Book contents
- Pediatric Nephropathology & Childhood Kidney Tumors
- Diagnostic Pediatric Pathology
- Pediatric Nephropathology & Childhood Kidney Tumors
- Copyright page
- Dedication
- Contents
- Contributors
- Preface
- Section 1 Normal and Abnormal Human Kidney Development
- Section 2 Glomerular Diseases
- Section 3 Tubulointerstitial Diseases
- Section 4 Vascular Diseases
- Section 5 Infectious Diseases
- Section 6 Cystic Diseases
- Section 7 Solid Tumors of the Kidney
- Section 8 Transplant Pathology of the Kidney
- Index
- References
Section 7 - Solid Tumors of the Kidney
Published online by Cambridge University Press: 10 August 2023
Edited by
Book contents
- Pediatric Nephropathology & Childhood Kidney Tumors
- Diagnostic Pediatric Pathology
- Pediatric Nephropathology & Childhood Kidney Tumors
- Copyright page
- Dedication
- Contents
- Contributors
- Preface
- Section 1 Normal and Abnormal Human Kidney Development
- Section 2 Glomerular Diseases
- Section 3 Tubulointerstitial Diseases
- Section 4 Vascular Diseases
- Section 5 Infectious Diseases
- Section 6 Cystic Diseases
- Section 7 Solid Tumors of the Kidney
- Section 8 Transplant Pathology of the Kidney
- Index
- References
Summary
A summary is not available for this content so a preview has been provided. Please use the Get access link above for information on how to access this content.
- Type
- Chapter
- Information
- Pediatric Nephropathology & Childhood Kidney Tumors , pp. 299 - 340Publisher: Cambridge University PressPrint publication year: 2023
References
Breslow, N., Olshan, A., Beckwith, J. B., Green, D. M.. Epidemiology of Wilms tumor. Medical and Pediatric Oncology 1993; 21: 172–81.Google Scholar
Raffensperger, J.. Max Wilms and his tumor. Journal of Pediatric Surgery 2015; 50: 356–9.CrossRefGoogle ScholarPubMed
Irtan, S., Ehrlich, P. F., Pritchard-Jones, K.. Wilms tumor: “state-of-the-art” update, 2016. Seminars in Pediatric Surgery 2016; 25: 250–6.CrossRefGoogle Scholar
Dome, J. S., Graf, N., Geller, J. I., Fernandez, C. V., Mullen, E. A., Spreafico, F., et al. Advances in Wilms tumor treatment and biology: progress through international collaboration. Journal of Clinical Oncology 2015; 33: 2999–3007.Google Scholar
Perlman, E.. Pediatric renal tumors: practical updates for the pathologist. Pediatric and Developmental Pathology 2005; 8: 320–38.CrossRefGoogle ScholarPubMed
Graf, N., Tournade, M. F., de Kraker, J.. The role of preoperative chemotherapy in the management of Wilms’ tumor. The SIOP studies. International Society of Pediatric Oncology. Urologic Clinics of North America 2000; 27: 443–54.Google Scholar
De Kraker, J., Graf, N., Pritchard-Jones, K., Pein, F.. Nephroblastoma clinical trial and study SIOP 2001, Protocol. SIOP-RTSG 2001.Google Scholar
Vujanić, G. M., Gessler, M., Ooms, A. H. A. G., Collini, P., Coulomb-l’Hermine, A., D’Hooghe, E., et al. The UMBRELLA SIOP–RTSG 2016 Wilms tumour pathology and molecular biology protocol. Nature Reviews. Urology 2018; 15: 693–701.Google Scholar
Dome, J. S., Perlman, E. J., Graf, N.. Risk stratification for Wilms tumor: current approach and future directions. American Society of Clinical Oncology Educational Book 2014; 215–23.Google Scholar
van den Heuvel-Eibrink, M. M., Hol, J. A., Pritchard-Jones, K., van Tinteren, H., Furtwängler, R., Verschuur, A. C., et al. Rationale for the treatment of Wilms tumour in the UMBRELLA SIOP–RTSG 2016 protocol. Nature Reviews. Urology 2017; 14: 743–52.Google Scholar
Fernandez, C., Perlman, E., Mullen, E., Chi, Y., Hamilton, T., Gow, K., et al. Clinical outcome and biological predictors of relapse after nephrectomy only for very low-risk Wilms tumor: a report from Children’s Oncology Group AREN0532. Annals of Surgery 2017; 265: 835–40.Google Scholar
Mitry, E., Ciccolallo, L., Coleman, M. P., Gatta, G., Pritchard-Jones, K.. Incidence of and survival from Wilms’ tumour in adults in Europe: data from the EUROCARE study. European Journal of Cancer 2006; 42: 2363–8.Google Scholar
Ehrlich, P., Chi, Y. Y., Chintagumpala, M. M., Hoffer, F. A., Perlman, E. J., Kalapurakal, J. A., et al. Results of the first prospective multi-institutional treatment study in children with bilateral Wilms tumor (AREN0534): a report from the Children’s Oncology Group. Annals of Surgery 2017; 266: 470–8.Google Scholar
Thakkar, N. C., Sarin, Y. K.. Extra-renal Wilms’ tumor: a rare diagnosis. APSP Journal of Case Reports 2015; 6: 17.Google Scholar
