Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-ms7nj Total loading time: 0.506 Render date: 2022-08-13T01:21:51.425Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

10 - Magnetospheric models

Published online by Cambridge University Press:  27 October 2009

Get access

Summary

Theoretical ideas concerning Jovian magnetospheric phenomena are at least as diverse as the phenomena themselves, and there presently exists no single comprehensive model that encompasses all known phenomena within a unified theoretical framework. We identify here a number of important theoretical concepts, some subset of which (together with perhaps others yet unidentified) will ultimately provide the elements of such a comprehensive model. A number of ideas have been advanced to account for the copious plasma source associated with Io, but none of these has yet accounted satisfactorily for both the magnitude and the morphology of the inferred source. Nevertheless, given the observed fact that Io supplies the bulk of the magnetospheric plasma mass, and the corollary that the net plasma transport is predominantly outward, it follows that the rotational energy of Jupiter is an important if not dominant source of energy for magnetospheric phenomena. This rotational energy is expended in a variety of phenomena, including the electrodynamic Io-Jupiter interaction and associated radio and auroral emissions, the acceleration of charged particles to MeV energies, and the generation of a wide variety of spin-periodic phenomena as observed both remotely and in situ. The spin periodicities observed within the magnetosphere can be explained for the most part as resulting from the diurnal wobble of the magnetospheric current sheet caused by the offset between Jupiter's magnetic dipole axis and its spin axis. However, remotely observed spin periodicities (the “pulsar” phenomena) apparently require the existence of an intrinsic longitudinal asymmetry in the Jovian magnetosphere that corotates with Jupiter.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
210
Cited by

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×