Skip to main content Accessibility help
×
Home
Hostname: page-component-dc8c957cd-mn2s7 Total loading time: 1.142 Render date: 2022-01-27T11:01:30.121Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

34 - Frontotemporal lobar degeneration

from Part VI - Other Dementias

Published online by Cambridge University Press:  04 August 2010

M. Flint Beal
Affiliation:
Cornell University, New York
Anthony E. Lang
Affiliation:
University of Toronto
Albert C. Ludolph
Affiliation:
Universität Ulm, Germany
Adam L. Boxer
Affiliation:
Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
John Q. Trojanowski
Affiliation:
Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
Virginia M.-Y. Lee
Affiliation:
Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
Bruce L. Miller
Affiliation:
Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
Get access

Summary

Introduction

Frontotemporal lobar degeneration, formerly called Pick's disease, is a progressive dementia that is associated with focal atrophy of the frontal and/or temporal lobes. For over 100 years, the key clinical and pathological feature of this disease has been recognized to be focal, often asymmetric cortical involvement. Histopathologically, frontotemporal lobar degeneration (FTLD) is distinct from Alzheimer's disease but heterogeneous, even among similar clinical syndromes. Recently, with the advent of specialized immunohistochemical stains and insights gained from molecular genetics, it has been recognized that FTLD is closely related to, and sometimes overlaps with three other neurodegenerative diseases: corticobasal ganglionic degeneration (CBD), progressive supranuclear palsy (PSP), and motor neuron disease (MND). The central role of the microtubule-associated protein, tau, in the pathogenesis of FTLD, has led to classification as a “tauopathy.”

First description and history of FTLD

The first case of what is now called frontotemporal lobar degeneration (FTLD) was described by Arnold Pick in 1892 (Pick, 1892). His subsequent description of six similar patients emphasized a language impairment, which he termed “amnestic aphasia,” and a focal pattern of brain atrophy involving the temporal and/or frontal lobes. A lack of senile plaques and tangles in the brains of similar patients was noted by Alzheimer in 1911. He and Altman provided the first histopathological description of argyrophilic inclusions (later termed Pick bodies) and swollen achromatic cells (later termed Pick cells) (Altman, 1923).

