Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-4k54s Total loading time: 0.365 Render date: 2021-11-26T23:49:30.199Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

20 - Thermodynamics of Nanomaterials

from Part III - Types of Phase Transformations

Published online by Cambridge University Press:  24 April 2020

Brent Fultz
Affiliation:
California Institute of Technology
Get access

Summary

Here nanomaterials are defined as materials with structural features of approximately 10 nm or smaller, i.e., tens of atoms across. Unique physical properties of nanomaterials originate from one or two of their essential features: (1) nanomaterials have high surface-to-volume ratios, and a large fraction of atoms located at, or near, surfaces; (2) nanomaterials confine electrons, phonons, excitons, or polarons to relatively small volumes, altering their energies. Chapter 20 focuses on the thermodynamic functions of nanostructures that determine whether a nanostructure can be synthesized, or if a nanostructure is adequately stable at a modest temperature. The internal energy of nanomaterials is increased by the surfaces, interfaces, or large composition gradients. A nanostructured material generally has a higher entropy than bulk material, however, and at finite temperature the entropy contribution to the free energy can help to offset the higher internal energy term in the free energy F = ETS. Chapter 20 discusses the structure of nanomaterials, the thermodynamics of interfaces in nanostructures, electron states in nanostructures, and the entropy of nanostructures.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Send book to Kindle

To send this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Send book to Dropbox

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Dropbox.

Available formats
×

Send book to Google Drive

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Google Drive.

Available formats
×