). Polarization measurements of the head of comet Bennett (1969i). Astronomy and Astrophysics, 14, 9094.Google Scholar
Dobrovolsky, O. V. (1966). Comets. Moscow: Nauka.Google Scholar
Dobrovolsky, O. V., Kiselev, N. N., and Chernova, G. P. (1986). Polarimetry of comets – A review. Earth, Moon, and Planets, 34, 189200.CrossRefGoogle Scholar
Dolginov, A. Z. and Mytrophanov, I. G. (1976). Orientation of cosmic dust grains. Astrophysics and Space Science, 43, 291317.CrossRefGoogle Scholar
Dollfus, A. and Suchail, J.-L. (1987). Polarimetry of grains in the coma of P/Halley I. Observations. Astronomy and Astrophysics, 187, 669688.Google Scholar
Dollfus, A., Bastien, P., Le Borgne, J. L., Levasseur-Regourd, A. C., and Mukai, T. (1988). Optical polarimetry of P/Halley: Synthesis of the measurements in the continuum. Astronomy and Astrophysics, 206, 348356.Google Scholar
Draine, B. T. and Flatau, P. J. (1994). Discrete-dipole approximation of scattering calculations. Journal of the Optical Society of America A, Optics, image science, and vision, 11, 14911499. Available online at: www.astro.princeton.edu/~draine/DDSCAT.html (accessed January 14, 2015).CrossRefGoogle Scholar
Eaton, N., Scarrot, S., and Warren–Smith, R. F. (1988). Polarization images of the inner regions of comet Halley. Icarus, 76, 270278.CrossRefGoogle Scholar
Eaton, N., Scarrott, S. M., and Wolstencroft, R. D. (1991). Polarization studies of Comet Okazaki–Levy–Rudenko. Monthly Notices of the Royal Astronomical Society, 250, 654656.CrossRefGoogle Scholar
Eaton, N., Scarrott, S. M., and Gledhill, T. M. (1992). Polarization studies of Comet Austin. Monthly Notices of the Royal Astronomical Society, 258, 384386.CrossRefGoogle Scholar
Elvius, A. (1958). Preliminary results of polarization measurements in comets. Arkiv för Astronomi, 2, 195197.Google Scholar
Farnham, T. L., Schleicher, D. G., and A’Hearn, M. F. (2000). The HB narrowband comet filters: standard stars and calibrations. Icarus, 147, 180204.CrossRefGoogle Scholar
Farnham, T. L., Schleicher, D. G., Woodney, L. M.et al. (2001). Imaging and photometry of comet C/1999 S4 (LINEAR) before perihelion and after breakup. Science, 292(5520), 13481354.CrossRefGoogle Scholar
Festou, M. C., Keller, H. U., and Weaver, H. A. (2004). A brief conceptual history of cometary science. In Festou, M., Keller, H. U., and Weaver, H. A., eds., Comets II. Tucson: University of Arizona Press, pp. 316.Google Scholar
Flynn, G. J. (2008). Physical, chemical, and mineralogical properties of comet 81P/Wild 2 particles collected by Stardust. Earth, Moon, and Planets, 102, 447459.CrossRefGoogle Scholar
Fomenkova, M. (1999). On the organic refractory component of cometary dust. Space Science Reviews, 90, 109114.CrossRefGoogle Scholar
Furusho, R., Ikeda, Y., Kinoshita, D.et al. (2007). Imaging polarimetry of Comet 9P/Tempel before and after the Deep Impact. Icarus, 190(2), 454458.CrossRefGoogle Scholar
Furusho, R., Arai, A., and Uemura, K. (2008). Polarimetry of 17P/Holmes. In Proceedings of the AOGS Conference, abstract PS10, A018.Google Scholar
Ganesh, S., Joshi, U. C., Baliyan, K. S., and Deshpande, M. R. (1998). Polarimetric observations of the comet Hale–Bopp. Astronomy and Astrophysics Supplement, 129, 489493.CrossRefGoogle Scholar
Gehrels, T. (1974). Introduction and overview. In Gehrels, T., ed., Planets, Stars, and Nebulae Studied with Photopolarimetry. Tucson: University of Arizona Press, pp. 344.Google Scholar