Type
Chapter
Information
Neurodegenerative Diseases
Neurobiology, Pathogenesis and Therapeutics
, pp. 481 - 493
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlijanian, M. K., Barrezueta, N. X., Williams, R. D.et al. (2000). Hyperphosphorylated tau and neurofilament and cytoskeletal disruptions in mice overexpressing human p25, an activator of cdk5. Proc. Natl Acad. Sci., USA, 97, 2910–15CrossRefGoogle ScholarPubMed
Altman, E. (1923). Uber die eigenartige Krankheitsfalle des spateren Alters. Zeitschrift fur die Gesamte Neurologie und Psychiatrie, 4, 356–85Google Scholar
Alzheimer, A. (1911). Uber eigenartige Krankheitsfalle des spateren Alters. Zeitschrift fur die Gesamte Neurologie und Psychiatrie, 4, 7–44CrossRefGoogle Scholar
Ames, D., Cummings, J. L., Wirshing, W. C., Quinn, B. & Mahler, M. (1994). Repetitive and compulsive behavior in frontal lobe degenerations. J. Neuropsychiatry Clin. Neurosci., 6, 100–13Google ScholarPubMed
Bak, T. H., O'Donovan, D. G., Xuereb, J. H., Boniface, S. & Hodges, J. R. (2001). Selective impairment of verb processing associated with pathological changes in Brodmann areas 44 and 45 in the motor neurone disease-dementia-aphasia syndrome. Brain, 124, 103–20CrossRefGoogle ScholarPubMed
Bird, T. D. & Schellenberg, G. D. (2001). The case of the missing tau, or, why didn't the mRNA bark?Ann. Neurol., 49, 144–53.0.CO;2-J>CrossRefGoogle ScholarPubMed
Bozeat, S., Gregory, C. A., Ralph, M. A. & Hodges, J. R. (2000). Which neuropsychiatric and behavioural features distinguish frontal and temporal variants of frontotemporal dementia from Alzheimer's disease?J. Neurol. Neurosurg. Psychiatr., 69, 178–86CrossRefGoogle ScholarPubMed
Broe, M., Hodges, J. R., Schofield, E., Shepherd, C. E., Kril, J. J. & Halliday, G. M. (2003). Staging disease severity in pathologically confirmed cases of frontotemporal dementia. Neurology, 60, 1005–11CrossRefGoogle ScholarPubMed
Brun, A. (1987). Frontal lobe degeneration of non-Alzheimer type. I. Neuropathology. Arch. Gerontol. Geriatr., 6, 193–208CrossRefGoogle ScholarPubMed
Bussiere, T., Hof, P. R., Mailliot, C.et al. (1999). Phosphorylated serine 422 on tau proteins is a pathological epitope found in several diseases with neurofibrillary degeneration. Acta Neuropathol. (Berl.), 97, 221–30Google ScholarPubMed
Caselli, R. J., Windebank, A. J., Petersen, R. C.et al. (1993). Rapidly progressive aphasic dementia and motor neuron disease. Ann. Neurol., 33, 200–7CrossRefGoogle ScholarPubMed
Chan, D., Fox, N. C., Jenkins, R., Scahill, R. I., Crum, W. R. & Rossor, M. N. (2001a). Rates of global and regional cerebral atrophy in AD and frontotemporal dementia. Neurology, 57, 1756–63CrossRefGoogle Scholar
Chan, D., Fox, N. C., Scahill, R. I.et al. (2001b). Patterns of temporal lobe atrophy in semantic dementia and Alzheimer's disease. Ann. Neurol., 49, 433–42CrossRefGoogle Scholar
Chow, T. W., Miller, B. L., Hayashi, V. N. & Geschwind, D. H. (1999). Inheritance of frontotemporal dementia. Arch. Neurol., 56, 817–22CrossRefGoogle ScholarPubMed
Constantinidis, J., Fichard, J. & Tissot, R. (1974). Pick's disease. Histological and clincial correlations. Eur. Neurol., 11, 208–17CrossRefGoogle Scholar
Dickson, D. W. (2001). Neuropathology of Pick's disease. Neurology, 56(Suppl 4), S16–20CrossRefGoogle ScholarPubMed
Dickson, D. W., Bergeron, C., Chin, S. S.et al. (2002). Office of Rare Diseases neuropathologic criteria for corticobasal degeneration. J. Neuropathol. Exp. Neurol., 61, 935–46CrossRefGoogle ScholarPubMed
Dubois, B., Slachevsky, A., Litvan, I. & Pillon, B. (2000). The FAB: a Frontal Assessment Battery at bedside. Neurology, 55, 1621–6CrossRefGoogle ScholarPubMed