Treger, T. D., Chowdhury, T., Pritchard-Jones, K., Behjati, S.. The genetic changes of Wilms tumour. Nature Reviews. Nephrology 2019; 15: 240–51.Google Scholar
Scott, R. H., Stiller, C. A., Walker, L., Rahman, N.. Syndromes and constitutional chromosomal abnormalities associated with Wilms tumour. Journal of Medical Genetics 2006; 43: 705–15.Google Scholar
Merks, J. H. M., Caron, H. N., Hennekam, R. C. M.. High incidence of malformation syndromes in a series of 1,073 children with cancer. American Journal of Medical Genetics. Part A 2005; 134A: 132–43.Google Scholar
Call, K. M., Glaser, T., Ito, C. Y., Buckler, A. J., Pelletier, J., Haber, D. A., et al. Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms’ tumor locus. Cell 1990; 60: 509–20.Google Scholar
Little, S. E., Hanks, S. P., King-Underwood, L., Jones, C., Rapley, E. A., Rahman, N., et al. Frequency and heritability of WT1 mutations in nonsyndromic Wilms’ tumor patients: a UK Children’s Cancer Study Group Study. Journal of Clinical Oncology 2004; 22: 4140–6.Google Scholar
Breslow, N. E., Beckwith, J. B., Perlman, E. J., Reeve, A. E.. Age distributions, birth weights, nephrogenic rests, and heterogeneity in the pathogenesis of Wilms tumor. Pediatric Blood & Cancer 2006; 47: 260–7.CrossRefGoogle ScholarPubMed
Riccardi, V. M., Sujansky, E., Smith, A. C., Francke, U.. Chromosomal imbalance in the aniridia-Wilms’ tumor association: 11p interstitial deletion. Pediatrics 1978; 61: 604–10.CrossRefGoogle ScholarPubMed
Green, D. M., Breslow, N. E., Beckwith, J. B., Norkool, P.. Screening of children with hemihypertrophy, aniridia, and Beckwith‐Wiedemann syndrome in patients with Wilms tumor: a report from the National Wilms Tumor Study. Medical and Pediatric Oncology 1993; 21: 188–92.CrossRefGoogle ScholarPubMed
Breslow, N. E., Norris, R., Norkool, P. A., Kang, T., Beckwith, J. B., Perlman, E. J., et al. Characteristics and outcomes of children with the Wilms tumor-aniridia syndrome: a report from the National Wilms Tumor Study Group. Journal of Clinical Oncology 2003; 21: 4579–85.CrossRefGoogle ScholarPubMed
Xu, S., Han, J. C., Morales, A., Menzie, C. M., Williams, K., Fan, Y. -S.. Characterization of 11p14-p12 deletion in WAGR syndrome by array CGH for identifying genes contributing to mental retardation and autism. Cytogenetic and Genome Research 2008; 122: 181–7.CrossRefGoogle ScholarPubMed
Royer‐Pokora, B., Beier, M., Henzler, M., Alam, R., Schumacher, V., Weirich, A., et al. Twenty‐four new cases of WT1 germline mutations and review of the literature: genotype/phenotype correlations for Wilms tumor development. American Journal of Medical Genetics. Part A 2004; 127A: 249–57.Google Scholar
Demmer, L., Primack, W., Loik, V., Brown, R., Therville, N., McElreavey, K.. Frasier syndrome: a cause of focal segmental glomerulosclerosis in a 46,XX female. Journal of the American Society of Nephrology 1999; 10: 2215–8.CrossRefGoogle Scholar
Charles, A. K., Brown, K. W., Berry, P. J.. Microdissecting the genetic events in nephrogenic rests and Wilms’ tumor development. The American Journal of Pathology 1998; 153: 991–1000.CrossRefGoogle ScholarPubMed
Rump, P., Zeegers, M., van Essen, A. J.. Tumor risk in Beckwith-Wiedemann syndrome: a review and meta-analysis. American Journal of Medical Genetics. Part A 2005; 136A: 95–104.CrossRefGoogle Scholar
Morris, M. R., Astuti, D., Maher, E. R.. Perlman syndrome: overgrowth, Wilms tumor predisposition and DIS3L2. American Journal of Medical Genetics. Part C, Seminars in Medical Genetics 2013; 163C: 106.Google Scholar
Gripp, K. W., Baker, L., Kandula, V., Conard, K., Scavina, M., Napoli, J. A., et al. Nephroblastomatosis or Wilms tumor in a fourth patient with a somatic PIK3CA mutation. American Journal of Medical Genetics. Part A 2016; 170: 2559–69.CrossRefGoogle ScholarPubMed
Gadd, S., Huff, V., Walz, A. L., Ooms, A. H. A. G., Armstrong, A. E., Gerhard, D. S., et al. A Children’s Oncology Group and TARGET initiative exploring the genetic landscape of Wilms tumor. Nature Genetics 2017; 49: 1487–94.CrossRefGoogle ScholarPubMed
Mahamdallie, S., Yost, S., Poyastro-Pearson, E., Holt, E., Zachariou, A., Seal, S., et al. Identification of new Wilms tumour predisposition genes: an exome sequencing study. The Lancet Child & Adolescent Health 2019; 3: 322–31.Google Scholar
Gratias, E. J., Jennings, L. J., Anderson, J. R., Dome, J. S., Grundy, P., Perlman, E. J.. Gain of 1q is associated with inferior event‐free and overall survival in patients with favorable histology Wilms tumor: a report from the Children’s Oncology Group. Cancer 2013; 119: 3887–94.CrossRefGoogle ScholarPubMed
