Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-22T19:37:31.105Z Has data issue: true hasContentIssue false

19 - On the quasi-isometric classification of locally compact groups

Published online by Cambridge University Press:  05 February 2018

Pierre-Emmanuel Caprace
Affiliation:
Université Catholique de Louvain, Belgium
Nicolas Monod
Affiliation:
École Polytechnique Fédérale de Lausanne
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] H., Abels. Specker-Kompaktifizierungen von lokal kompakten topologischen Gruppen. (German) Math. Z. 135 (1973/74), 325–361.
[2] H., Abels. On a problem of Freudenthal's. Comp. Math. 35(1977), no. 1, 39–47.
[3] S., Antonyan. Characterizing maximal compact subgroups. Arch. Math. 98 (2012), no. 6, 555–560.
[4] H., Bass and R., Kulkarni. Uniform tree lattices. J. Amer. Math. Soc. 3 (1990), 843–902.
[5] B., Bekka, P., de la Harpe and A., Valette. Kazhdan's Property (T). New Math. Monographs 11, Cambridge Univ. Press, Cambridge, 2008.
[6] S., Buyalo and V., Schroeder. Elements of asymptotic geometry. European Math. Soc. 2007.
[7] P-E., Caprace, Y., Cornulier, N., Monod and R., Tessera. Amenable hyperbolic groups. J. Eur. Math. Soc. (JEMS) 17 (2015), no. 11, 2903–2947.
[8] M., Carette. Commability of groups quasi-isometric to trees. ArXiv math/1312.0278 (2013).
[9] M., Carrasco Piaggio. Orlicz spaces and the large scale geometry of Heintze groups. Math. Ann. 368 (2017), no. 1-2, 433–481.
[10] A., Casson and D., Jungreis. Convergence groups and Seifert fibered 3-manifolds. Inv. Math. 118 (1994), no. 1, 441–456.
[11] R., Chow. Groups quasi-isometric to complex hyperbolic space. Trans. Amer. Math. Soc. 348 (1996), 1757–1770.
[12] Y., Cornulier. Dimension of asymptotic cones of Lie groups. Journal of Topology 1 (2008), 342–361.
[13] Y., Cornulier. Commability and focal locally compact groups. Indiana Univ. Math. J. 64(1) (2015), 115–150.
[14] Y., Cornulier and P., de la Harpe. Metric geometry of locally compact groups. EMS Tracts in Mathematics, 25. European Mathematical Society (EMS), Zürich, 2016.
[15] Y., Cornulier and R., Tessera. Contracting automorphisms and Lp-cohomology in degree one. Ark. Mat. 49 (2011), no. 2, 295–324.
[16] W., Dicks and M., Dunwoody. Groups acting on graphs. Cambridge University Press, Cambridge, 1989.
[17] M.J., Dunwoody. The accessibility of finitely presented groups. Inventiones Mathematicae 81 (1985), no. 3, 449–457.
[18] M.J., Dunwoody. An inaccessible group. Geometric group theory, Vol. 1 (Sussex, 1991), pp. 75–78, London Math. Soc. Lecture Note Ser., 181, Cambridge University Press, Cambridge, 1993.
[19] T., Dymarz. Quasisymmetric maps of boundaries of amenable hyperbolic groups. Indiana Univ. Math. J. 63(2), (2014), 329–343.
[20] B., Farb and L., Mosher. Problems on the geometry of finitely generated solvable groups. In “Crystallographic Groups and their Generalizations (Kortrijk, 1999)”, Cont. Math. 262, Amer. Math. Soc. (2000).
[21] K., Fujiwara and K., Whyte. A note on spaces of asymptotic dimension one. Algebr. Geom. Topol. 7 (2007), 1063–1070.
[22] D., Gabai. Convergence groups are Fuchsian groups, Ann. of Math. 136 (1992), no. 3, 447–510.
[23] C. S., Gordon and E. N., Wilson. Isometry groups of Riemannian solvmanifolds. Trans. Amer. Math. Soc. 307 (1988), no. 1, 245–269.
[24] W., de Graaf. Classification of 6-dimensional nilpotent Lie algebras over fields of characteristic not 2. Journal of Algebra 309 (2007), 640–653.
[25] M., Gromov. Hyperbolic groups, Essays in group theory, Math. Sci. Res. Inst. Publ., vol. 8, Springer, New York, (1987), 75–263.
[26] U., Hamenstädt. Theorie von Carnot-Carathéodory Metriken und ihren Anwendungen, Dissertation, Rheinische Friedrich-Wilhelms-Univ. Bonn, 1986. Bonner Mathematische Schriften 180, 1987.
[27] E., Heintze. On homogeneous manifolds of negative curvature, Math. Ann. 211 (1974), 23–34.
[28] A., Hinkkanen. The structure of certain quasisymmetric groups. Mem. Amer. Math. Soc. 83 (1990), no. 422.
[29] C.H., Houghton. Ends of locally compact groups and their coset spaces. J. Australian Math. Soc. 17, 274–284.
