Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-lrf7s Total loading time: 0 Render date: 2024-07-28T16:37:13.263Z Has data issue: false hasContentIssue false

10 - Local anaesthetics

Published online by Cambridge University Press:  01 June 2010

Tom E. Peck
Affiliation:
Royal Hampshire County Hospital, Winchester
Sue Hill
Affiliation:
Southampton University Hospital
Tom Peck
Affiliation:
Consultant Anaesthetist, Royal Hampshire County Hospital, Winchester
Mark Williams
Affiliation:
Consultant Anaesthetist, Royal Perth Hospital, Australia
Get access

Summary

Physiology

Individual nerve fibres are made up of a central core (axoplasm) and a phospholipid membrane containing integral proteins, some of which function as ion channels.

The resting membrane potential

The neuronal membrane contains the enzyme Na+/K+ ATPase that actively maintains a thirty fold K+ concentration gradient (greater concentration inside) and a ten fold Na+ concentration gradient (greater concentration outside). K+ tends to flow down its concentration gradient out of the cell due to the selective permeability of the membrane. However, intracellular anionic proteins tend to oppose this ionic flux, and the balance of these processes results in the resting membrane potential of −80 mV (negative inside). It can, therefore, be seen that the ratio of intracellular to extracellular K+ alters the resting membrane potential. Hypokalaemia increases (makes more negative) the resting membrane potential while the Na+ concentration has little effect, as the membrane is essentially impermeable to Na+ when in the resting state.

The action potential

The action potential is generated by altered Na+ permeability across the phospholipid membrane and lasts only 1–2 milliseconds. Electrical or chemical triggers initially cause a slow rise in membrane potential until the threshold potential (about −50 mV) is reached. Voltage sensitive Na+ channels then open, increasing Na+ permeability dramatically and the membrane potential briefly reaches +30 mV (approaching the Na+ equilibrium potential of +67 mV) at which point the Na+ channels close. The membrane potential returns to its resting value with an increased efflux of K+.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Local anaesthetics
    • By Tom Peck, Consultant Anaesthetist, Royal Hampshire County Hospital, Winchester, Mark Williams, Consultant Anaesthetist, Royal Perth Hospital, Australia
  • Tom E. Peck, Sue Hill
  • Book: Pharmacology for Anaesthesia and Intensive Care
  • Online publication: 01 June 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511722172.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Local anaesthetics
    • By Tom Peck, Consultant Anaesthetist, Royal Hampshire County Hospital, Winchester, Mark Williams, Consultant Anaesthetist, Royal Perth Hospital, Australia
  • Tom E. Peck, Sue Hill
  • Book: Pharmacology for Anaesthesia and Intensive Care
  • Online publication: 01 June 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511722172.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Local anaesthetics
    • By Tom Peck, Consultant Anaesthetist, Royal Hampshire County Hospital, Winchester, Mark Williams, Consultant Anaesthetist, Royal Perth Hospital, Australia
  • Tom E. Peck, Sue Hill
  • Book: Pharmacology for Anaesthesia and Intensive Care
  • Online publication: 01 June 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511722172.012
Available formats
×