Skip to main content Accessibility help
×
Home
Hostname: page-component-dc8c957cd-k7f5t Total loading time: 0.268 Render date: 2022-01-29T02:42:18.535Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

16 - Spinodal Decomposition

from Part III - Types of Phase Transformations

Published online by Cambridge University Press:  24 April 2020

Brent Fultz
Affiliation:
California Institute of Technology
Get access

Summary

Spinodal decomposition of a solid solution begins with infinitesimally small changes in composition. Nevertheless, there is an energy cost for gradients in composition, specifically the square of the gradient. This “square gradient energy” is an important new concept presented in this chapter, and it is also essential to phase field theory (Chapter 17). An unstable free energy function is a conceptual challenge, but it proves useful for short times. Taking a kinetic approach, the thermodynamic tendencies near equilibrium are used to obtain a chemical potential to drive the diffusion flux of spinodal unmixing. This chapter follows the classic approach of John Cahn by adding a term to the free energy that includes the square of the composition gradient. Lagrange multipliers are used in the diffusion equation for the chemical potential, and compositional unmixing is described by Fourier transformation. There is also an elastic energy that increases with the extent of unmixing, and gives the “coherent spinodal” on the unmixing phase diagram.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Send book to Kindle

To send this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Spinodal Decomposition
  • Brent Fultz, California Institute of Technology
  • Book: Phase Transitions in Materials
  • Online publication: 24 April 2020
  • Chapter DOI: https://doi.org/10.1017/9781108641449.020
Available formats
×

Send book to Dropbox

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Dropbox.

  • Spinodal Decomposition
  • Brent Fultz, California Institute of Technology
  • Book: Phase Transitions in Materials
  • Online publication: 24 April 2020
  • Chapter DOI: https://doi.org/10.1017/9781108641449.020
Available formats
×

Send book to Google Drive

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Google Drive.

  • Spinodal Decomposition
  • Brent Fultz, California Institute of Technology
  • Book: Phase Transitions in Materials
  • Online publication: 24 April 2020
  • Chapter DOI: https://doi.org/10.1017/9781108641449.020
Available formats
×