Chagtai, T., Zill, C., Dainese, L., Wegert, J., Savola, S., Popov, S., et al. Gain of 1q as a prognostic biomarker in Wilms tumors (WTs) treated with preoperative chemotherapy in the International Society of Paediatric Oncology (SIOP) WT 2001 Trial: a SIOP Renal Tumours Biology Consortium Study. Journal of Clinical Oncology 2016; 34: 3195–203.CrossRefGoogle Scholar
Grundy, P. E., Breslow, N. E., Li, S., Perlman, E., Beckwith, J. B., Ritchey, M. L., et al. Loss of heterozygosity for chromosomes 1p and 16q is an adverse prognostic factor in favorable-histology Wilms tumor: a report from the National Wilms Tumor Study Group. Journal of Clinical Oncology 2005; 23: 7312–21.Google Scholar
Gratias, E. J., Dome, J. S., Jennings, L. J., Chi, Y., Tian, J., Anderson, J., et al. Association of chromosome 1q gain with inferior survival in favorable-histology Wilms tumor: a report from the Children’s Oncology Group. Journal of Clinical Oncology 2016; 34: 3189–94.Google Scholar
Scott, R. H., Murray, A., Baskcomb, L., Turnbull, C., Loveday, C., Al-Saadi, R., et al. Stratification of Wilms tumor by genetic and epigenetic analysis. Oncotarget 2012; 3: 327–35.CrossRefGoogle ScholarPubMed
Koesters, R., Ridder, R., Kopp-Schneider, A., Betts, D., Adams, V., Niggli, F., et al. Mutational activation of the β-catenin proto-oncogene is a common event in the development of Wilms’ tumors. Cancer Research 1999; 59: 3880–2.Google Scholar
Ooms, A. H. A. G., Gadd, S., Gerhard, D. S., Smith, M. A., Guidry Auvil, J. M., Meerzaman, D., et al. Significance of TP53 mutation in Wilms tumors with diffuse anaplasia: a report from the Children’s Oncology Group. Clinical Cancer Research 2016; 22: 5582–91.Google Scholar
Williams, R. D., Chagtai, T., Alcaide-German, M., Apps, J., Wegert, J., Popov, S., et al. Multiple mechanisms of MYCN dysregulation in Wilms tumour. Oncotarget 2015; 6: 7232.CrossRefGoogle ScholarPubMed
Wegert, J., Ishaque, N., Vardapour, R., Geörg, C., Gu, Z., Bieg, M., et al. Mutations in the SIX1/2 pathway and the DROSHA/DGCR8 miRNA microprocessor complex underlie high-risk blastemal type Wilms tumors. Cancer Cell 2015; 27: 298–311.Google Scholar
Armstrong, A. E., Gadd, S., Huff, V., Gerhard, D. S., Dome, J. S., Perlman, E. J.. A unique subset of low-risk Wilms tumors is characterized by loss of function of TRIM28 (KAP1), a gene critical in early renal development: a Children’s Oncology Group study. PLoS ONE 2018; 13: e0208936.CrossRefGoogle ScholarPubMed
Green, D. M.. Diagnosis and Management of Malignant Solid Tumors in Infants and Children. Boston: Springer, 1985.Google Scholar
Hötker, A. M., Lollert, A., Mazaheri, Y., Müller, S., Schenk, J., Mildenberger, P. C., et al. Diffusion-weighted MRI in the assessment of nephroblastoma: results of a multi-center trial. Abdominal Radiology 2020; 45: 3202–12.Google Scholar
Shamberger, R. C., Guthrie, K. A., Ritchey, M. L., Haase, G. M., Takashima, J., Beckwith, J. B., et al. Surgery-related factors and local recurrence of Wilms tumor in National Wilms Tumor Study 4. Annals of Surgery 1999; 229: 292–7.CrossRefGoogle ScholarPubMed
Irtan, S., Jitlal, M., Bate, J., Powis, M., Vujanic, G., Kelsey, A., et al. Risk factors for local recurrence in Wilms tumour and the potential influence of biopsy – The United Kingdom experience. European Journal of Cancer 2015; 51: 225–32.CrossRefGoogle ScholarPubMed
Hamilton, T. E., Green, D. M., Perlman, E. J., Argani, P., Grundy, P., Ritchey, M. L., et al. Bilateral Wilms’ tumor with anaplasia: lessons from the National Wilms’ Tumor Study. Journal of Pediatric Surgery 2006; 41: 1641–4.CrossRefGoogle ScholarPubMed
Vujanić, G. M., Sandstedt, B.. The pathology of Wilms’ tumour (nephroblastoma): the International Society of Paediatric Oncology approach. Journal of Clinical Pathology 2010; 63: 102–9.CrossRefGoogle ScholarPubMed
Murphy, A. J., Bishop, K., Pereira, C., Chilton-MacNeill, S., Ho, M., Zielenska, M., et al. A new molecular variant of desmoplastic small round cell tumor: significance of WT1 immunostaining in this entity. Human Pathology 2008; 39: 1763–70.Google Scholar
Ooms, A. H. A. G., Vujanić, G. M., D’Hooghe, E., Collini, P., L’Herminé-Coulomb, A., Vokuhl, C., et al. Renal tumors of childhood – a histopathologic pattern-based diagnostic approach. Cancers 2020; 12: 729.Google Scholar
Beckwith, J. B., Palmer, N. F.. Histopathology and prognosis of Wilms tumor: results from the First National Wilms’ Tumor Study. Cancer 1978; 41: 1937–48.3.0.CO;2-U>CrossRefGoogle ScholarPubMed
