Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-t6hkb Total loading time: 0 Render date: 2024-07-12T06:26:51.976Z Has data issue: false hasContentIssue false

23 - Optogenetics for Vision Recovery: From Traditional to Designer Optogenetic Tools

from Part V - Optogenetics in Vision Restoration and Memory

Published online by Cambridge University Press:  28 April 2017

Krishnarao Appasani
Affiliation:
GeneExpression Systems, Inc., Massachusetts
Get access
Type
Chapter
Information
Optogenetics
From Neuronal Function to Mapping and Disease Biology
, pp. 337 - 355
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Audet, M., & Bouvier, M. (2012). Restructuring G-protein-coupled receptor activation. Cell, 151, 1423.CrossRefGoogle ScholarPubMed
Bi, A., Cui, J., Ma, Y., et al. (2006). Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron, 50(1), 2333.CrossRefGoogle ScholarPubMed
Busskamp, V., Duebel, J., Balya, D., et al. (2010). Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science, 329(5990), 413417.CrossRefGoogle ScholarPubMed
Busskamp, V., Krol, J., Nelidova, D., et al. (2014). miRNAs 182 and 183 are necessary to maintain adult cone photoreceptor outer segments and visual function. Neuron, 83, 586600.CrossRefGoogle ScholarPubMed
Cao, P., Sun, W., Kramp, K., et al. (2012). Light-sensitive coupling of rhodopsin and melanopsin to G(i/o) and G(q) signal transduction in Caenorhabditis elegans. FASEB J, 26, 480491CrossRefGoogle Scholar
Caporale, N., Kolstad, K., Lee, T., et al. (2011). LiGluR restores visual responses in rodent models of inherited blindness. Mol Ther, 19, 12121219.CrossRefGoogle ScholarPubMed
Cehajic-Kapetanovic, J., Eleftheriou, C., Allen, A., et al. (2015). Restoration of vision with ectopic expression of human rod opsin. Curr Biol, 25, 21112122.CrossRefGoogle ScholarPubMed
Chang, B., Hawes, N., Hurd, R., et al. (2002). Retinal degeneration mutants in the mouse. Vision Res, 42, 517525.CrossRefGoogle ScholarPubMed
Choe, H., Kim, Y., Park, J., et al. (2011). Crystal structure of metarhodopsin II. Nature, 471, 651655.CrossRefGoogle ScholarPubMed
Cotecchia, S., Exum, S., Caron, M., et al. (1990). Regions of the alpha 1-adrenergic receptor involved in coupling to phosphatidylinositol hydrolysis and enhanced sensitivity of biological function. Proc Natl Acad Sci U S A, 87, 28962900.CrossRefGoogle ScholarPubMed
European Parliament, Council of the European Commission (2006). Directive 2006/25/EC of the European Parliament and of the Council on the minimum health and safety requirements regarding the exposure of workers to the risks arising from physical agents (artificial optical radiation) 19th individual directive within the meaning of Article 16(1) of Directive 89/391/EEC). Off. J. Eur. Union 114, 3859.Google Scholar
Cronin, T., Vandenberghe, L., Hantz, P., et al. (2014). Efficient transduction and optogenetic stimulation of retinal bipolar cells by a synthetic adeno-associated virus capsid and promoter. EMBO Mol Med, 6, 11751190.CrossRefGoogle ScholarPubMed
Dhingra, A., Faurobert, E., Dascal, N., et al. (2004). A retinal-specific regulator of G-protein signaling interacts with Gαo and accelerates an expressed metabotropic glutamate receptor 6 cascade. J Neurosci, 24, 56845693.CrossRefGoogle Scholar
Doré, A., Okrasa, K., Patel, J., et al. (2014). Structure of class C GPCR metabotropic glutamate receptor 5 transmembrane domain. Nature, 511, 557562.CrossRefGoogle Scholar
Doroudchi, M., Greenberg, K., & Liu, J. (2011). Virally delivered channelrhodopsin-2 safely and effectively restores visual function in multiple mouse models of blindness. Mol Ther, 19, 12201229.CrossRefGoogle ScholarPubMed
Euler, T., Havekamp, S., Schubert, T., et al. (2014). Retinal bipolar cells: elementary building blocks of vision. Nature Rev, 15 (507519)CrossRefGoogle ScholarPubMed
Feldbauer, K., Zimmermann, D., Pintschovius, V., et al. (2009). Channelrhodopsin-2 is a leaky proton pump. Proc Natl Acad Sci USA, 106, 1231712322.CrossRefGoogle ScholarPubMed
Gaub, B., Berry, M., Holt, A., et al. (2015). Optogenetic vision restoration using rhodopsin for enhanced sensitivity. Mol Ther, 23(10), 15621571.CrossRefGoogle ScholarPubMed
