Skip to main content Accessibility help
Hostname: page-component-7479d7b7d-8zxtt Total loading time: 0 Render date: 2024-07-14T17:39:47.376Z Has data issue: false hasContentIssue false

Chapter 19 - Folliculogenesis and Implantation Failure

from Section 3 - Difficulties and Complications of Ovarian Stimulation and Implantation

Published online by Cambridge University Press:  14 April 2022

Mohamed Aboulghar
University of Cairo IVF Centre
Botros Rizk
University of South Alabama
Get access


Following fertilization in the fallopian tube approximately 24 to 48 hours after ovulation, the zygote migrates through the fallopian tube to the uterine cavity at the stage of morula on day 18 of an ideal 28-day cycle [1]. On day 19, a 32- to 256-cell blastocyst forms, sheds its zona pellucida (known as hatching), superficially apposes, and adheres to the endometrium [2]. This is followed by trophoblast invasion through the endometrial epithelium and underlying stroma, the inner third of the myometrium, and the uterine vasculature, all of which finally result in placentation [3]. The success of each step is crucial in order to advance toward the next stage.

Ovarian Stimulation , pp. 182 - 188
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Croxatto, HB, Diaz, S, Fuentealba, B, et al. Studies on the duration of egg transport in the human oviduct. I. The time interval between ovulation and egg recovery from the uterus in normal women. Fertil Steril 1972;23(7):447458. doi: 10.1016/s0015-0282(16)39069-0.CrossRefGoogle ScholarPubMed
Enders, AC, Schlafke, S. Cytological aspects of trophoblast-uterine interaction in early implantation. Am J Anat 1969;125(1):129. doi: 10.1002/aja.1001250102.CrossRefGoogle ScholarPubMed
Cross, JC, Werb, Z, Fisher, SJ. Implantation and the placenta: key pieces of the development puzzle. Science 1994;266(5190):15081518. doi: 10.1126/science.7985020.Google Scholar
Wilcox, AJ, Baird, DD, Weinberg, CR. Time of implantation of the conceptus and loss of pregnancy. N Engl J Med 1999;340(23):17961799. doi: 10.1056/NEJM199906103402304.Google Scholar
Hertig, AT, Rock, J, Adams, EC. A description of 34 human ova within the first 17 days of development. Am J Anat 1956;98(3):435493. doi: 10.1002/aja.1000980306.Google Scholar
Acosta, AA, Elberger, L, Borghi, M, et al. Endometrial dating and determination of the window of implantation in healthy fertile women. Fertil Steril 2000;73(4):788798. doi: 10.1016/s0015-0282(99)00605-6.CrossRefGoogle ScholarPubMed
Miller, JF, Williamson, E, Glue, J, et al. Fetal loss after implantation. A prospective study. Lancet 1980;2(8194):554556. doi: 10.1016/s0140-6736(80)91991-1.Google Scholar
Spandorfer, SD, Chung, PH, Kligman, I, et al. An analysis of the effect of age on implantation rates. J Assist Reprod Genet 2000;17(6):303306. doi: 10.1023/a:1009422725434.CrossRefGoogle ScholarPubMed
Coughlan, C, Ledger, W, Wang, Q, et al. Recurrent implantation failure: definition and management. Reprod Biomed Online 2014;28(1):1438. doi: 10.1016/j.rbmo.2013.08.011.CrossRefGoogle ScholarPubMed
Kodaman, PH, Taylor, HS. Hormonal regulation of implantation. Obstet Gynecol Clin North Am 2004;31(4):745766, ix. doi: 10.1016/j.ogc.2004.08.008.CrossRefGoogle ScholarPubMed
Ludwig, H, Spornitz, UM. Microarchitecture of the human endometrium by scanning electron microscopy: menstrual desquamation and remodeling. Ann N Y Acad Sci 1991;622:2846. doi: 10.1111/j.1749-6632.1991.tb37848.x.CrossRefGoogle ScholarPubMed