Faria, P., Beckwith, J. B., Mishra, K., Zuppan, C., Weeks, D. A., Breslow, N., et al. Focal versus diffuse anaplasia in Wilms tumor—new definitions with prognostic significance: a report from the National Wilms Tumor Study Group. The American Journal of Surgical Pathology 1996; 20: 909–20.Google Scholar
D’Hooghe, E., Mifsud, W., Vujanić, G.. “Teratoid” Wilms tumor: the extreme end of heterologous element differentiation, not a separate entity. The American Journal of Surgical Pathology 2019; 43: 1583–90.CrossRefGoogle Scholar
Popov, S. D., Sebire, N. J., Pritchard-Jones, K., Vujanić, G. M.. Renal tumors in children aged 10–16 years: a report from the United Kingdom Children’s Cancer and Leukaemia Group. Pediatric and Developmental Pathology 2011; 14: 189–93.CrossRefGoogle Scholar
Doros, L. A., Rossi, C. T., Yang, J., Field, A., Williams, G. M., Messinger, Y., et al. DICER1 mutations in childhood cystic nephroma and its relationship to DICER1-renal sarcoma. Modern Pathology 2014; 27: 1267–80.Google Scholar
Joshi, V. V., Beckwith, J. B.. Multilocular cyst of the kidney (cystic nephroma) and cystic, partially differentiated nephroblastoma. Terminology and criteria for diagnosis. Cancer 1989; 64: 466–79.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Callaghan, M. U., Wong, T. E., Federici, A. B.. Treatment of acquired von Willebrand syndrome in childhood. Blood 2013; 122: 2019–22.Google Scholar
Beckwith, J. B.. Precursor lesions of Wilms tumor: clinical and biological implications. Medical and Pediatric Oncology 1993; 21: 158–68.CrossRefGoogle ScholarPubMed
Coppes, M. J., Arnold, M., Beckwith, J. B., Ritchey, M. L., D’Angio, G. J., Green, D. M., et al. Factors affecting the risk of contralateral Wilms tumor development. Cancer 1999; 85: 1616–25.3.0.CO;2-4>CrossRefGoogle ScholarPubMed
Perlman, E. J., Faria, P., Soares, A., Hoffer, F., Sredni, S., Ritchey, M., et al. Hyperplastic perilobar nephroblastomatosis: long‐term survival of 52 patients. Pediatric Blood & Cancer 2006; 46: 203–21.Google Scholar
Kieran, K., Ehrlich, P. F.. Current surgical standards of care in Wilms tumor. Urologic Oncology 2016; 34: 13–23.CrossRefGoogle ScholarPubMed
Brok, J., Treger, T. D., Gooskens, S. L., van den Heuvel-Eibrink, M. M., Pritchard-Jones, K.. Biology and treatment of renal tumours in childhood. European Journal of Cancer 2016; 68: 179–95.Google Scholar
Gleason, J. M., Lorenzo, A. J., Bowlin, P. R., Koyle, M. A.. Innovations in the management of Wilms’ tumor. Therapeutic Advances in Urology 2014 ; 6: 165–76.CrossRefGoogle ScholarPubMed
Reinhard, H., Schmidt, A., Furtwängler, R., Leuschner, I., Rübe, C., Von Schweinitz, D., et al. Outcome of relapses of nephroblastoma in patients registered in the SIOP/GPOH trials and studies. Oncology Reports 2008; 20: 463–7.Google Scholar
Kehl, T., Schneider, L., Kattler, K., Stöckel, D., Wegert, J., Gerstner, N., et al. The role of TCF3 as potential master regulator in blastemal Wilms tumors. International Journal of Cancer 2019; 144: 1432–43.CrossRefGoogle ScholarPubMed
Treger, T. D., Chagtai, T., Butcher, R., Cresswell, G. D., Al-Saadi, R., Brok, J., et al. Somatic TP53 mutations are detectable in circulating tumor DNA from children with anaplastic Wilms tumors. Translational Oncology 2018; 11: 1301–6.Google Scholar
Luithle, T., Szavay, P., Furtwängler, R., Graf, N., Fuchs, J.. Treatment of cystic nephroma and cystic partially differentiated nephroblastoma—a report from the SIOP/GPOH Study Group. The Journal of Urology 2007; 177: 294–6.Google Scholar
Brown, J. M.. Cystic partially differentiated nephroblastoma. The Journal of Pathology 1975; 115: 175–8.Google Scholar
Stout, T. E., Au, J. K., Hicks, J. M., Gargollo, P. C.. A case of bilateral cystic partially differentiated nephroblastoma vs cystic Wilms’ tumor: highlighting a diagnostic dilemma. Urology 2016; 92: 106–9.Google Scholar
Joshi, V. V., Banerjee, A. K., Yadav, K., Pathak, I. C.. Cystic partially differentiated nephroblastoma: a clinicopathologic entity in the spectrum of infantile renal neoplasia. Cancer 1977; 40: 789–95.Google Scholar
Wu, M. K., Cotter, M. B., Pears, J., McDermott, M. B., Fabian, M. R., Foulkes, W. D., et al. Tumor progression in DICER1-mutated cystic nephroma – witnessing the genesis of anaplastic sarcoma of the kidney. Human Pathology 2016; 53: 114–20.Google Scholar