Gehrels, T. (1977). The physical basis of the polarimetric method for deriving asteroid albedos. In Comets, Asteroids, Meteorites: Interrelations, Evolution and Origins. Proceedings of the 39th International Colloquium. Toledo, Ohio: University of Toledo, pp. 253256.Google Scholar
Greenberg, J. M. (1982). What are comets made of − A model based on interstellar dust. In Wilkening, L., ed., Comets. Tucson: University of Arizona Press, pp. 131163.Google ScholarPubMed
Grynko, Ye., Jockers, K., and Schwenn, R. (2004). The phase curve of cometary dust: Observations of comet 96P/Machholz 1 at large phase angle with the SOHO LASCO C3 coronagraph. Astronomy and Astrophysics, 427, 755761.CrossRefGoogle Scholar
Guirado, D. and Moreno, F. (2008). Monte Carlo modeling of radiative transfer in comets: A search for mechanisms giving circular polarization. In Asteroids, Comets, Meteors. Houston: LPI. LPI Contribution No. 1405, id. 8175.Google Scholar
Guirado, D., Hovenier, J. W., and Moreno, F. (2007). Circular polarization of light scattered by asymmetrical particles. Journal of Quantitative Spectroscopy and Radiative Transfer, 106, 6373.CrossRefGoogle Scholar
Gustafson, B. Å. S. and Kolokolova, L. (1999). A systematic study of light scattering by aggregate particles using the microwave analog technique: Angular and wavelength dependence of intensity and polarization. Journal of Geophysical Research, 104, 3171131720.CrossRefGoogle Scholar
Hadamcik, E. and Levasseur-Regourd, A. C. (2003a). Dust coma of comet C/1999 S4 (LINEAR): Imaging polarimetry during nucleus disruption. Icarus, 166, 188194.CrossRefGoogle Scholar
Hadamcik, E. and Levasseur-Regourd, A. C. (2003b). Imaging polarimetry of cometary dust: different comets and phase angles. Journal of Quantitative Spectroscopy and Radiative Transfer, 79−80, 661678.CrossRefGoogle Scholar
Hadamcik, E. and Levasseur-Regourd, A. C. (2003c). Dust evolution of comet C/1995 O1 (Hale–Bopp) by imaging polarimetric observations. Astronomy and Astrophysics, 403, 757768.CrossRefGoogle Scholar
Hadamcik, E. and Levasseur-Regourd, A. C. (2009). Optical properties of dust from Jupiter family comets. Planetary and Space Science, 57, 11181132.CrossRefGoogle Scholar
Hadamcik, E., Levasseur-Regourd, A. C., and Renard, J. B. (1997). CCD polarimetric imaging of comet Hale–Bopp (C/1995 O1). Earth, Moon, and Planets, 78(1/3), 365371.CrossRefGoogle Scholar
Hadamcik, E., Renard, J.-B., Worms, J.-C., Levasseur-Regourd, A. C., and Masson, M. (2002). Polarization of light scattered by fluffy particles (PROGRA2 Experiment). Icarus, 155, 497508.CrossRefGoogle Scholar
Hadamcik, E., Renard, J.-B., Levasseur-Regourd, A. C., and Lasue, J. (2006). Light scattering by fluffy particles with the PROHRA2 experiment: Mixtures of materials. Journal of Quantitative Spectroscopy and Radiative Transfer, 100, 143156.CrossRefGoogle Scholar
Hadamcik, E., Levasseur-Regourd, A. C., Leroi, V., and Bardin, D. (2007a). Imaging polarimetry of the dust coma of comet Tempel 1 before and after Deep Impact. Icarus, 190, 459468.CrossRefGoogle Scholar
Hadamcik, E., Renard, J.-B., Rietmeijer, F. J. M.et al. (2007b). Light scattering by fluffy Mg-Fe-SiO and C mixtures as cometary analogs (PROGRA 2 experiment). Icarus, 190, 660671.CrossRefGoogle Scholar
Hadamcik, E., Sen, A. K., Levasseur-Regourd, A. C., Gupta, R., and Lasue, J. (2010). Polarimetric observations of comet 67P/Churyumov–Gerasimenko during its 2008–2009 apparition. Astronomy and Astrophysics, 517, A86.CrossRefGoogle Scholar