Edwards-Lee, T., Miller, B. L., Benson, D. F.et al. (1997). The temporal variant of frontotemporal dementia. Brain, 120, 1027–40CrossRefGoogle ScholarPubMed
Evans, J. J., Heggs, A. J., Antoun, N. & Hodges, J. R. (1995). Progressive prosopagnosia associated with selective right temporal lobe atrophy. A new syndrome?Brain, 118, 1–13CrossRefGoogle ScholarPubMed
Forno, L. S., Langston, J. W., Herrick, M. K., Wilson, J. D. & Murayama, S. (2002). Ubiquitin-positive neuronal and tau 2-positive glial inclusions in frontotemporal dementia of motor neuron type. Acta Neuropathol. (Berl.), 103, 599–606CrossRefGoogle ScholarPubMed
Galton, C. J., Gomez-Anson, B., Antoun, N.et al. (2001a). Temporal lobe rating scale: application to Alzheimer's disease and frontotemporal dementia. J. Neurol. Neurosurg. Psychiatr., 70, 165–73CrossRefGoogle Scholar
Galton, C. J., Patterson, K., Graham, K.et al. (2001b). Differing patterns of temporal atrophy in Alzheimer's disease and semantic dementia. Neurology, 57, 216–25CrossRefGoogle Scholar
Garrard, P. & Hodges, J. R. (2000). Semantic dementia: clinical, radiological and pathological perspectives. J. Neurol., 247, 409–22CrossRefGoogle ScholarPubMed
Geschwind, D. H., Robidoux, J., Alarcon, M.et al. (2001). Dementia and neurodevelopmental predisposition: cognitive dysfunction in presymptomatic subjects precedes dementia by decades in frontotemporal dementia. Ann. Neurol., 50, 741–6CrossRefGoogle ScholarPubMed
Graham, K. S., Simons, J. S., Pratt, K. H., Patterson, K. & Hodges, J. R. (2000). Insights from semantic dementia on the relationship between episodic and semantic memory. Neuropsychologia, 38, 313–24CrossRefGoogle ScholarPubMed
Gregory, C. A., Serra-Mestres, J. & Hodges, J. R. (1999). Early diagnosis of the frontal variant of frontotemporal dementia: how sensitive are standard neuroimaging and neuropsychologic tests?Neuropsychiatry Neuropsychol. Behav. Neurol., 12, 128–35Google ScholarPubMed
Grossman, M. (2001). A multidisciplinary approach to Pick's disease and frontotemporal dementia. Neurology, 56, S1–2CrossRefGoogle Scholar
Grossman, M. (2002). Progressive aphasic syndromes: clinical and theoretical advances. Curr. Opin. Neurol., 15, 409–13CrossRefGoogle ScholarPubMed
Hardy, J. & Gwinn-Hardy, K. (1998). Genetic classification of primary neurodegenerative disease. Science, 282, 1075–9CrossRefGoogle ScholarPubMed
Harvey, R. J. (1998). Young onset dementia: epidemiology, clinical symptoms, family burden, support and outcome. Dementia Research Group, Imperial College School of Medicine, London
Higuchi, M., Ishihara, T., Zhang, B.et al. (2002). Transgenic mouse model of tauopathies with glial pathology and nervous system degeneration. Neuron, 35, 433–46CrossRefGoogle ScholarPubMed
Hodges, J. R. (2001). Frontotemporal dementia (Pick's disease): clinical features and assessment. Neurology, 56, S6–10CrossRefGoogle ScholarPubMed
Hodges, J. R. & Graham, K. S. (2001). Episodic memory: insights from semantic dementia. Phil. Trans. R. Soc. Lond. B. Biol. Sci., 356, 1423–34Google ScholarPubMed
Hodges, J. R. & Miller, B. (2001). The classification, genetics and neuropathology of frontotemporal dementia. Introduction to the special topic papers: Part I. Neurocase, 7, 31–5CrossRefGoogle ScholarPubMed
Hodges, J. R. & Patterson, K. (1996). Nonfluent progressive aphasia and semantic dementia: a comparative neuropsychological study. J. Int. Neuropsychol. Soc., 2, 511–24CrossRefGoogle ScholarPubMed
Hodges, J. R., Patterson, K., Oxbury, S. & Funnell, E. (1992). Semantic dementia. Progressive fluent aphasia with temporal lobe atrophy. Brain, 115, 1783–806CrossRefGoogle ScholarPubMed