Rao, AJ, Ramachandra, SG, Ramesh, V, et al. Establishment of the need for oestrogen during implantation in non-human primates. Reprod Biomed Online 2007;14(5):563571. doi: 10.1016/s1472-6483(10)61047-4.Google Scholar
Ma, WG, Song, H, Das, SK, et al. Estrogen is a critical determinant that specifies the duration of the window of uterine receptivity for implantation. Proc Natl Acad Sci U S A 2003;100(5):29632968. doi: 10.1073/pnas.0530162100.Google Scholar
Stricker, R, Eberhart, R, Chevailler, MC, et al. Establishment of detailed reference values for luteinizing hormone, follicle stimulating hormone, estradiol, and progesterone during different phases of the menstrual cycle on the Abbott ARCHITECT analyzer. Clin Chem Lab Med 2006;44(7):883887. doi: 10.1515/CCLM.2006.160.CrossRefGoogle ScholarPubMed
Hild-Petito, S, Stouffer, RL, Brenner, RM. Immunocytochemical localization of estradiol and progesterone receptors in the monkey ovary throughout the menstrual cycle. Endocrinology 1988;123(6):28962905. doi: 10.1210/endo-123-6-2896.Google Scholar
Scublinsky, A, Marin, C, Gurpide, E. Localization of estradiol 17beta dehydrogenase in human endometrium. J Steroid Biochem 1976;7(10):745-7. doi: 10.1016/0022-4731(76)90174-6.Google Scholar
Bulmer, JN, Morrison, L, Longfellow, M, et al. Granulated lymphocytes in human endometrium: histochemical and immunohistochemical studies. Hum Reprod 1991;6(6):791798. doi: 10.1093/oxfordjournals.humrep.a137430.Google Scholar
Noyes, RW, Hertig, AT, Rock, J. Dating the endometrial biopsy. Am J Obstet Gynecol 1975;122(2):262263. doi: 10.1016/s0002-9378(16)33500-1.Google Scholar
McGovern, PG, Myers, ER, Silva, S, et al. Absence of secretory endometrium after false-positive home urine luteinizing hormone testing. Fertil Steril 2004;82(5):1273-7. doi: 10.1016/j.fertnstert.2004.03.070.CrossRefGoogle ScholarPubMed
Racca, A, Drakopoulos, P, Van Landuyt, L, et al. Single and double embryo transfer provide similar live birth rates in frozen cycles. Gynecol Endocrinol 2020;36(9):824828. doi: 10.1080/09513590.2020.1712697.Google Scholar
Cha, J, Sun, X, Dey, SK. Mechanisms of implantation: strategies for successful pregnancy. Nat Med 2012;18(12):17541767. doi: 10.1038/nm.3012.CrossRefGoogle ScholarPubMed
Lessey, BA, Killam, AP, Metzger, DA, et al. Immunohistochemical analysis of human uterine estrogen and progesterone receptors throughout the menstrual cycle. J Clin Endocrinol Metab 1988;67(2):334340. doi: 10.1210/jcem-67-2-334.CrossRefGoogle ScholarPubMed
Lubahn, DB, Moyer, JS, Golding, TS, et al. Alteration of reproductive function but not prenatal sexual development after insertional disruption of the mouse estrogen receptor gene. Proc Natl Acad Sci U S A 1993;90(23):1116211166. doi: 10.1073/pnas.90.23.11162.Google Scholar
Niwa, H, Burdon, T, Chambers, I, et al. Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev 1998;12(13):20482060. doi: 10.1101/gad.12.13.2048.Google Scholar
Brinsden, PR, Alam, V, de Moustier, B, et al. Recombinant human leukemia inhibitory factor does not improve implantation and pregnancy outcomes after assisted reproductive techniques in women with recurrent unexplained implantation failure. Fertil Steril 2009;91(4Suppl): 14451447. doi: 10.1016/j.fertnstert.2008.06.047.Google Scholar
Stavreus-Evers, A, Nikas, G, Sahlin, L, et al. Formation of pinopodes in human endometrium is associated with the concentrations of progesterone and progesterone receptors. Fertil Steril 2001;76(4):782791. doi: 10.1016/s0015-0282(01)01993-8.CrossRefGoogle ScholarPubMed