Gaub, B., Berry, M., Holt, A., et al. (2014). Restoration of visual function by expression of a light-gated mammalian ion channel in retinal ganglion cells or ON-bipolar cells. Proc Natl Acad Sci U S A, 111, E55745583.CrossRefGoogle ScholarPubMed
Greenberg, K., Pham, A., & Werblin, F. (2011). Differential targeting of optical neuromodulators to ganglion cell soma and dendrites allows dynamic control of centre–surround antagonism. Neuron, 69, 713720.CrossRefGoogle Scholar
Hampson, D., Rose, E., & Antflick, J. (2008). The Structures of Metabotropic Glutamate Receptors. (pp. 363386). Totowa, NJ: Human Press.CrossRefGoogle Scholar
Hattar, S., Liao, H., Takao, M., et al. (2002). Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science, 295, 10651070.CrossRefGoogle ScholarPubMed
Hollenstein, K., Kean, J., Bortolato, A., et al. (2013). Structure of class B GPCR corticotropin-releasing factor receptor 1. Nature, 499, 438443.CrossRefGoogle Scholar
Kalatsky, V., & Stryker, M. (2003). New paradigm for optical imaging: temporally encoded maps of intrinsic signal. Neruon, 38, 529545.Google ScholarPubMed
Keeler, C. (1966). Retinal degeneration in the mouse is rodless retina. J Hered, 57(2), 4750.CrossRefGoogle ScholarPubMed
Kim, D.S., Matsuda, T., & Cepko, C.L. (2008). A core paired-type and POU homeodomain-containing transcription factor program drives retinal bipolar cell gene expression. J Neurosci, 28(31), 77487764.CrossRefGoogle ScholarPubMed
Kleinlogel, S., Feldbauer, K., Dempski, R., et al. (2011). Ultra light-sensitive and fast neuronal activation with the Ca2+-permeable channelrhodopsin CatCh. Nat Neurosci, 14(4), 513518.CrossRefGoogle ScholarPubMed
Kobilka, B., Kobilka, T., Daniel, K., et al. (1988). Chimeric alpha 2-beta 2-adrenergic receptors: delineation of domains involved in effector coupling and ligand binding specificity. Science, 240, 13101316.CrossRefGoogle Scholar
Koyanagi, M., & Terakita, A. (2014). Diversity of animal opsin-based pigments and their optogenetic potential. Biochim Biophys Acta, 1837, 710716.CrossRefGoogle ScholarPubMed
Lagali, P., Balya, D., Awatramani, G., et al. (2008). Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration Nat Neurosci, 11(6), 667675.CrossRefGoogle Scholar
Lin, B., Koizumi, A., Tanaka, N., et al. (2008). Restoration of visual function in retinal degeneration mice by ectopic expression of melanopsin. Proc Natl Acad Sci USA, 105, 1600916014.CrossRefGoogle ScholarPubMed
Macé, E., Caplette, R., Marre, O., et al. (2015). Targeting channelrhodopsin-2 to ON-bipolar cells with vitreally administered AAV Restores ON and OFF visual responses in blind mice. Mol Ther, 23, 716.CrossRefGoogle ScholarPubMed
Mariani, A. (1984). Bipolar cells in monkey retina selective for the cones likely to be blue-sensitive. Nature, 308, 184186.CrossRefGoogle ScholarPubMed
Masuho, I., Celver, J., Kovoor, A., et al. (2010). Membrane anchor R9AP potentiates GTPase-accelerating protein activity of RGS11·Gβ5 complex and accelerates Inactivation of the mGluR6-Go signaling. J Biol Chem, 285, 47814787.CrossRefGoogle Scholar
Morgans, C., Zhang, J., Jeffrey, B., et al. (2009). TRPM1 is required for the depolarizing light response in retinal ON-bipolar cells. Proc Natl Acad Sci USA 106, 1917419178.CrossRefGoogle ScholarPubMed
Nagel, G. (2003). Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci USA, 100, 1394013945.CrossRefGoogle ScholarPubMed
Neitz, J., & Neitz, M. (2011). The genetics of normal and defective color vision. Vision Res, 51, 633651.CrossRefGoogle ScholarPubMed
Nirenberg, S., & Meister, M. (1997). The light response of retinal ganglion cells is truncated by a displaced amacrine circuit. Neuron, 18, 637650.CrossRefGoogle ScholarPubMed
Pan, Z., Ganjawala, T., Lu, Q., et al. (2014). ChR2 mutants at L132 and T159 with improved operational light sensitivity for vision restoration. PLoS ONE, 9, e98924.CrossRefGoogle Scholar
Pin, J., Galvez, T., & Prézeau, L. (2003). Evolution, structure and activation mechanism of family 3/C G-protein-coupled receptors. Pharmacol Ther, 98, 325354.CrossRefGoogle ScholarPubMed