Bruce-Brand, C., Reyes-Múgica, M., van Zyl, A., Schubert, P. T.. Cystic partially differentiated nephroblastoma-like lesion following neo-adjuvant chemotherapy for nephroblastoma: a case report and review of the literature. Human Pathology: Case Reports 2020; 20: 200368.Google Scholar
Kurian, J. J., Ninan, P. J.. A rare case of bilateral cystic partially differentiated nephroblastoma recurring as bilateral cystic Wilms tumour. BMJ Case Reports 2015; 2015: bcr2015209771.Google Scholar
Blakely, M. L., Shamberger, R. C., Norkool, P., Beckwith, J. B., Green, D. M., Ritchey, M. L.. Outcome of children with cystic partially differentiated nephroblastoma treated with or without chemotherapy. Journal of Pediatric Surgery 2003; 38: 897–900.CrossRefGoogle ScholarPubMed
Argani, P., Perlman, E. J., Breslow, N. E., Browning, N. G., Green, D. M., D’Angio, G. J., et al. Clear cell sarcoma of the kidney: a review of 351 cases from the National Wilms tumor Study Group pathology center. The American Journal of Surgical Pathology 2000; 24: 4–18.Google Scholar
Ueno-Yokohata, H., Okita, H., Nakasato, K., Akimoto, S., Hata, J., Koshinaga, T., et al. Consistent in-frame internal tandem duplications of BCOR characterize clear cell sarcoma of the kidney. Nature Genetics 2015; 47: 861–3.Google Scholar
O’Meara, E., Stack, D., Lee, C., Garvin, A. J., Morris, T., Argani, P., et al. Characterization of the chromosomal translocation t(10;17)(q22;p13) in clear cell sarcoma of kidney. The Journal of Pathology 2012; 227: 72–80.Google Scholar
Kenny, C., Bausenwein, S., Lazaro, A., Furtwängler, R., Gooskens, S. L., van den Heuvel Eibrink, M., et al. Mutually exclusive BCOR internal tandem duplications and YWHAE‐NUTM2 fusions in clear cell sarcoma of kidney: not the full story. The Journal of Pathology 2016; 238: 617–20.Google Scholar
Kenny, C., McDonagh, N., Lazaro, A., O’Meara, E., Klinger, R., O’Connor, D., et al. Dysregulated mitogen‐activated protein kinase signalling as an oncogenic basis for clear cell sarcoma of the kidney. J Pathol 2018; 244: 334–45.Google Scholar
Ueno, H., Okita, H., Akimoto, S., Kobayashi, K., Nakabayashi, K., Hata, K., et al. DNA methylation profile distinguishes clear cell sarcoma of the kidney from other pediatric renal tumors. PLoS ONE 2013; 8: e62233.Google Scholar
Karlsson, J., Valind, A., Jansson, C., O’Sullivan, M. J., Mengelbier, L. H., Gisselsson, D.. Aberrant epigenetic regulation in clear cell sarcoma of the kidney featuring distinct DNA hypermethylation and EZH2 overexpression. Oncotarget 2016; 7: 11127–36.Google Scholar
Knezevich, S. R., Garnett, M. J., Pysher, T. J., Beckwith, J. B., Grundy, P. E., Sorensen, P. H. B.. ETV6-NTRK3 gene fusions and trisomy 11 establish a histogenetic link between mesoblastic nephroma and congenital fibrosarcoma. Cancer Research 1998; 58: 5046–8.Google Scholar
Tognon, C., Knezevich, S. R., Huntsman, D., Roskelley, C. D., Melnyk, N., Mathers, J. A., et al. Expression of the ETV6-NTRK3 gene fusion as a primary event in human secretory breast carcinoma. Cancer Cell 2002; 2: 367–76.CrossRefGoogle ScholarPubMed
Kralik, J. M., Kranewitter, W., Boesmueller, H., Marschon, R., Tschurtschenthaler, G., Rumpold, H., et al. Characterization of a newly identified ETV6-NTRK3 fusion transcript in acute myeloid leukemia. Diagnostic Pathology 2011; 6: 19.Google Scholar
Church, A. J., Calicchio, M. L., Nardi, V., Skalova, A., Pinto, A., Dillon, D. A., et al. Recurrent EML4–NTRK3 fusions in infantile fibrosarcoma and congenital mesoblastic nephroma suggest a revised testing strategy. Modern Pathology 2017; 31: 463–73.Google ScholarPubMed
Versteege, I., Sévenet, N., Lange, J., Rousseau-Merck, M., Ambros, P., Handgretinger, R., et al. Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature 1998; 394: 203–6.Google Scholar
Biegel, J. A., Zhou, J., Rorke, L. B., Stenstrom, C., Wainwright, L. M., Fogelgren, B.. Germ-line and acquired mutations of INI1 in atypical teratoid and rhabdoid tumors. Cancer Research 1999; 59: 74–9.Google Scholar
Schneppenheim, R., Frühwald, M. C., Gesk, S., Hasselblatt, M., Jeibmann, A., Kordes, U., et al. Germline nonsense mutation and somatic inactivation of SMARCA4/BRG1 in a family with rhabdoid tumor predisposition syndrome. American Journal of Human Genetics 2010; 86: 279–84.Google Scholar
Hasselblatt, M., Gesk, S., Oyen, F., Rossi, S., Viscardi, E., Giangaspero, F., et al. Nonsense mutation and inactivation of SMARCA4 (BRG1) in an atypical teratoid/rhabdoid tumor showing retained SMARCB1 (INI1) expression. The American Journal of Surgical Pathology 2011; 35: 933–5.Google Scholar