[30] I., Kapovich and N., Benakli. Boundaries of hyperbolic groups. In: Combinatorial and geometric group theory (New York, 2000/Hoboken, NJ, 2001), 39–93, Contemp. Math. 296, Amer. Math. Soc., Providence, RI, 2002.
[31] B., Kleiner and B., Leeb. Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings. Publ. Math. IHES 86 (1997), no. 1, 115–197.
[32] B., Kleiner and B., Leeb. Induced quasi-actions: A remark. Proc. Amer. Math. Soc. 137 (2009), 1561–1567.
[33] J-L., Koszul. Lectures on group of transformations. Tata Institute of Fundamental Research, 1965.
[34] B., Krön and R., Möller. Analogues of Cayley graphs for topological groups. Math. Z. 258 (2008), no. 3, 637–675.
[35] V., Losert. On the structure of groups with polynomial growth. Math. Z. 195 (1987), 109–117.
[36] L., Magnin. Adjoint and trivial cohomologies of nilpotent complex Lie algebras of dimension ≤ 7. Int. J. Math. Math. Sci. 2008, Art. ID 805305, 12 pp.
[37] N., Monod. Continuous bounded cohomology of locally compact groups, Lecture Notes in Mathematics, vol. 1758, Springer-Verlag, Berlin, 2001.
[38] D., Montgomery and L., Zippin, Topological transformation groups, New York, Interscience Publishers, Inc., 1955.
[39] L., Mosher, M., Sageev and K., Whyte. Maximally symmetric trees. Geom. Dedicata 92(1) (2002), 195–233.
[40] L., Mosher, M., Sageev and K., Whyte. Quasi-actions on trees I. Bounded valence. Ann. of Math. 158 (2003), 115–164.
[41] L., Mosher, M., Sageev and K., Whyte. Quasi-actions on trees II: Finite depth Bass–Serre trees. Mem. Amer. Math. Soc. 214 (2011), no. 1008.
[42] G., Mostow. Self-adjoint groups. Ann. of Math. 62(1) (1955), 44–55.
[43] G., Mostow. Quasi-conformal mappings in n-space and the rigidity of the hyperbolic space forms. Publ. Math. IHES 34 (1968), 53–104.
[44] P., Pansu. Croissance des boules et des géodésiques fermées dans les nilvariétés. Ergodic Theory Dynam. Systems 3 (1983), no. 3, 415–445.
[45] P., Pansu. Dimension conforme et sph`ere à l'infini des variétés à courbure négative, Ann. Acad. Sci. Fenn. Ser. A I Math. 14 (1989), no. 2, 177–212.
[46] P., Pansu. Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un. Ann. of Math. (1989), 1–60.
[47] P., Pansu. Cohomologie Lp en degré 1 des espaces homog`enes. Potential Anal. 27 (2007), 151–165.
[48] J., Roe. Coarse cohomology and index theory on complete manifolds. Mem. Amer. Math. Soc. 104, 1993.
[49] R., Sauer. Homological invariants and quasi-isometry. Geom. Funct. Anal. 16(2) (2006), 476–515.
[50] J-P., Serre, Arbres, amalgames, SL2. Astérisque 46, Soc. Math. France 1977.
[51] Y., Shalom. Harmonic analysis, cohomology, and the large-scale geometry of amenable groups. Acta Math. 192 (2004), 119–185.
[52] N., Shanmugalingam and Xiangdong, Xie. A rigidity property of some negatively curved solvable Lie groups. Comment. Math. Helv. 87(4) (2012), 805–823.
[53] E., Specker. Endenverbande von Raumen und Gruppen. Math. Ann. 122 (1950), 167–174.
[54] J., Stallings. On torsion free groups with infinitely many ends. Ann. of Math. 88 (1968) 312–334.
[55] R., Tessera. Large scale Sobolev inequalities on metric measure spaces and applications. Rev. Mat. Iberoam. 24 (2008), no. 3, 825–864.
[56] R., Tessera. Vanishing of the first reduced cohomology with values in a Lprepresentation. Ann. Inst. Fourier 59 no. 2 (2009), 851–876.
[57] C., Thomassen and W., Woess. Vertex-transitive graphs and accessibility. J. Combin. Theory, Ser. B 58 (1993), no. 2, 248–268.
[58] P., Tukia. On quasiconformal groups. Journal d'Analyse Mathématique 46 (1986), no. 1, 318–346.
[59] P., Tukia. Homeomorphic conjugates of Fuchsian groups. Journal für die reine und angewandte Mathematik (Crelles Journal) 391 (1988), 1–54.
[60] K., Whyte. Amenability, bi-Lipschitz equivalence, and the von Neumann conjecture. Duke Math. J. 99 (1999), no. 1, 93–112.
[61] K., Whyte. The large scale geometry of the higher Baumslag–Solitar groups. Geom. Funct. Anal. 11(6) (2001), 1327–1343.
[62] Xiangdong, Xie. Quasisymmetric maps on the boundary of a negatively curved solvable Lie group. Math. Ann. 353(3) (2012), 727–746.
[63] Xiangdong, Xie. Large scale geometry of negatively curved RnR. Geom. Topol. 18 (2014), 831–872.

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×