Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-bkjnw Total loading time: 0.338 Render date: 2021-10-21T10:07:06.221Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

7 - Locating black hole horizons

Published online by Cambridge University Press:  05 March 2013

Thomas W. Baumgarte
Affiliation:
Bowdoin College, Maine
Stuart L. Shapiro
Affiliation:
University of Illinois, Urbana-Champaign
Get access

Summary

Black holes are characterized by the horizons surrounding them. Clearly, then, the numerical simulation of black holes requires the ability to locate and analyze black hole horizons in numerically generated spacetimes. In this chapter we first review different concepts of horizons in asymptotically flat spacetimes, and then discuss how these horizons can be probed numerically.

Concepts

Several different notions of horizons exist in general relativity. The defining property of a black hole is the presence of an event horizon (Section 7.2), but, as we will see, apparent horizons (Section 7.3) also play an extremely important role in the context of numerical relativity. In addition, the concepts of isolated and dynamical horizons (Section 7.4) serve as useful diagnostics in numerical spacetimes containing black holes.

A black hole is defined as a region of spacetime from which no null geodesic can escape to infinity. The surface of a black hole, the event horizon, acts as a one-way membrane through which light and matter can enter the black hole, but once inside, can never escape. It is the boundary in spacetime separating those events that can emit light rays that can propagate to infinity and those which cannot. More precisely, the event horizon is defined as the boundary of the causal past of future null infinity. It is a 2 + 1 dimensional hypersurface in spacetime formed by those outward-going, future-directed null geodesics that neither escape to infinity nor fall toward the center of the black hole.

Type
Chapter
Information
Numerical Relativity
Solving Einstein's Equations on the Computer
, pp. 229 - 252
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Send book to Kindle

To send this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Send book to Dropbox

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Dropbox.

Available formats
×

Send book to Google Drive

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Google Drive.

Available formats
×