Hodges, J. R., Graham, N. & Patterson, K. (1995). Charting the progression in semantic dementia: implications for the organisation of semantic memory. Memory, 3, 463–95CrossRefGoogle ScholarPubMed
Hof, P. R., Nimchinsky, E. A., Buee-Scherrer, V.et al. (1994). Amyotrophic lateral sclerosis/parkinsonism–dementia complex of Guam: quantitative neuropathology, immunohistochemical analysis of neuronal vulnerability, and comparison with related neurodegenerative disorders. Acta Neuropathol., 88, 397–404CrossRefGoogle ScholarPubMed
Hoffman, J. M., Welsh-Bohmer, K. A., Hanson, M.et al. (2000). FDG PET imaging in patients with pathologically verified dementia. J. Nucl. Med., 41, 1920–8Google ScholarPubMed
Hong, M., Zhukareva, V., Vogelsberg-Ragaglia, V.et al. (1998). Mutation-specific functional impairments in distinct tau isoforms of hereditary FTDP-17. Science, 282, 1914–17CrossRefGoogle ScholarPubMed
Hosler, B. A., Siddique, T., Sapp, P. C.et al. (2000). Linkage of familial amyotrophic lateral sclerosis with frontotemporal dementia to chromosome 9q21–q22. J. Am. Med. Assoc., 284, 1664–9CrossRefGoogle ScholarPubMed
Hutton, M. (2001). Missense and splice site mutations in tau associated with FTDP-17: multiple pathogenic mechanisms. Neurology, 56, S21–5CrossRefGoogle ScholarPubMed
Hutton, M., Lewis, J., Dickson, D., Yen, S. H. & McGowan, E. (2001). Analysis of tauopathies with transgenic mice. Trends Mol. Med., 7, 467–70CrossRefGoogle ScholarPubMed
Ishihara, T., Hong, M., Zhang, B.et al. (1999). Age-dependent emergence and progression of a tauopathy in transgenic mice overexpressing the shortest human tau isoform. Neuron, 24, 751–62CrossRefGoogle ScholarPubMed
Jackson, G. R., Wiedau-Pazos, M., Sang, T. K.et al. (2002). Human wild-type tau interacts with wingless pathway components and produces neurofibrillary pathology in Drosophila. Neuron, 34, 509–19CrossRefGoogle ScholarPubMed
Jackson, M., Lennox, G. & Lowe, J. (1996). Motor neurone disease-inclusion dementia. Neurodegeneration, 5, 339–50CrossRefGoogle ScholarPubMed
Kertesz, A., Martinez-Lage, P., Davidson, W. & Munoz, D. G. (2000). The corticobasal degeneration syndrome overlaps progressive aphasia and frontotemporal dementia. Neurology, 55, 1368–75CrossRefGoogle ScholarPubMed
Knopman, D. S., Mastri, A. R., Frey, W. H., Sung, J. H. & Rustan, T. (1990). Dementia lacking distinctive histologic features: a common non-Alzheimer degenerative dementia. Neurology, 40, 251–6CrossRefGoogle ScholarPubMed
Kovach, M. J., Waggoner, B., Leal, S. M.et al. (2001). Clinical delineation and localization to chromosome 9p13.3–p12 of a unique dominant disorder in four families: hereditary inclusion body myopathy, Paget disease of bone, and frontotemporal dementia. Mol. Genet. Metab., 74, 458–75CrossRefGoogle ScholarPubMed
Levy, M. L., Miller, B. L., Cummings, J. L., Fairbanks, L. A. & Craig, A. (1996). Alzheimer disease and frontotemporal dementias. Behavioral distinctions. Arch. Neurol., 53, 687–90CrossRefGoogle ScholarPubMed
Lewis, J., McGowan, E., Rockwood, J.et al. (2000). Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein. Nat. Genet., 25, 402–5CrossRefGoogle ScholarPubMed
Litvan, I. (2001). Therapy and management of frontal lobe dementia patients. Neurology, 56, S41–5CrossRefGoogle ScholarPubMed
Lomen-Hoerth, C., Anderson, T. & Miller, B. (2002) The overlap of amyotrophic lateral sclerosis and frontotemporal dementia. Neurology, 59, 1077–9CrossRefGoogle ScholarPubMed
Lomen-Hoerth, C., Murphy, J., Langmore, S., Kramer, J. H., Olney, R. K. & Miller, B. (2003). Are amyotrophic lateral sclerosis patients cognitively normal?Neurology, 60, 1094–7CrossRefGoogle ScholarPubMed