Witkowski, L., Lalonde, E., Zhang, J., Albrecht, S., Hamel, N., Cavallone, L., et al. Familial rhabdoid tumour ‘avant la lettre’—from pathology review to exome sequencing and back again. The Journal of Pathology 2013; 231: 35–43.Google Scholar
Sévenet, N., Sheridan, E., Amram, D., Schneider, P., Handgretinger, R., Delattre, O.. Constitutional mutations of the hSNF5/INI1 gene predispose to a variety of cancers. The American Journal of Human Genetics 1999; 65: 1342–8.CrossRefGoogle ScholarPubMed
Boyd, C., Smith, M. J., Kluwe, L., Balogh, A., MacCollin, M., Plotkin, S. R.. Alterations in the SMARCB1 (INI1) tumor suppressor gene in familial schwannomatosis. Clinical Genetics 2008; 74: 358–66.Google Scholar
Bacci, C., Sestini, R., Provenzano, A., Paganini, I., Mancini, I., Porfirio, B., et al. Schwannomatosis associated with multiple meningiomas due to a familial SMARCB1 mutation. Neurogenetics 2010; 11: 73–80.Google Scholar
Rousseau, G., Noguchi, T., Bourdon, V., Sobol, H., Olschwang, S.. SMARCB1/INI1 germline mutations contribute to 10% of sporadic schwannomatosis. BMC Neurology 2011; 11: 9.Google Scholar
Eaton, K. W., Tooke, L. S., Wainwright, L. M., Judkins, A. R., Biegel, J. A.. Spectrum of SMARCB1/INI1 mutations in familial and sporadic rhabdoid tumors. Pediatric Blood & Cancer 2011; 56: 7–15.Google Scholar
Ammerlaan, A., Ararou, A., Houben, M., Baas, F., Tijssen, C. C., Teepen, J., et al. Long-term survival and transmission of INI1-mutation via nonpenetrant males in a family with rhabdoid tumour predisposition syndrome. Br J Cancer 2008; 98: 474–9.Google Scholar
Hoot, A. C., Russo, P., Judkins, A. R., Perlman, E. J., Biegel, J. A.. Immunohistochemical analysis of hSNF5/INI1 distinguishes renal and extra-renal malignant rhabdoid tumors from other pediatric soft tissue tumors. The American Journal of Surgical Pathology 2004; 28: 1485–91.Google Scholar
Biegel, J. A., Tan, L., Zhang, F., Wainwright, L., Russo, P., Rorke, L. B.. Alterations of the hSNF5/INI1 gene in central nervous system atypical teratoid/rhabdoid tumors and renal and extrarenal rhabdoid tumors. Clinical Cancer Research 2002; 8: 3461–7.Google ScholarPubMed
Takahashi-Fujigasaki, J., Matumoto, M., Kan, I., Oka, H., Yasue, M.. Atypical teratoid/rhabdoid tumor with 26-year overall survival: case report. Journal of Neurosurgery: Pediatrics 2012; 9: 400–5.Google Scholar
Furtwängler, R., Nourkami-Tutdibi, N., Leuschner, I., Vokuhl, C., Niggli, F., Kager, L., et al. Malignant rhabdoid tumor of the kidney: significantly improved response to pre-operative treatment intensified with doxorubicin. Cancer Genetics 2014; 207: 434–6.Google Scholar
Kuwahara, Y., Wei, D., Durand, J., Weissman, B. E.. SNF5 reexpression in malignant rhabdoid tumors regulates transcription of target genes by recruitment of SWI/SNF complexes and RNAPII to the transcription start site of their promoters. Molecular Cancer Research 2013; 11: 251–60.Google Scholar
Tolstorukov, M. Y., Sansam, C. G., Lu, P., Koellhoffer, E. C., Helming, K. C., Alver, B. H., et al. Swi/Snf chromatin remodeling/tumor suppressor complex establishes nucleosome occupancy at target promoters. Proceedings of the National Academy of Sciences 2013; 110: 10165–70.CrossRefGoogle ScholarPubMed
Hargreaves, D. C., Crabtree, G. R.. ATP-dependent chromatin remodeling genetics, genomics and mechanisms. Cell Research 2011; 21: 396–420.Google Scholar
Nakayama, R. T., Pulice, J. L., Valencia, A. M., McBride, M. J., McKenzie, Z. M., Gillespie, M. A., et al. SMARCB1 is required for widespread BAF complex–mediated activation of enhancers and bivalent promoters. Nature Genetics 2017; 49: 1613–23.Google Scholar
Berdasco, M., Esteller, M.. Genetic syndromes caused by mutations in epigenetic genes. Human Genetics 2013; 132: 359–83.CrossRefGoogle ScholarPubMed
Banine, F., Bartlett, C., Gunawardena, R., Muchardt, C., Yaniv, M., Knudsen, E. S., et al. SWI/SNF chromatin-remodeling factors induce changes in DNA methylation to promote transcriptional activation. Cancer Research 2005; 65: 3542–7.Google Scholar
Wilson, B. G., Wang, X., Shen, X., McKenna, E. S., Lemieux, M. E., Cho, Y., et al. Epigenetic antagonism between polycomb and SWI/SNF complexes during oncogenic transformation. Cancer Cell 2011; 19: 153.CrossRefGoogle Scholar
Calderaro, J., Masliah-Planchon, J., Richer, W., Maillot, L., Maille, P., Mansuy, L., et al. Balanced translocations disrupting SMARCB1 are hallmark recurrent genetic alterations in renal medullary carcinomas. European Urology 2016; 69: 1055–61.Google Scholar
