Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-7mfl8 Total loading time: 0.262 Render date: 2021-12-03T11:48:27.898Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

17 - Phase Field Theory

from Part III - Types of Phase Transformations

Published online by Cambridge University Press:  24 April 2020

Brent Fultz
Affiliation:
California Institute of Technology
Get access

Summary

Phase field theory treats the phases in materials as fields inside a material, as opposed to tracking the motions of interfaces during phase transformations. The interface sharpness is determined by a balance between bulk free energies and the square gradients of the fields. Treating phases as fields has advantages for the computational materials science of microstructural evolution, and some kinetic mechanisms are described. The different equations for the evolution of a conserved order parameter (e.g., composition) and a nonconserved order parameter (e.g., spin orientation) are discussed. The structure of an interface, especially its width, is analyzed for the typical case of an antiphase domain boundary. The Ginzburg–Landau equation is presented, and the effects of curvature on interface stability are discussed. Some aspects of the dynamics of domain growth are described.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Send book to Kindle

To send this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Phase Field Theory
  • Brent Fultz, California Institute of Technology
  • Book: Phase Transitions in Materials
  • Online publication: 24 April 2020
  • Chapter DOI: https://doi.org/10.1017/9781108641449.021
Available formats
×

Send book to Dropbox

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Dropbox.

  • Phase Field Theory
  • Brent Fultz, California Institute of Technology
  • Book: Phase Transitions in Materials
  • Online publication: 24 April 2020
  • Chapter DOI: https://doi.org/10.1017/9781108641449.021
Available formats
×

Send book to Google Drive

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Google Drive.

  • Phase Field Theory
  • Brent Fultz, California Institute of Technology
  • Book: Phase Transitions in Materials
  • Online publication: 24 April 2020
  • Chapter DOI: https://doi.org/10.1017/9781108641449.021
Available formats
×