Love, S., Bridges, L. R. & Case, C. P. (1995). Neurofibrillary tangles in Niemann–Pick disease type C. Brain, 118, 119–29CrossRefGoogle ScholarPubMed
Lucas, J. J., Hernandez, F., Gomez-Ramos, P., Moran, M. A., Hen, R. & Avila, J. (2001). Decreased nuclear beta-catenin, tau hyperphosphorylation and neurodegeneration in GSK-3beta conditional transgenic mice. EMBO J., 20, 27–39CrossRefGoogle ScholarPubMed
Lund, and Manchester Groups (1994). Clinical and neuropathological criteria for frontotemporal dementia. J. Neurol. Neurosurg. Psychiatr., 57, 416–18Google Scholar
Mann, D. M., South, P. W., Snowden, J. S.et al. (1993). Dementia of frontal lobe type: neuropathology and immunohistochemistry, J. Neurol. Neurosurg. Psychiatr., 56(6), 605–14CrossRefGoogle ScholarPubMed
Masliah, E., Terry, R. D., Alford, M. & DeTeresa, R. (1990). Quantitative immunohistochemistry of synaptophysin in human neocortex: an alternative method to estimate density of presynaptic terminals in paraffin sections. J. Histochem. Cytochem., 38, 837–44CrossRefGoogle ScholarPubMed
McKhann, G. M., Albert, M. S., Grossman, M., Miller, B., Dickson, D. & Trojanowski, J. (2001). Clinical and pathological diagnosis of frontotemporal dementia. Arch. Neurol., 58, 1803–9CrossRefGoogle ScholarPubMed
Mendez, M. F., Selwood, A., Mastri, A. R. & Frey, W. H. (1993). Pick's disease versus Alzheimer's disease: a comparison of clinical characteristics. Neurology, 43, 289–92CrossRefGoogle ScholarPubMed
Mesulam, M. M. (1982). Slowly progressive aphasia without generalized dementia. Ann. Neurol., 11, 592–8CrossRefGoogle ScholarPubMed
Mesulam, M. M. (2001). Primary progressive aphasia. Ann. Neurol., 49, 425–32CrossRefGoogle ScholarPubMed
Miller, B., Cummings, J., Boone, K.et al. (1995a). Clinical and neurobehavioral characteristics of fronto-temporal dementia and Alzheimer disease. Neurology, 45, A318Google Scholar
Miller, B. L., Boone, K., Mishkin, F., Swartz, J. R., Koras, N. & Kushii, J. (1998a). Clinical and neuropsychological features of frontotemporal dementia. In Pick's Disease and Pick Complex, ed., A. Kertesz & D. Munoz. New York: Wiley-Liss. pp. 23–33
Miller, B. L., Cummings, J., Mishkin, F.et al. (1998b). Emergence of artistic talent in frontotemporal dementia. Neurology, 51, 978–82CrossRefGoogle Scholar
Miller, B. L., Cummings, J. L., Villanueva-Meyer, J.et al. (1991). Frontal lobe degeneration: clinical, neuropsychological, and SPECT characteristics. Neurology, 41, 1374–82CrossRefGoogle ScholarPubMed
Miller, B. L., Darby, A. L., Swartz, J. R., Yener, G. G. & Mena, I. (1995b). Dietary changes, compulsions and sexual behavior in frontotemporal degeneration. Dementia, 6, 195–9Google Scholar
Miller, B. L. & Gearhart, R. (1999). Neuroimaging in the diagnosis of frontotemporal dementia. Dement. Geriatr. Cogn. Disord., 10, 71–4CrossRefGoogle Scholar
Miller, B. L., Ikonte, C., Ponton, M. (1997). A study of the Lund-Manchester research criteria for frontotemporal dementia: clinical and single-photon emission CT correlations. Neurology, 48, 937–42CrossRefGoogle ScholarPubMed
Miller, B. L., Seeley, W. W., Mychack, P., Rosen, H. J., Mena, I. & Boone, K. (2001). Neuroanatomy of the self: evidence from patients with frontotemporal dementia. Neurology, 57, 817–21CrossRefGoogle ScholarPubMed
Morris, H. R., Khan, M. N., Janssen, J. C.et al. (2001). The genetic and pathological classification of familial frontotemporal dementia. Arch Neurol, 58, 1813–16CrossRefGoogle ScholarPubMed