Hong, A. L., Tseng, Y., Wala, J. A., Kim, W., Kynnap, B. D., Doshi, M. B., et al. Renal medullary carcinomas depend upon SMARCB1 loss and are sensitive to proteasome inhibition. eLife 2019; 8.Google Scholar
Ohe, C., Smith, S. C., Sirohi, D., Divatia, M., de Peralta-Venturina, M., Paner, G. P., et al. Reappraisal of morphologic differences between renal medullary carcinoma, collecting duct carcinoma, and fumarate hydratase–deficient renal cell carcinoma. The American Journal of Surgical Pathology 2018; 42: 279–92.CrossRefGoogle ScholarPubMed
Msaouel, P., Tannir, N. M., Walker, C. L.. A model linking sickle cell hemoglobinopathies and SMARCB1 loss in renal medullary carcinoma. Clinical Cancer Research 2018; 24: 2044–9.CrossRefGoogle Scholar
Msaouel, P., Malouf, G. G., Su, X., Yao, H., Tripathi, D. N., Soeung, M., et al. Comprehensive molecular characterization identifies distinct genomic and immune hallmarks of renal medullary carcinoma. Cancer Cell 2020; 37: 720–34.e13.Google Scholar
Dome, J. S., Fernandez, C. V., Mullen, E. A., Kalapurakal, J. A., Geller, J. I., Huff, V., et al. Children’s Oncology Group’s 2013 blueprint for research: renal tumors. Pediatric Blood & Cancer 2013; 60: 994–1000.Google Scholar
Curry, S., Ibrahim, F., Grehan, D., McDermott, M., Capra, M., Betts, D., et al. Rhabdomyosarcoma-associated renal cell carcinoma: a link with constitutional Tp53 mutation. Pediatric and Developmental Pathology 2011; 14: 248–51.Google Scholar
Bassal, M., Mertens, A. C., Taylor, L., Neglia, J. P., Greffe, B. S., Hammond, S., et al. Risk of selected subsequent carcinomas in survivors of childhood cancer: a report from the Childhood Cancer Survivor Study. Journal of Clinical Oncology 2006; 24: 476–83.Google Scholar
Akhavan, A., Richards, M., Shnorhavorian, M., Goldin, A., Gow, K., Merguerian, P. A.. Renal cell carcinoma in children, adolescents and young adults: a National Cancer Database Study. The Journal of Urology 2015; 193: 1336–41.Google Scholar
Sausville, J. E., Hernandez, D. J., Argani, P., Gearhart, J. P.. Pediatric renal cell carcinoma. Journal of Pediatric Urology 2009; 5: 308–14.Google Scholar
Argani, P., Laé, M., Ballard, E. T., Amin, M., Manivel, C., Hutchinson, B., et al. Translocation carcinomas of the kidney after chemotherapy in childhood. Journal of Clinical Oncology 2006; 24: 1529–34.Google Scholar
Geller, J. I., Dome, J. S.. Adjuvant therapy in pediatric patients with completely resected renal cell carcinoma. Pediatric Blood & Cancer 2006; 46: 527.Google Scholar
Geller, J. I., Cost, N. G., Chi, Y., Tornwall, B., Cajaiba, M., Perlman, E. J., et al. A prospective study of pediatric and adolescent renal cell carcinoma: a report from the Children’s Oncology Group AREN0321 study. Cancer 2020; 126: 5156–64.Google Scholar
Ray, S., Jones, R., Pritchard‐Jones, K., Dzhuma, K., van den Heuvel‐Eibrink, M., Tytgat, G., et al. Pediatric and young adult renal cell carcinoma. Pediatric Blood & Cancer 2020; 67: e28675.CrossRefGoogle Scholar
Debelenko, L. V., Raimondi, S. C., Daw, N., Shivakumar, B. R., Huang, D., Nelson, M., et al. Renal cell carcinoma with novel VCL–ALK fusion: new representative of ALK-associated tumor spectrum. Modern Pathology 2011; 24: 430–42.Google Scholar
Mariño‐Enríquez, A., Ou, W., Weldon, C. B., Fletcher, J. A., Pérez‐Atayde, A. R.. ALK rearrangement in sickle cell trait‐associated renal medullary carcinoma. Genes, Chromosomes and Cancer 2011; 50: 146–53.Google Scholar
Yoshida, A., Sekine, S., Tsuta, K., Fukayama, M., Furuta, K., Tsuda, H.. NKX2.2 is a useful immunohistochemical marker for Ewing sarcoma. The American Journal of Surgical Pathology 2012; 36: 993–9.Google Scholar
Hung, Y. P., Fletcher, C. D. M., Hornick, J. L.. Evaluation of NKX2–2 expression in round cell sarcomas and other tumors with EWSR1 rearrangement: imperfect specificity for Ewing sarcoma. Modern Pathology 2016; 29: 370–80.CrossRefGoogle ScholarPubMed
de Jong, P., Plougastel, B., Melot, T., Joubert, I., Desmaze, C., Rouleau, G., et al. Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours. Nature 1992; 359: 162–5.Google Scholar
Riggi, N., Knoechel, B., Gillespie, S., Rheinbay, E., Boulay, G., Suvà, M., et al. EWS-FLI1 utilizes divergent chromatin remodeling mechanisms to directly activate or repress enhancer elements in Ewing sarcoma. Cancer Cell 2014; 26: 668–81.Google Scholar
Johnson, K. M., Taslim, C., Saund, R. S., Lessnick, S. L.. Identification of two types of GGAA-microsatellites and their roles in EWS/FLI binding and gene regulation in Ewing sarcoma. PLoS ONE 2017; 12: e0186275.CrossRefGoogle ScholarPubMed