Hadamcik, E., Renard, J.-B., Levasseur-Regourd, A. C., and Lasue, J. (2011). Laboratory measurements of light scattered by clouds and layers of solid particles using an imaging technique. In Mishchenko, M., Yatskiv, Ya., Rosenbush, V., and Videen, G., eds., Polarimetric Detection, Characterization, and Remote Sensing. Dordrecht, The Netherlands: Springer, pp. 137176.CrossRefGoogle Scholar
Hadamcik, E., Sen, A. K., Levasseur-Regourd, A. C. (2013). Dust in comet Hartley 2 coma, during EPOXI mission. Icarus, 222, 774785.CrossRefGoogle Scholar
Hadamcik, E., Sen, A. K., Levasseur-Regourd, A. C.et al. (2014). Dust coma of comet C/2009 P1 (Garradd) by imaging polarimetry. Meteoritics and Planetary Science, 49, 3644.CrossRefGoogle Scholar
Hanner, M. S. (2003). The scattering properties of cometary dust. Journal of Quantitative Spectroscopy and Radiative Transfer, 79−80, 164173.Google Scholar
Hanner, M. S. and Bradley, J. P. (2004). Composition and mineralogy of cometary dust. In Festou, M., Keller, H. U., and Weaver, H. A., eds., Comets II. Tucson: University of Arizona, pp. 555564.Google Scholar
Hanner, M. S., Veeder, G. J., and Tokunaga, A. T. (1992). The dust coma of Comet P/Giacobini–Zinner in the infrared. The Astronomical Journal, 104, 386393.CrossRefGoogle Scholar
Hanner, M. S., Gehrz, R. D., Harker, D. E.et al. (1997). Thermal emission from the dust coma of comet Hale–Bopp and the composition of the silicate grains. Earth, Moon, and Planets, 79, 247264.CrossRefGoogle Scholar
Harrington, D. M., Meech, K., Kolokolova, L., Kuhn, J. R., and Whitman, K. (2007). Spectropolarimetry of the Deep Impact target Comet 9P/Tempel 1 with HiVIS. Icarus, 191, 381388.CrossRefGoogle Scholar
Hoang, T. and Lazarian, A. (2014). Grain alignment by radiative torques in special conditions and implications. Monthly Notices of the Royal Astronomical Society, 438, 680703.CrossRefGoogle Scholar
Jessberger, E. K., Christoforidis, A., and Kissel, J. (1988). Aspects of the major element composition of Halley’s dust. Nature, 332(6166), 691695.CrossRefGoogle Scholar
Jewitt, D. (2004). Looking through the HIPPO: Nucleus and dust in comet 2P/Encke. The Astronomical Journal, 128, 30613069.CrossRefGoogle Scholar
Jockers, K. (1997). Observations of scattered light from cometary dust and their interpretation. Earth, Moon, and Planets, 79(1/3), 221245.CrossRefGoogle Scholar
Jockers, K., Bonev, T., Delva, M., Kiselev, N., and Petrova, E. (2001). The disintegration of comet C/1999 S4: Properties of cometary dust derived from narrow-band images of its color and polarization. Astronomishe Gesellschaft, Abstract Series, 18(139).Google Scholar
Jockers, K., Kiselev, N., Bonev, T.et al. (2005). CCD imaging and aperture polarimetry of comet 2P/Encke: Are there two polarimetric classes of comets?Astronomy and Astrophysics, 441, 773782.CrossRefGoogle Scholar
Jones, T. J. and Gehrz, R. D. (2000). Infrared imaging polarimetry of comet C/1995 01 (Hale–Bopp). Icarus, 143(2), 338346.CrossRefGoogle Scholar
Jones, T. J., Stark, D., Woodward, C. E.et al. (2008). Evidence of fragmenting dust particles from near-simultaneous optical and near-infrared photometry and polarimetry of comet 73P/Schwassmann–Wachmann 3. The Astronomical Journal, 135(4), 13181327.CrossRefGoogle Scholar
Joshi, U. C., Sen, A. K., Deshpande, M. R., and Chauhan, J. S. (1992). Photopolarimetric studies of Comet Austin. Journal of Astrophysics & Astronomy, 13(3), 267277.CrossRefGoogle Scholar