Mummery, C. J., Patterson, K., Price, C. J., Ashburner, J., Frackowiak, R. S. & Hodges, J. R. (2000). A voxel-based morphometry study of semantic dementia: relationship between temporal lobe atrophy and semantic memory. Ann. Neurol., 47, 36–453.0.CO;2-L>CrossRefGoogle ScholarPubMed
Mummery, C. J., Patterson, K., Wise, R. J. S., Vandenbergh, R., Price, C. J. & Hodges, J. R. (1999). Disrupted temporal lobe connections in semantic dementia. Brain, 122, 61–73CrossRefGoogle ScholarPubMed
Mychack, P., Kramer, J. H., Boone, K. B. & Miller, B. L. (2001). The influence of right frontotemporal dysfunction on social behavior in frontotemporal dementia. Neurology, 56, S11–15CrossRefGoogle ScholarPubMed
Neary, D., Snowden, J. S., Gustafson, L.et al. (1998). Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology, 51, 1546–54CrossRefGoogle ScholarPubMed
Onari, K. & Spatz, H. (1926). Anatomische Beitrage zur Lehre von der Pickschen umschriebene-Grosshirnriden-Atrophie (‘Picksche Krankheit’). Zeitschrift fur die Gesamte Neurologie und Psychiatrie, 101, 470–511CrossRefGoogle Scholar
Patterson, K., Lambon Ralph, M. A., Hodges, J. R. & McClelland, J. L. (2001). Deficits in irregular past-tense verb morphology associated with degraded semantic knowledge. Neuropsychologia, 39, 709–24CrossRefGoogle ScholarPubMed
Perry, R. J. & Hodges, J. R. (2000). Differentiating frontal and temporal variant frontotemporal dementia from Alzheimer's disease. Neurology, 54, 2277–84CrossRefGoogle ScholarPubMed
Perry, R. J. & Miller, B. L. (2001). Behavior and treatment in frontotemporal dementia. Neurology, 56, S46–51CrossRefGoogle ScholarPubMed
Pick, A. (1892). Uber die Beziehungen der senilen Hirnantropie zur aphasie. Prager Medizinishe Wochenschrift, 17, 165–7Google Scholar
Pollock, N. J., Mirra, S. S., Binder, L. I., Hansen, L. A. & Wood, J. G. (1986). Filamentous aggregates in Pick's disease, progressive supranuclear palsy, and Alzheimer's disease share antigenic determinants with microtubule-associated protein, tau. Lancet, 2, 1211CrossRefGoogle ScholarPubMed
Probst, A., Gotz, J., Wiederhold, K. H.et al. (2000). Axonopathy and amyotrophy in mice transgenic for human four-repeat tau protein. Acta Neuropathol. (Berl.), 99, 469–81CrossRefGoogle ScholarPubMed
Rakowicz, W. P. & Hodges, J. R. (1998). Dementia and aphasia in motor neuron disease: an underrecognised association?J. Neurol. Neurosurg. Psychiatr., 65, 881–9CrossRefGoogle ScholarPubMed
Rankin, K. P., Kramer, J. H., Mychack, P. & Miller, B. L. (2003). Double dissociation of social functioning in frontotemporal dementia. Neurology, 60, 266–71CrossRefGoogle ScholarPubMed
Rascovsky, K., Salmon, D. P., Ho, G. J.et al. (2002). Cognitive profiles differ in autopsy-confirmed frontotemporal dementia and AD. Neurology, 58, 1801–8CrossRefGoogle ScholarPubMed
Ratnavalli, E., Brayne, C., Dawson, K. & Hodges, J. R. (2002). The prevalence of frontotemporal dementia. Neurology, 58, 1615–21CrossRefGoogle ScholarPubMed
Reed, L. A., Grabowski, T. J., Schmidt, M. L.et al. (1997). Autosomal dominant dementia with widespread neurofibrillary tangles. Ann. Neurol., 42, 564–72CrossRefGoogle ScholarPubMed
Rinne, J. O., Laine, M., Kaasinen, V., Norvasuo-Heila, M. K., Nagren, K. & Helenius, H. (2002). Striatal dopamine transporter and extrapyramidal symptoms in frontotemporal dementia. Neurology, 58, 1489–93CrossRefGoogle ScholarPubMed
Rosen, H. J., Gorno-Tempini, M. L., Goldman, W. P. (2002a). Patterns of brain atrophy in frontotemporal dementia and semantic dementia. Neurology, 58, 198–208CrossRefGoogle Scholar
Rosen, H. J., Hartikainen, K. M., Jagust, W.et al. (2002b). Utility of clinical criteria in differentiating frontotemporal lobar degeneration (FTLD) from AD. Neurology, 58, 1608–15CrossRefGoogle Scholar