Polosukhina, A., Litt, J., Tochitsky, I., et al. (2012). Photochemical restoration of visual responses in blind mice. Neuron, 75(2), 271282.CrossRefGoogle ScholarPubMed
Prusky, G., Alam, N., Beekman, S., et al. (2004). Rapid quantification of adult and developing mouse spatial vision using a virtual optomotor system. Invest Opthalmol Vis Sci, 45, 46114616.CrossRefGoogle ScholarPubMed
Puller, C., & Haverkamp, S. (2011). Bipolar cell pathways for color vision in non-primate dichromats. Vis Neurosci, 28, 5160.CrossRefGoogle ScholarPubMed
Rasmussen, S., DeVree, B., Zou, Y., et al. (2011). Crystal structure of the β2 adrenergic receptor–Gs protein complex. Nature, 477, 549555.CrossRefGoogle ScholarPubMed
Remé, C., Grimm, C., Hafezi, F., et al. (1998). Apoptotic cell death in retinal degenerations. Prog Retin Eye Res, 17, 443464.CrossRefGoogle ScholarPubMed
Schiöth, H., & Frederiksson, R. (2005). The GRAFS classification system of G-protein coupled receptors in comparative perspective. Gen Comp Endocrinol, 142, 94101.CrossRefGoogle ScholarPubMed
Schwartz, T., Frimurer, T., Holst, B., et al. (2006). Molecular mechanism of 7TM receptor activation – a global toggle switch model. Annu Rev Pharmacol Toxicol, 46, 481519.CrossRefGoogle ScholarPubMed
Sekharan, S., Wei, J., & Batista, V. (2012). The active site of melanopsin: the biological clock photoreceptor. J Am Chem Soc, 134, 1953619539.CrossRefGoogle ScholarPubMed
Sexton, T., Buhr, E., & Van Gelder, R. (2012). Melanopsin and mechanisms of non-visual ocular photoreception. J Biol Chem, 287, 16491656.CrossRefGoogle ScholarPubMed
Strettoi, E., & Pignatelli, V. (2000). Modifications of retinal neurons in a mouse model of retinitis pigmentosa. Proc Natl Acad Sci USA, 97, 1102011025.CrossRefGoogle Scholar
Swift, S., Leger, A., Talavera, J., et al. (2006). Role of the PAR1 receptor 8th helix in signaling: the 7-8-1 receptor activation mechanism. J Biol Chem, 281, 41094116.CrossRefGoogle ScholarPubMed
The Lasker/IRRF Initiative for Innovation in Vision Science (2014). Restoring Vision to the Blind: The Lasker/IRRF Initiative for Innovation in Vision Science. Transl Vis Sci Technol, 3(7), 1.CrossRefGoogle Scholar
Thyagarajan, S., van Wyk, M., Lehmann, K., et al. (2010). Visual function in mice with photoreceptor degeneration and transgenic expression of channelrhodopsin 2 in ganglion cells. J Neurosci, 30(26), 87458758.CrossRefGoogle ScholarPubMed
Tochitsky, I., Polosukhina, A., Degtyar, V., et al. (2014). Restoring visual function to blind mice with a photoswitch that exploits electrophysiological remodeling of retinal ganglion cells. Neuron, 81, 800813.CrossRefGoogle ScholarPubMed
van Wyk, M., Pielecka-Fortuna, J., Löwel, S., et al. (2015). Restoring the ON-switch in blind retinas: Opto-mGluR6, a next-generation, cell-tailored optogenetic tool. PLoS Biol, 13 (5), e1002143.CrossRefGoogle ScholarPubMed
Verrall, S., Ishii, M., Chen, M., et al. (1997). The thrombin receptor second cytoplasmic loop confers coupling to Gq-like G proteins in chimeric receptors. Additional evidence for a common transmembrane signaling and G protein coupling mechanism in G protein-coupled receptors. J Biol Chem, 272, 68986902.CrossRefGoogle Scholar
Wässle, H. (2004). Parallel processing in the mammalian retina. Nat Rev Neurosci, 5, 747757.CrossRefGoogle ScholarPubMed
Wu, C., Ivanova, E., Zhang, Y., et al. (2013). rAAV-mediated subcellular targeting of optogenetic tools in retinal ganglion cells in vivo. PLoS ONE, 8, e66332.CrossRefGoogle ScholarPubMed
Yamashita, T., Terakita, A., & Shichida, Y. (2001). The second cytoplasmic loop of metabotropic glutamate receptor functions at the third loop position of rhodopsin. J Biochem, 130, 149155.CrossRefGoogle ScholarPubMed
Yau, K., & Hardie, R. (2009). Phototransduction motifs and variations. Cell, 139, 246264.CrossRefGoogle ScholarPubMed
Zrenner, E., Bartz-Schmidt, K., Benav, H., et al. (2011). Subretinal electronic chips allow blind patients to read letters and combine them to words. Proc Biol Sci, 278, 14891497.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×