Joshi, U. C., Ganesh, S., and Baliyan, K. S. (2010). Optical polarimetry and photometry of comet 17P/Holmes. Monthly Notices of the Royal Astronomical Society, 402, 27442752.CrossRefGoogle Scholar
Kearsley, A. T., Borg, J., Graham, G. A.et al. (2008). Dust from comet Wild 2: Interpreting particle size, shape, structure, and composition from impact features on the Stardust aluminum foils. Meteoritics and Planetary Science, 43(1–2), 4173.CrossRefGoogle Scholar
Kelley, M. S., Jones, T. J., Reach, W. T., and Johnson, J. (2004). Near-infrared polarimetry and photometry of recent comets. The Astronomical Journal, 127(4), 23982405.CrossRefGoogle Scholar
Kelley, M. S., Woodward, C. E., and Jones, T. J. (2005). Polarimetry of comets in the near-IR. In Astronomical Polarimetry: Current Status and Future Directions, ASP Conference Series, Vol. 343. San Francisco, USA: Astronomical Society of the Pacific, p. 192.Google Scholar
Kikuchi, S. (2006). Linear polarization of five comets. Journal of Quantitative Spectroscopy and Radiative Transfer, 100, 179186.CrossRefGoogle Scholar
Kimura, H. (2001). Light-scattering properties of fractal aggregates: Numerical calculations by a superposition technique and discrete dipole approximation. Journal of Quantitative Spectroscopy and Radiative Transfer, 70, 581594.CrossRefGoogle Scholar
Kimura, H. and Mann, I. (2004). Light scattering by large clusters of dipoles as an analog for cometary dust aggregates. Journal of Quantitative Spectroscopy and Radiative Transfer, 89, 155164.CrossRefGoogle Scholar
Kimura, H., Kolokolova, L., and Mann, I. (2003). Optical properties of cometary dust: Constraints from numerical studies on light scattering by aggregate particles. Astronomy and Astrophysics, 407, L5L8.CrossRefGoogle Scholar
Kimura, H., Kolokolova, L., and Mann, I. (2006). Light scattering by cometary dust numerically simulated with aggregate particles consisting of identical spheres. Astronomy and Astrophysics, 449, 12431254.CrossRefGoogle Scholar
Kiselev, N. N. (1981). Polarimetric and photometric studies of comets, Ph.D. thesis, Dushanbe, 239 pp.
Kiselev, N. N. (2003). Light scattering by dust particles of comets, asteroids, and circumstellar shells: Observations and interpretation. Doctor degree thesis, Kharkiv National University, Kharkiv, 338 pp.
Kiselev, N. N. and Chernova, G. P. (1976). On a possible new version of the polarization–phase relation for comets. Astronomicheskij Tsirkulyar, 931, 57.Google Scholar
Kiselev, N. N. and Chernova, G. P. (1978). Polarization of the radiation of comet West, 1975n. Soviet Astronomy, 22, 607611.Google Scholar
Kiselev, N. N. and Chernova, G. P. (1979). Photometry and polarimetry during flares of comet Schwassmann–Wachmann I. Soviet Astronomy Letters, 5, 156159.Google Scholar
Kiselev, N. N. and Chernova, G. P. (1981). Phase functions of polarization and brightness and the nature of cometary atmosphere particles. Icarus, 48, 473481.CrossRefGoogle Scholar
Kiselev, N. and Rosenbush, V. (2004). Polarimetry of comets: Progress and problems. In Videen, G., Yatskiv, Ya., and Mishchenko, M., eds., Photopolarimetry in Remote Sensing. Dordrecht, The Netherlands: Kluwer Academic Publishers, pp. 411430.Google Scholar
Kiselev, N. and Velichko, F. (1997). Aperture polarimetry and photometry of comet Hale–Bopp. Earth, Moon, and Planets, 78, 347352.CrossRefGoogle Scholar
Kiselev, N. and Velichko, F. (1998). Polarimetry and photometry of comet C/1996 B2 Hyakutake. Icarus, 133, 286292.CrossRefGoogle Scholar