Rosen, H. J., Kramer, J. H., Gorno-Tempini, M. L., Schuff, N., Weiner, M. & Miller, B. L. (2002c). Patterns of cerebral atrophy in primary progressive aphasia. Am. J. Geriatr. Psychiatr., 10, 89–97CrossRefGoogle Scholar
Rosen, H. J., Lengenfelder, J. & Miller, B. (2000). Frontotemporal dementia. Neurol. Clin., 18, 979–92CrossRefGoogle ScholarPubMed
Rosso, S. M., Kamphorst, W., Graaf, B. (2001). Familial frontotemporal dementia with ubiquitin-positive inclusions is linked to chromosome 17q21–22. Brain, 124, 1948–57CrossRefGoogle ScholarPubMed
Rosso, S. M. & Swieten, J. C. (2002). New developments in frontotemporal dementia and parkinsonism linked to chromosome 17. Curr. Opin. Neurol., 15, 423–8CrossRefGoogle ScholarPubMed
Rossor, M. N., Revesz, T., Lantos, P. L. & Warrington, E. K. (2000). Semantic dementia with ubiquitin-positive tau-negative inclusion bodies. Brain, 123, 267–76CrossRefGoogle ScholarPubMed
Snowden, J. S., Neary, D., Mann, D. M., Goulding, P. J. & Testa, H. J. (1992). Progressive language disorder due to lobar atrophy. Ann. Neurol., 31, 174–83CrossRefGoogle ScholarPubMed
Snowden, J. S., Neary, D. & Mann, D. M. A. (1996a). Fronto-temporal dementia. In Fronto-Temporal Lobar Degeneration, ed. J. S. Snowden, D. Neary & D. M. A. Mann, New York: Churchill Livingstone. pp. 1–41
Snowden, J. S., Neary, D. & Mann, D. M. A. (1996b). Semantic dementia. In Fronto-Temporal Lobar Degeneration, ed. J. S. Snowden, D. Neary, & D. M. A. Mann, New York: Churchill Livingstone. pp. 91–114
Stevens, M., Duijn, C. M., Kamphorst, W.et al. (1998). Familial aggregation in frontotemporal dementia. Neurology, 50, 1541–5CrossRefGoogle ScholarPubMed
Swartz, J. R., Miller, B. L., Lesser, I. M., Booth, R., Darby, A., Wohl, M. & Benson, D. F. (1997a). Behavioral phenomenology in Alzheimer's disease, frontotemporal dementia, and late-life depression: a retrospective analysis. J. Geriatr. Psychiatry Neurol., 10, 67–74CrossRefGoogle Scholar
Swartz, J. R., Miller, B. L., Lesser, I. M. & Darby, A. L. (1997b). Frontotemporal dementia: treatment response to serotonin selective reuptake inhibitors. J. Clin. Psychiatr., 58, 212–16CrossRefGoogle Scholar
Talerico, K. A. & Evans, L. K. (2001). Responding to safety issues in frontotemporal dementias. Neurology, 56, S52–5CrossRefGoogle ScholarPubMed
Trojanowski, J. Q. & Dickson, D. (2001). Update on the neuropathological diagnosis of frontotemporal dementias. J. Neuropathol. Exp. Neurol., 60, 1123–6CrossRefGoogle ScholarPubMed
Warrrington, E. (1975). Selective impairment of semantic memory. Q. J. Exp. Psychol., 27, 635–7CrossRefGoogle Scholar
Weintraub, S., Rubin, N. P. & Mesulam, M. M. (1990). Primary progressive aphasia. Longitudinal course, neuropsychological profile, and language features. Arch. Neurol., 47, 1329–35CrossRefGoogle ScholarPubMed
Wittmann, C. W., Wszolek, M. F., Shulman, J. M.et al. (2001). Tauopathy in Drosophila: neurodegeneration without neurofibrillary tangles. Science, 293, 711–14CrossRefGoogle ScholarPubMed
Wood, P. L., Etienne, P., Lal, S.et al. (1983). A post-mortem comparison of the cortical cholinergic system in Alzheimer's disease and Pick's disease. J. Neurol. Sci., 62, 211–17CrossRefGoogle ScholarPubMed
Zhukareva, V., Mann, D., Pickering-Brown, S.et al. (2002). Sporadic Pick's disease: a tauopathy characterized by a spectrum of pathological tau isoforms in gray and white matter. Ann. Neurol., 51, 730–9CrossRefGoogle ScholarPubMed
Zhukareva, V., Vogelsberg-Ragaglia, V., Deerlin, V. M.et al. (2001). Loss of brain tau defines novel sporadic and familial tauopathies with frontotemporal dementia. Ann. Neurol., 49, 165–753.0.CO;2-3>CrossRefGoogle ScholarPubMed