Mulac-Jericevic, B, Mullinax, RA, DeMayo, FJ, et al. Subgroup of reproductive functions of progesterone mediated by progesterone receptor-B isoform. Science 2000;289(5485):17511754. doi: 10.1126/science.289.5485.1751.Google Scholar
Tranguch, S, Wang, H, Daikoku, T, et al. FKBP52 deficiency-conferred uterine progesterone resistance is genetic background and pregnancy stage specific. J Clin Invest 2007;117(7):18241834. doi: 10.1172/JCI31622.CrossRefGoogle ScholarPubMed
Hirota, Y, Acar, N, Tranguch, S, et al. Uterine FK506-binding protein 52 (FKBP52)-peroxiredoxin-6 (PRDX6) signaling protects pregnancy from overt oxidative stress. Proc Natl Acad Sci U S A 2010;107(35):1557715582. doi: 10.1073/pnas.1009324107.CrossRefGoogle ScholarPubMed
Lee, K, Jeong, J, Kwak, I, et al. Indian hedgehog is a major mediator of progesterone signaling in the mouse uterus. Nat Genet 2006;38(10):12041209. doi: 10.1038/ng1874.Google Scholar
Franco, HL, Rubel, CA, Large, MJ, et al. Epithelial progesterone receptor exhibits pleiotropic roles in uterine development and function. FASEB J 2012;26(3):12181227. doi: 10.1096/fj.11-193334.Google Scholar
Huyen, DV, Bany, BM. Evidence for a conserved function of heart and neural crest derivatives expressed transcript 2 in mouse and human decidualization. Reproduction 2011;142(2):353368. doi: 10.1530/REP-11-0060.Google Scholar
Dey, SK, Lim, H, Das, SK, et al. Molecular cues to implantation. Endocr Rev 2004;25(3):341373. doi: 10.1210/er.2003-0020.CrossRefGoogle ScholarPubMed
Riesewijk, A, Martin, J, van Os, R, et al. Gene expression profiling of human endometrial receptivity on days LH+2 versus LH+7 by microarray technology. Mol Hum Reprod 2003;9(5):253264. doi: 10.1093/molehr/gag037.CrossRefGoogle ScholarPubMed
Diaz-Gimeno, P, Horcajadas, JA, Martinez-Conejero, JA, et al. A genomic diagnostic tool for human endometrial receptivity based on the transcriptomic signature. Fertil Steril 2011;95(1):5060, 60.e1–60.e15. doi: 10.1016/j.fertnstert.2010.04.063.Google Scholar
Greening, DW, Nguyen, HP, Evans, J, et al. Modulating the endometrial epithelial proteome and secretome in preparation for pregnancy: the role of ovarian steroid and pregnancy hormones. J Proteomics 2016;144:99112. doi: 10.1016/j.jprot.2016.05.026.Google Scholar
Labarta, E, Martinez-Conejero, JA, Alama, P, et al. Endometrial receptivity is affected in women with high circulating progesterone levels at the end of the follicular phase: a functional genomics analysis. Hum Reprod 2011;26(7):18131825. doi: 10.1093/humrep/der126.Google Scholar
Simon, C, Garcia Velasco, JJ, Valbuena, D, et al. Increasing uterine receptivity by decreasing estradiol levels during the preimplantation period in high responders with the use of a follicle-stimulating hormone step-down regimen. Fertil Steril 1998;70(2):234239. doi: 10.1016/s0015-0282(98)00140-x.Google Scholar
Venetis, CA, Kolibianakis, EM, Bosdou, JK, et al. Progesterone elevation and probability of pregnancy after IVF: a systematic review and meta-analysis of over 60 000 cycles. Hum Reprod Update 2013;19(5):433457. doi: 10.1093/humupd/dmt014.CrossRefGoogle ScholarPubMed
Drakopoulos, P, Racca, A, Errazuriz, J, et al. The role of progesterone elevation in IVF. Reprod Biol 2019;19(1):1-5. doi: 10.1016/j.repbio.2019.02.003.Google Scholar
Racca, A, Santos-Ribeiro, S, De Munck, N, et al. Impact of late-follicular phase elevated serum progesterone on cumulative live birth rates: is there a deleterious effect on embryo quality? Hum Reprod 2018;33(5):860868. doi: 10.1093/humrep/dey031.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats