Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-m9pkr Total loading time: 0 Render date: 2024-07-12T01:27:53.602Z Has data issue: false hasContentIssue false

7 - Photonic Glass Waveguides for Spectral Conversion

Published online by Cambridge University Press:  24 April 2019

Chun Jiang
Affiliation:
Shanghai Jiao Tong University, China
Pei Song
Affiliation:
Shanghai University of Engineering Science
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Trupke, T., Green, M. A., & Würfel, P., Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys., 92(3), 1668–74, Aug. 2002.Google Scholar
van Sark, W. G. J. H. M., Enhancement of solar cell performance by employing planar spectral converters, Appl. Phys. Lett., 87(15), pp. 151117-1151117-3, Oct. 2005.CrossRefGoogle Scholar
van Sark, W. G. J. H. M., Meijerink, A., Schropp, R. E. I., van Roosmalen, J. A. M., & Lysen, E. H., Enhancing solar cell efficiency by using spectral converters, Sol. Energy Mater. Sol. Cells, 87(1–4), 395409, May 2005.Google Scholar
Wegh, R. T., Donker, H., Oskam, K. D., & Meijerink, A., Visible quantum cutting in LiGdF4: Eu3+ through downconversion, Science, 283(5402), 663–6, Jan. 1999.Google Scholar
Vergeer, P., Vlugt, T. J. H., Kox, M. H. F., Den Hertog, M. I., Van der Eerden, J. P. J. M., & Meijerink, A., Quantum cutting by cooperative energy transfer in YbxY1-x PO4: Tb3+, Phys. Rev. B, 71(1), pp. 014119-1014119-11, Jan. 2005.Google Scholar
Richards, B. S., Luminescent layers for enhanced silicon solar cell performance: Down-conversion, Sol. Energy Mater. Sol. Cells, 90(23), 1189–207, May 2006.Google Scholar
Liu, X. F., Teng, Y., Zhuang, Y. X., Xie, J. H., Qiao, Y. B., Dong, G. P., Chen, D. P., & Qiu, J. R., Broadband conversion of visible light to near-infrared emission by Ce3+,Yb3+-codoped yttrium aluminum garnet, Opt. Lett., 34(22), 3565–7, Nov. 2010.Google Scholar
Teng, Y., Zhou, J. J., Liu, X. F., Ye, S., & Qiu, J. R., Efficient broadband near-infrared quantum cutting for solar cells, Opt. Express, 18(9), 9671–6, Apr. 2010.CrossRefGoogle ScholarPubMed
Zhang, Q. Y., Yang, G. F., & Jiang, Z. H., Cooperative downconversion in GdAl3(BO3)4: RE3+, Yb3+ (RE = Pr, Tb, and Tm), Appl. Phys. Lett., 91(5), pp. 051903-1051903-3, Jul. 2007.Google Scholar
Kasap, S. O., Optoelectronics and Photonics: Principle and Practices, p.44, Cambridge: Pearson, 2013.Google Scholar
Federighi, M., F. & Di Pasquale, , The effect of pair-induced energy transfer on the performance of silica waveguide amplifiers with high Er3+/Yb3+ concentration, IEEE Photon. Technol. Lett., 7(3), 303–5, Mar.1995.CrossRefGoogle Scholar
Song, Pei & Jiang, Chun, Modeling of quantum cutting systems in Tm3+/Yb3+-codoped spectral converters for sc-Si solar cells efficiency enhancement, IEEE Photon J., 4(6), 2143–51, Nov. 2012.Google Scholar
Strümpel, C., McCann, M., Beaucarne, G., Arkhipov, V., Slaoui, A., Švrček, V., del Canizo, C., & Tobias, I., Modifying the solar spectrum to enhance silicon solar cell efficiency: An overview of available materials, Sol. Energy Mater. Sol. Cells, 91(4), 238–49, Feb. 2007.Google Scholar
Clugston, Donald A., & Basore, Paul A., PC1D Version 5: 32-Bit Solar Cell Modeling On Personal Computers, in Proc. 26th IEEE Photovoltaic Spec. Conf., 504–9, 1997, .Google Scholar
Zhang, Q. Y., Yang, G. F., & Jiang, Z. H., Cooperative downconversion in GdAl3(BO3)4: RE3+, Yb3+ (RE = Pr, Tb, and Tm),” Appl. Phys. Lett., 91(5), pp. 051903-1051903-3, Jul. 2007.Google Scholar
Ye, S., Zhu, B., Luo, J., Chen, J. X., Lakshminarayana, G., & Qiu, J. R., Enhanced cooperative quantum cutting in Tm3+-Yb3+ codoped glass ceramics containing LaF3 nanocrystals, Opt. Express, 16(12), 8989–94, Jun. 2008.CrossRefGoogle ScholarPubMed
Lakshminarayana, G., Qiu, J. R. &, Near-infrared quantum cutting in RE3+/Yb3+ (RE= Pr, Tb, and Tm): GeO2–B2O3–ZnO–LaF3 glasses via downconversion, J. Alloys Comp. 481(1–2), 582–9, Jul. 2009.Google Scholar
Richards, B. S., Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers, Sol. Energy Mater. Sol. Cells, 90(15), 2329–37, Sep. 2006.Google Scholar
Song, Pei & Jiang, Chun, Modeling of wavelength downconversion based on the Nd3+-Yb3+ system for improving c-Si solar cells performance, IOP J. Optics, 15(2), 025002-1025002-7, 2012.Google Scholar
De Sousa, D. F., Batalioto, F., Bell, M. J. V., Oliveira, S. L., & Nunes, L. A. O., Spectroscopy of Nd3+ and Yb3+ codoped fluoroindogallate glasses, J. Appl. Phys. 90, 3308–13, 2001.Google Scholar
Richards, B. S., Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers, Sol. Energy Mater. Sol. Cells 90, 2329, 2006.CrossRefGoogle Scholar
Song, Pei &, Jiang, Chun, Modeling of downconverter based on Pr3+-Yb3+ codoped fluoride glasses to improve sc-Si solar cells efficiency, AIP Advances, 2(4), pp. 042130-1042130-10, 2012.Google Scholar
Zhang, Q. Y. & Huang, X. Y., Recent progress in quantum cutting phosphors, Prog. Mater. Sci. 55, 353427, (2010).CrossRefGoogle Scholar
Deng, K., Wei, X., Wang, X., Chen, Y., & Yin, M., Near-infrared quantum cutting via resonant energy transfer from Pr3+ to Yb3+ in LaF3, Appl. Phys. B 102, 555–8, (2011).Google Scholar
Chen, D. Q., Wang, Y. S., Yu, Y. L., Huang, P., & Weng, F. Y., Near-infrared quantum cutting in transparent nanostructured glass ceramics, Opt. Lett., 33(16), 1884–6, (2008).Google Scholar
Lupei, V., Lupei, A., & Ikesue, A., Spectroscopic properties of Nd3+ and highly efficient Nd3+ to Yb3+ energy transfer in transparent Sc2O3 ceramics,” Conf. on Advanced Solid-State Photonics, Technical Digest (New York: Optical Society of America), p. MB8, 2005.Google Scholar
Song, Pei & Chun Jiang, Broadband solar spectral conversion in near-infrared quantum cutting Ce3+-Tb3+/Yb3+ system for improving Si solar cells performance, IEEE Photon J., 5(2), pp. 8400110-18400110-10, Jan. 2013.Google Scholar
Song, Pei & Jiang, Chun, Broadband solar wavelength transformation of visible light to near-infrared radiation in Ce3+-Nd3+-Yb3+ triple-doped yttrium aluminum garnet, IEEE J. Quantum Electron. 49(8), P634–40, 2013,Google Scholar
Liu, X. F., Teng, Y., Zhuang, Y. X., Xie, J. H., Qiao, Y. B., Dong, G. P., Chen, D. P., & Qiu, R. R., Broadband conversion of visible light to near-infrared emission by Ce3+,Yb3+-codoped yttrium aluminum garnet, Opt. Lett., 34(22), 3565–7, Nov. 2009.Google Scholar
Li, J., Yang, Z. Y., Wu, Y. S., Liu, W. B., Pan, Y. B., Huang, L. P., & Guo, J. K., Spectroscopic properties and Judd-Ofelt theory analysis of Nd: YAG transparent laser ceramic, J. Inorganic Mater. 23(8), 429–33, May 2008.Google Scholar
Richards, B. S., Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers, Sol. Energy Mater. Sol. Cells, 90(15), 2329–37, Sep. 2006.Google Scholar
Shen, S. X., Jha, A., Liu, X. B., & Naftaly, M., Tellurite Glasses for Broadband Amplifiers and Integrated Optics, J. Am. Ceram. Soc., 85(6), 1391–95, Jun. 2002.Google Scholar
Jiang, C. & Xu, W. B., Theoretical Model of Yb3+-Er3+-Tm3+-Codoped System for White Light Generation, J. Display Technol., 5(8), 312–18, Aug. 2009.Google Scholar
De Sousa, D. F., Batalioto, F., Bell, M. J. V., Oliveira, S. L., & Nunes, L. A. O., Spectroscopy of Nd3+ and Yb3+ codoped fluoroindogallate glasses, J. Appl. Phys. 90, 3308–13, 2001.Google Scholar
Wang, J., Chen, Y. H., & Gan, F. X., Energy level and optical absorption properties of Pr3+ ion in fluoride glass (ZBLAN), Acta Optica Sinica 16, 78 (1996).Google Scholar
Kang, D. G., Chen, X. B., Li, S., Cui, J. S., Cai, Q., & Yu, B. T., Calculation and analysis of optical Transitions of Pr3+ ions in fluoride glass, Spectrosc. Spect. Anal. 27, .14 (2007).Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×