Send book to Kindle

To send this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Frontotemporal lobar degeneration
    • By Adam L. Boxer, Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA, John Q. Trojanowski, Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, USA, Virginia M.-Y. Lee, Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, USA, Bruce L. Miller, Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
  • M. Flint Beal, Cornell University, New York, Anthony E. Lang, University of Toronto, Albert C. Ludolph, Universität Ulm, Germany
  • Book: Neurodegenerative Diseases
  • Online publication: 04 August 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544873.035
Available formats
×

Send book to Dropbox

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Dropbox.

  • Frontotemporal lobar degeneration
    • By Adam L. Boxer, Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA, John Q. Trojanowski, Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, USA, Virginia M.-Y. Lee, Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, USA, Bruce L. Miller, Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
  • M. Flint Beal, Cornell University, New York, Anthony E. Lang, University of Toronto, Albert C. Ludolph, Universität Ulm, Germany
  • Book: Neurodegenerative Diseases
  • Online publication: 04 August 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544873.035
Available formats
×

Send book to Google Drive

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Google Drive.

  • Frontotemporal lobar degeneration
    • By Adam L. Boxer, Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA, John Q. Trojanowski, Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, USA, Virginia M.-Y. Lee, Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, USA, Bruce L. Miller, Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
  • M. Flint Beal, Cornell University, New York, Anthony E. Lang, University of Toronto, Albert C. Ludolph, Universität Ulm, Germany
  • Book: Neurodegenerative Diseases
  • Online publication: 04 August 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544873.035
Available formats
×