Boulay, G., Volorio, A., Iyer, S., Broye, L. C., Stamenkovic, I., Riggi, N., et al. Epigenome editing of microsatellite repeats defines tumor-specific enhancer functions and dependencies. Genes & Development 2018; 32: 1008–19.Google Scholar
Theisen, E. R., Miller, K. R., Showpnil, I. A., Taslim, C., Pishas, K. I., Lessnick, S. L.. Transcriptomic analysis functionally maps the intrinsically disordered domain of EWS/FLI and reveals novel transcriptional dependencies for oncogenesis. Genes & Cancer 2019; 10: 21–38.Google Scholar
Risi, E., Iacovelli, R., Altavilla, A., Alesini, D., Palazzo, A., Mosillo, C., et al. Clinical and pathological features of primary neuroectodermal tumor/Ewing sarcoma of the kidney. Urology 2013; 82: 382–6.Google Scholar
Cajaiba, M., Khanna, G., Smith, E. A., Gellert, L., Chi, Y., Mullen, E. A., et al. Pediatric cystic nephromas: distinctive features and frequent DICER1 mutations. Human Pathology 2015; 48: 81–7.Google ScholarPubMed
Ishida, Y., Kato, K., Kigasawa, H., Ohama, Y., Ijiri, R., Tanaka, Y.. Synchronous occurrence of pleuropulmonary blastoma and cystic nephroma: possible genetic link in cystic lesions of the lung and the kidney. Medical and Pediatric Oncology 2000; 35: 85–7.Google Scholar
Wu, M. K., Goudie, C., Druker, H., Thorner, P., Traubici, J., Grant, R., et al. Evolution of renal cysts to anaplastic sarcoma of kidney in a child with DICER1 syndrome. Pediatric Blood & Cancer 2016; 63: 1272–5.CrossRefGoogle Scholar
Wu, M. K., Vujanic, G. M., Fahiminiya, S., Watanabe, N., Thorner, P. S., O’Sullivan, M. J., et al. Anaplastic sarcomas of the kidney are characterized by DICER1 mutations. Modern Pathology 2017; 31: 169–78.Google Scholar
Chami, R., Yin, M., Marrano, P., Teerapakpinyo, C., Shuangshoti, S., Thorner, P. S.. BRAF mutations in pediatric metanephric tumors. Human Pathology 2015; 46: 1153–61.Google Scholar
Brisigotti, M., Cozzutto, C., Fabbretti, G., Sergi, C., Callea, F.. Metanephric adenoma. Histology and Histopathology 1992; 7: 689–92.Google Scholar
Argani, P., Beckwith, J. B.. Metanephric stromal tumor: report of 31 cases of a distinctive pediatric renal neoplasm. The American Journal of Surgical Pathology 2000; 24: 917–26.Google Scholar
Hennigar, R. A., Beckwith, J. B.. Nephrogenic adenofibroma. A novel kidney tumor of young people. The American Journal of Surgical Pathology 1992; 16: 325–34.Google Scholar
Wobker, S. E., Matoso, A., Pratilas, C. A., Mangray, S., Zheng, G., Lin, M., et al. Metanephric adenoma–epithelial Wilms tumor overlap lesions. The American Journal of Surgical Pathology 2019; 43: 1157–69.Google Scholar
de Jel, D. V., Hol, J. A., Ooms, A. H., de Krijger, R. R., Jongmans, M. C., Littooij, A. S., et al. Paediatric metanephric tumours: a clinicopathological and molecular characterisation. Critical Reviews in Oncology 2020; 150: 102970.Google Scholar
Caliò, A., Eble, J. N., Hes, O., Martignoni, G., Harari, S. E., Williamson, S. R., et al. Distinct clinicopathological features in metanephric adenoma harboring BRAF mutation. Oncotarget 2017; 8: 54096–105.Google Scholar
Pasricha, S., Gandhi, J. S., Gupta, G., Mehta, A., Beg, S.. Bilateral, multicenteric metanephric adenoma associated with Wilms’ tumor in a child: a rare presentation with important diagnostic and therapeutic implications. International Journal of Urology 2012; 19: 1114–7.Google Scholar
Arroyo, M. R., Green, D. M., Perlman, E. J., Beckwith, J. B., Argani, P.. The spectrum of metanephric adenofibroma and related lesions: clinicopathologic study of 25 cases from the National Wilms Tumor Study Group Pathology Center. The American Journal of Surgical Pathology 2001; 25: 433–44.Google Scholar
Chatten, J., Cromie, W. J., Duckett, J. W.. Ossifying tumor of infantile kidney: report of two cases. Cancer 1980; 45: 609–12.Google Scholar
Lee, S., Choi, Y., Kim, W., Cheon, J., Moon, K.. Ossifying renal tumor of infancy: findings at ultrasound, CT and MRI. Pediatric Radiology 2014; 44: 625–8.Google Scholar
Sotelo-Avila, C., Beckwith, J. B., Johnson, J. E.. Ossifying renal tumor of infancy: a clinicopathologic study of nine cases. Fetal and Pediatric Pathology 1995; 15: 745–62.Google ScholarPubMed
Green, D. M., Wang, M., Krasin, M., Srivastava, D., Onder, S., Jay, D. W. et al. Kidney function after treatment for childhood cancer: a report from the St. Jude Lifetime Cohort Study. Journal of the American Society of Nephrology 2021; 32: 983–93.Google Scholar